Advanced Algorithm
Design and Analysis (Lecture 6)

SW5 fall 2004
Simonas Saltenis
E1-215b
simas@cs.aau.dk

Dynamic Programming

m Goals of the lecture:
m to understand the principles of dynamic
programming;
m Use the examples of computing optimal
binary search trees, approximate pattern

matching, and coin changing to see how the
principles work;

m to be able to apply the dynamic programming
algorithm design technigue.

AALG, lecture 6, © Simonas Saltenis, 2004 2

Coin changing

m Problem: Change amount A into as few
coins as possible, when we have n coin
denominations:

denom[1] > denom[2] > ... > denom[n] = 1

m For example:
mA=12, denom =[10, 5, 1] @@

m Greedy algorithm works fine (for this

example)
m Prove greedy choice property @@

m What if A =12, denom = [10, 6, 1]?

AALG, lecture 6, © Simonas Saltenis, 2004

Dynamic programming

m Dynamic programming:
m A powerful technique to solve optimization problems

m Structure:
m To arrive at an optimal solution a number of choices are
made
m Each choice generates a number of sub-problems

s Which choice to make is decided by looking at all possible
choices and the solutions to sub-problems that each
choice generates

e Compare this with a greedy choice.

m The solution to a specific sub-problem is used many

times in the algorithm

AALG, lecture 6, © Simonas Saltenis, 2004

Questions to think about

m Construction:

m What are the sub-problems? Which parameters
define each sub-problem?

m Which choices have to be considered in each
step of the algorithm?

m In which order do we have to solve sub-
problems?

m How are the trivial sub-problems solved?

m Analysis:

m How many different sub-problems are there in
total?

m How many choices have to be considered in
each step of the algorithm?

AALG, lecture 6, © Simonas Saltenis, 2004 5

Edit Distance

m Problem definition:
m Two strings: s[0..m-1], and t[0..n-1]
m Find edit distance dist(s,t)- the smallest
number of edit operations that turns s into t

s Edit operations:
o Replace one letter with another
e Delete one letter
e Insert one letter

e Example: ghost delete g
host insert u

houst replace t by e
house

AALG, lecture 6, © Simonas Saltenis, 2004

Sub-problmes

m What are the sub-problems?

m Goal 1: To have as few sub-problems as
possible

m Goal 2: Solution to the sub-problem should be
possible by combining solutions to smaller sub-
problems.

m Sub-problem:
| di,j — dlSt(S[O..i], t[O..j])
m Then dist(s, t) = d,,_; 5

AALG, lecture 6, © Simonas Saltenis, 2004 7

Making a choice

m How can we solve a sub-problem by
looking at solutions of smaller sub-
problems to make a choice?

m Let's look at the last symbol: s[/] and t[j]. Do
whatever is cheaper:
o If s[i] = t[j], then turn s[0../-1] to £[0..j-1], else
replace s[/] by t[j] and turn s[0../-1] to ¢t[0..j-1]
e Delete s[/] and turn s[0../-1] to ¢[0..J]

e Insert insert t[j] at the end of s[0../-1] and turn
s[0../] to t[0..j-1]

AALG, lecture 6, © Simonas Saltenis, 2004

Recurrence

d,;=minqd,_ ; +1

m In which order do we have to solve sub-
problems?

m How do we solve trivial sub-problems?
m To turn empty string to t[0..j], do j+1 Inserts
m To turn s[0../] to empty string, do /i+1 deletes

AALG, lecture 6, © Simonas Saltenis, 2004

Algorithm

EditDistance(s[0..m-1], t[0..n-1])
01 for 1 =-1 to m-1 do dist[i,-1] = i+1
02 for j = 0 to n-1 do dist[-1,3] = j+1
03 for i =0 to m-1 do

04 for] = 0 to n-1 do

05 if s[i] = t[j] then

06 dist[i,j] = min(dist[i-1,7j-1], dist[i-1,7]+1,
dist[i,j-1]1+1)

07 else

08 dist[i,j] = 1 + min(dist[i-1,3j-11, dist[i-1,7],

dist[i,3-1])
09 return dist[m-1,n-1]

m What is the running time of this algorithm?

AALG, lecture 6, © Simonas Saltenis, 2004 10

Approximate Text Searching

m Given p[0..m-1], find a sub-string of t (w
= t[i,j]), such that dist(p, w) is minimal.

m Brute-force: compute edit distance between p
and all possible sub-strings of t. Running time?

s What are the sub-problems?
m ad, ;= min{dist(p[O0../], t[/l..j]) | 0 </ <j+1%}
= The same recurrence as for d, /!

m The edit distance from p to the best match then
is the minimum of ad,,, s o,@d,1 1, ... , @dpyq ng

m Trivial problems are solved different:
e Think how.

AALG, lecture 6, © Simonas Saltenis, 2004 11

Optimal BST

- Statlc_: databa_se_i the Node | Depth | Probabil | Contribu
goal is to optimize (k) ity (p,) |tion
searches

, A 1 0.1 0.2
m Let's assume all
searches are successful B 0 0.2 0.2
C 3 0.16 0.64
D 2 0.12 0.36
E 3 0.18 0.72
F 1 0.24 0.48
Total: 1.00 2.6

Expected cost of search in T = (depth, (k) +1)- p, =1+ depth,(k,)- p,
i=1 i=1

AALG, lecture 6, © Simonas Saltenis, 2004 12

Sub-problems

m Input: keys ky, k,, ..., K,
m Sub-problem options:
m ky, Ky, ...y K;
midilci il Kd
m Natural choice: pick as a root k. (1 <r <n)
= Generates sub-problems: k;, K.y, ..., K;
m Lets denote the expected search cost e[/, j].

m If k. is root, then

e(i,)= p, +(e[i,r =11+ w(i,r =1))+(e[r + 1, j1+w(r +1,)),
where w(i, j) = ip,

AALG, lecture 6, © Simonas Saltenis, 2004 13

Solving sub-problems

Observe that
w(i, j)=wli,r =1]+ p. +wr+1, j].

Thus,
e(i, j)=eli,r—1]+e[r+1, j]+w(i, j)

m How do I solve the trivial problem?

i<r<j

iz ifi=j
)=\ minfefi,r— 1+ e[r +1, jl+wi,)} ifi<)

m In which order do I have to solve my
problems?

AALG, lecture 6, © Simonas Saltenis, 2004

14

Finishing up

m I can compute w(/,j) using w(/,j-1)

. W(I/J) T W(IIJ-]') i pj
s An array wlj,j] is filled in parallel with e[/, j]
array

m Need one more array to note which root k,
gave the best solution to (/, j)-sub-problem

m What is the running time?

AALG, lecture 6, © Simonas Saltenis, 2004 15

Elements of Dynamic Programming

m Dynamic programming is used for
optimization problems

m A humber of choices have to be made to arrive
at an optimal solution

m At each step, consider all possible choices and
solutions to sub-problems induced by these
choices (compare to greedy algorithms)

m The order of solving of the sub-problems is
important - from smaller to larger

m Usually a table of sub-problem solutions is
used

AALG, lecture 6, © Simonas Saltenis, 2004 16

Elements of Dynamic Programming

m To be sure that the algorithm finds an
optimal solution, the optimal sub-structure
property has to hold

m the simple “cut-and-paste” argument usually
works,

m but not always! Longest simple path example -
no optimal sub-structure!

AALG, lecture 6, © Simonas Saltenis, 2004 17

Coin Changing: Sub-problems
m A=12, denom = [10, 6, 1]? @@

m What could be the sub-problems?
Described by which parameters?

m How do we solve sub-problems?

] c(i+1,)) if denom[i]> j
C l’ B . .
1 min{c(i+1, j),1+c(i, j —denom[i])} 1f denom|[i]< j

m How do we solve the trivial sub-problems?

m In which order do I have to solve sub-
problems?

AALG, lecture 6, © Simonas Saltenis, 2004 18

