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Dynamic Programming

Goals of the lecture:
to understand the principles of dynamic 
programming; 
use the examples of computing optimal 
binary search trees, approximate pattern 
matching, and coin changing to see how the 
principles work; 
to be able to apply the dynamic programming 
algorithm design technique. 
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Coin changing 

Problem: Change amount A into as few 
coins as possible, when we have n coin 
denominations:

denom[1] > denom[2] > … > denom[n] = 1

For example:
A = 12, denom = [10, 5, 1] 10 5 1

10 6 1

Greedy algorithm works fine (for this 
example)

Prove greedy choice property

What if A =12, denom = [10, 6, 1]?
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Dynamic programming

Dynamic programming:
A powerful technique to solve optimization problems

Structure:
To arrive at an optimal solution a number of choices are 
made
Each choice generates a number of sub-problems
Which choice to make is decided by looking at all possible 
choices and the solutions to sub-problems that each 
choice generates

• Compare this with a greedy choice.

The solution to a specific sub-problem is used many 
times in the algorithm
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Questions to think about

Construction:
What are the sub-problems? Which parameters 
define each sub-problem?
Which choices have to be considered in each 
step of the algorithm?
In which order do we have to solve sub-
problems?
How are the trivial sub-problems solved? 

Analysis:
How many different sub-problems are there in 
total? 
How many choices have to be considered in 
each step of the algorithm?
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Edit Distance

Problem definition:
Two strings: s[0..m-1], and t[0..n-1]
Find edit distance dist(s,t)– the smallest 
number of edit operations that turns s into t
Edit operations:
• Replace one letter with another
• Delete one letter
• Insert one letter 

• Example:     ghost delete g
host insert u
houst replace t by e
house
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Sub-problmes

What are the sub-problems?
Goal 1: To have as few sub-problems as 
possible 
Goal 2: Solution to the sub-problem should be 
possible by combining solutions to smaller sub-
problems.  

Sub-problem:
di,j = dist(s[0..i], t[0..j])
Then dist(s, t) = dm-1,n-1
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Making a choice

How can we solve a sub-problem by 
looking at solutions of smaller sub-
problems to make a choice?

Let’s look at the last symbol: s[i] and t[j]. Do 
whatever is cheaper:
• If s[i] = t[j], then turn s[0..i-1] to t[0..j-1], else 

replace s[i] by t[j] and turn s[0..i-1] to t[0..j-1]
• Delete s[i] and turn s[0..i-1] to t[0..j]
• Insert insert t[j] at the end of s[0..i-1] and turn 

s[0..i] to t[0..j-1]
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Recurrence

In which order do we have to solve sub-
problems?
How do we solve trivial sub-problems?

To turn empty string to t[0..j], do j+1 inserts
To turn s[0..i] to empty string, do i+1 deletes
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Algorithm

EditDistance(s[0..m-1], t[0..n-1]) 
01 for i = -1 to m-1 do dist[i,-1] = i+1
02 for j =   0 to n-1 do dist[-1,j] = j+1
03 for i = 0 to m-1 do
04    for j =  0 to n-1 do
05       if s[i] = t[j] then
06          dist[i,j] = min(dist[i-1,j-1], dist[i-1,j]+1, 

dist[i,j-1]+1)
07       else 
08 dist[i,j] = 1 + min(dist[i-1,j-1], dist[i-1,j], 

dist[i,j-1])
09 return dist[m-1,n-1]

What is the running time of this algorithm?
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Approximate Text Searching

Given p[0..m-1], find a sub-string of t (w 
= t[i,j]), such that dist(p, w) is minimal. 

Brute-force: compute edit distance between p 
and all possible sub-strings of t. Running time?
What are the sub-problems?
adi,j= min{dist(p[0..i], t[l..j]) | 0 ≤ l ≤ j+1}
The same recurrence as for di,j!
The edit distance from p to the best match then 
is the minimum of adm-1,0,adm-1,1, … , adm-1,n-1

Trivial problems are solved different:
• Think how.
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Optimal BST

Static database ⇒ the 
goal is to optimize 
searches

Let’s assume all 
searches are successful
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Sub-problems

Input: keys k1, k2, …, kn 

Sub-problem options:
k1, k2, …, kj 

ki, ki+1, …, kn 

Natural choice: pick as a root kr (1 ≤ r ≤ n)
Generates sub-problems: ki, ki+1, …, kj 

Lets denote the expected search cost e[i,j].
If kr is root, then  
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Solving sub-problems

How do I solve the trivial problem?

                                                   if 
( , ) min{ [ , 1] [ 1, ] ( , )} if 
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Thus, 
  ( , ) [ , 1] [ 1, ] ( , )e i j e i r e r j w i j= − + + +

Observe that
  ( , ) [ , 1] [ 1, ].rw i j w i r p w r j= − + + +

In which order do I have to solve my 
problems?
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Finishing up

I can compute w(i,j) using w(i,j-1)
w(i,j) = w(i,j-1) + pj

An array w[i,j] is filled in parallel with e[i,j] 
array

Need one more array to note which root kr
gave the best solution to (i, j)-sub-problem
What is the running time? 
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Elements of Dynamic Programming

Dynamic programming is used for 
optimization problems

A number of choices have to be made to arrive 
at an optimal solution
At each step, consider all possible choices and 
solutions to sub-problems induced by these 
choices (compare to greedy algorithms)
The order of solving of the sub-problems is 
important – from smaller to larger

Usually a table of sub-problem solutions is 
used
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Elements of Dynamic Programming

To be sure that the algorithm finds an 
optimal solution, the optimal sub-structure
property has to hold

the simple “cut-and-paste” argument usually 
works,
but not always! Longest simple path example –
no optimal sub-structure!
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Coin Changing: Sub-problems

A =12, denom = [10, 6, 1]?

What could be the sub-problems? 
Described by which parameters?
How do we solve sub-problems?

( 1, )                                          if [ ]
( , )

min{ ( 1, ),1 ( , [ ])} if [ ]
c i j denom i j

c i j
c i j c i j denom i denom i j

+ >
=  + + − ≤

10 6 1

How do we solve the trivial sub-problems?
In which order do I have to solve sub-
problems?


