
Advanced Algorithm
Design and Analysis (Lecture 6)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

AALG, lecture 6, © Simonas Šaltenis, 2004 2

Dynamic Programming

Goals of the lecture:
to understand the principles of dynamic
programming;
use the examples of computing optimal
binary search trees, approximate pattern
matching, and coin changing to see how the
principles work;
to be able to apply the dynamic programming
algorithm design technique.

AALG, lecture 6, © Simonas Šaltenis, 2004 3

Coin changing

Problem: Change amount A into as few
coins as possible, when we have n coin
denominations:

denom[1] > denom[2] > … > denom[n] = 1

For example:
A = 12, denom = [10, 5, 1] 10 5 1

10 6 1

Greedy algorithm works fine (for this
example)

Prove greedy choice property

What if A =12, denom = [10, 6, 1]?

AALG, lecture 6, © Simonas Šaltenis, 2004 4

Dynamic programming

Dynamic programming:
A powerful technique to solve optimization problems

Structure:
To arrive at an optimal solution a number of choices are
made
Each choice generates a number of sub-problems
Which choice to make is decided by looking at all possible
choices and the solutions to sub-problems that each
choice generates

• Compare this with a greedy choice.

The solution to a specific sub-problem is used many
times in the algorithm

AALG, lecture 6, © Simonas Šaltenis, 2004 5

Questions to think about

Construction:
What are the sub-problems? Which parameters
define each sub-problem?
Which choices have to be considered in each
step of the algorithm?
In which order do we have to solve sub-
problems?
How are the trivial sub-problems solved?

Analysis:
How many different sub-problems are there in
total?
How many choices have to be considered in
each step of the algorithm?

AALG, lecture 6, © Simonas Šaltenis, 2004 6

Edit Distance

Problem definition:
Two strings: s[0..m-1], and t[0..n-1]
Find edit distance dist(s,t)– the smallest
number of edit operations that turns s into t
Edit operations:
• Replace one letter with another
• Delete one letter
• Insert one letter

• Example: ghost delete g
host insert u
houst replace t by e
house

AALG, lecture 6, © Simonas Šaltenis, 2004 7

Sub-problmes

What are the sub-problems?
Goal 1: To have as few sub-problems as
possible
Goal 2: Solution to the sub-problem should be
possible by combining solutions to smaller sub-
problems.

Sub-problem:
di,j = dist(s[0..i], t[0..j])
Then dist(s, t) = dm-1,n-1

AALG, lecture 6, © Simonas Šaltenis, 2004 8

Making a choice

How can we solve a sub-problem by
looking at solutions of smaller sub-
problems to make a choice?

Let’s look at the last symbol: s[i] and t[j]. Do
whatever is cheaper:
• If s[i] = t[j], then turn s[0..i-1] to t[0..j-1], else

replace s[i] by t[j] and turn s[0..i-1] to t[0..j-1]
• Delete s[i] and turn s[0..i-1] to t[0..j]
• Insert insert t[j] at the end of s[0..i-1] and turn

s[0..i] to t[0..j-1]

AALG, lecture 6, © Simonas Šaltenis, 2004 9

Recurrence

In which order do we have to solve sub-
problems?
How do we solve trivial sub-problems?

To turn empty string to t[0..j], do j+1 inserts
To turn s[0..i] to empty string, do i+1 deletes

1, 1

, 1,

, 1

0 if [] []
1 else

min 1
1

i j

i j i j

i j

s i t j
d

d d
d

− −

−

−

 =
+ 

= +
 +


AALG, lecture 6, © Simonas Šaltenis, 2004 10

Algorithm

EditDistance(s[0..m-1], t[0..n-1])
01 for i = -1 to m-1 do dist[i,-1] = i+1
02 for j = 0 to n-1 do dist[-1,j] = j+1
03 for i = 0 to m-1 do
04 for j = 0 to n-1 do
05 if s[i] = t[j] then
06 dist[i,j] = min(dist[i-1,j-1], dist[i-1,j]+1,

dist[i,j-1]+1)
07 else
08 dist[i,j] = 1 + min(dist[i-1,j-1], dist[i-1,j],

dist[i,j-1])
09 return dist[m-1,n-1]

What is the running time of this algorithm?

AALG, lecture 6, © Simonas Šaltenis, 2004 11

Approximate Text Searching

Given p[0..m-1], find a sub-string of t (w
= t[i,j]), such that dist(p, w) is minimal.

Brute-force: compute edit distance between p
and all possible sub-strings of t. Running time?
What are the sub-problems?
adi,j= min{dist(p[0..i], t[l..j]) | 0 ≤ l ≤ j+1}
The same recurrence as for di,j!
The edit distance from p to the best match then
is the minimum of adm-1,0,adm-1,1, … , adm-1,n-1

Trivial problems are solved different:
• Think how.

AALG, lecture 6, © Simonas Šaltenis, 2004 12

Optimal BST

Static database ⇒ the
goal is to optimize
searches

Let’s assume all
searches are successful

0.480.241F

0.20.11A

2.61.00Total:

0.720.183E

0.360.122D

0.640.163C

0.20.20B

Contribu
tion

Probabil
ity (pi)

DepthNode
(ki)

1 1

Expected cost of search in T (() 1) 1 ()
n n

T i i T i i
i i
depth k p depth k p

= =

= + ⋅ = + ⋅∑ ∑

C

D

E

FA

B

AALG, lecture 6, © Simonas Šaltenis, 2004 13

Sub-problems

Input: keys k1, k2, …, kn

Sub-problem options:
k1, k2, …, kj

ki, ki+1, …, kn

Natural choice: pick as a root kr (1 ≤ r ≤ n)
Generates sub-problems: ki, ki+1, …, kj

Lets denote the expected search cost e[i,j].
If kr is root, then

1

where (,)
j

l
l

w i j p
=

= ∑
() ()(,) [, 1] (, 1) [1,] (1,) ,re i j p e i r w i r e r j w r j= + − + − + + + +

AALG, lecture 6, © Simonas Šaltenis, 2004 14

Solving sub-problems

How do I solve the trivial problem?

 if
(,) min{ [, 1] [1,] (,)} if

i

i r j

p i j
e i j e i r e r j w i j i j

≤ ≤

==  − + + + <

Thus,
 (,) [, 1] [1,] (,)e i j e i r e r j w i j= − + + +

Observe that
 (,) [, 1] [1,].rw i j w i r p w r j= − + + +

In which order do I have to solve my
problems?

AALG, lecture 6, © Simonas Šaltenis, 2004 15

Finishing up

I can compute w(i,j) using w(i,j-1)
w(i,j) = w(i,j-1) + pj

An array w[i,j] is filled in parallel with e[i,j]
array

Need one more array to note which root kr
gave the best solution to (i, j)-sub-problem
What is the running time?

AALG, lecture 6, © Simonas Šaltenis, 2004 16

Elements of Dynamic Programming

Dynamic programming is used for
optimization problems

A number of choices have to be made to arrive
at an optimal solution
At each step, consider all possible choices and
solutions to sub-problems induced by these
choices (compare to greedy algorithms)
The order of solving of the sub-problems is
important – from smaller to larger

Usually a table of sub-problem solutions is
used

AALG, lecture 6, © Simonas Šaltenis, 2004 17

Elements of Dynamic Programming

To be sure that the algorithm finds an
optimal solution, the optimal sub-structure
property has to hold

the simple “cut-and-paste” argument usually
works,
but not always! Longest simple path example –
no optimal sub-structure!

AALG, lecture 6, © Simonas Šaltenis, 2004 18

Coin Changing: Sub-problems

A =12, denom = [10, 6, 1]?

What could be the sub-problems?
Described by which parameters?
How do we solve sub-problems?

(1,) if []
(,)

min{ (1,),1 (, [])} if []
c i j denom i j

c i j
c i j c i j denom i denom i j

+ >
=  + + − ≤

10 6 1

How do we solve the trivial sub-problems?
In which order do I have to solve sub-
problems?

