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All-pairs shortest paths

Main goals of the lecture:
to go through one more example of dynamic 
programming – to solve the all-pairs shortest 
paths and transitive closure of a weighted 
graph (the Floyd-Warshall algorithm); 
to see how algorithms can be adapted to work 
in different settings (idea for reweighting in 
Johnson’s algorithm) 
to be able to compare the applicability and 
efficiency of the different algorithms solving the 
all-pairs shortest paths problems. 
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Input/Output

What is the input and the output in the all-
pairs shortest path problem?

What are the popular memory representations 
of a weighted graph?
Input: adjacency matrix
• Let n = |V|, then W=(wij) is an n x n matrix, where 
• wij=0, if i = j;  
• wij=weight of the edge (i,j) or  ∞∞∞∞, if (i,j)∉∉∉∉E

Output: 
• Distance matrix 
• Predecessor matrix
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Input/Output

Output:
Distance matrix
• D=(dij) is an n x n matrix, where dij = δ δ δ δ (i,j) – weight 

of the shortest path between vertices i and j.

Predecessor matrix
• P=(pij) is an n x n matrix, where pij = nil, if i = j or 

there is no shortest path from i to j, otherwise pij is 
the predecessor of j on a shortest path from i.

• The i-th row of this matrix encodes the shortest-path 
tree with root i.
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Example graph

Write an adjacency matrix for this graph.
Give the first row of the predecessor 
matrix (to encode the shown shortest path 
tree). 
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Sub-problems

What are the sub-problems? Defined by 
which parameters? 
Options:

L(m)(i,j) – minimum weight of a path between i
and j containing at most m edges. 
d(k)(i,j) – minimum weight of a path where the 
only intermediate vertices (not i or j) allowed 
are from the set {1, …, k}.

Floyd-Warshall algorithm uses d(k)(i,j) as a 
sub-problem 

d(n)(i,j) is the solution to the whole problem
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Solving sub-problems

How are sub-problems solved? Which 
choices have to be considered?

Let p be the shortest path from i to j containing 
only vertices from the set {1, …, k}. Optimal 
sub-structure:
• If vertex k is not in p then a shortest path with 

intermediate vertices in {1, …, k-1} is also a shortest 
path with intermediate vertices in {1, …, k}.

• If k is an intermediate vertex in p, then we break 
down p into p1(i to k) and p2(k to j), where p1 and p2
are shortest paths with intermediate vertices in {1, …, 
k-1}. 

Choice – either we include k in the shortest 
path or not!
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Trivial Problems, Recurrence

What are the trivial problems?
d(0)(i,j) = wij 

Recurrence:
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What order have to be used to compute the 
solutions to sub-problems?

Increasing k
Can use one matrix D – no danger of overwriting old 
values as d(k)(i,k) = d(k-1)(i,k) and d(k)(k,j) = d(k-1)(k,j)
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The Floyd-Warshall algorithm

Floyd-Warshall(W[1..n][1..n]) 
01 D ← W    // D(0)

02 for k ← 1 to n do // compute D(k)

03    for i ←1 to n do
04 for j ←1 to n do
05    if D[i][k] + D[k][j] < D[i][j] then
06            D[i][j] ← D[i][k] + D[k][j] 
07 return D



AALG, lecture 7, © Simonas Šaltenis, 2004 10

Computing predecessor matrix 

Updating: 

How do we compute the predecessor 
matrix?

Initialization: (0) if  or  
( , )

   if  and 
ij

ij

nil i j w
p i j

i i j w
= = ∞

=  ≠ < ∞

Floyd-Warshall(W[1..n][1..n]) 
01 …
02 for k ← 1 to n do // compute D(k)

03    for i ←1 to n do
04 for i ←1 to n do
05    if D[i][k] + D[k][j] < D[i][j] then
06            D[i][j] ← D[i][k] + D[k][j] 
07            P[i][j] ← P[k][j]
08 return D
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Analysis, Example

When does it make sense to run Floyd-
Warshall?

Running time: O(V3)
Graphs with and without negative edges
Sparse and dense graphs
Constants behind the O notation
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Run the first iteration of the  
algorithm (k=1), show both 
D and P matrices.
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Transitive closure of the graph

Input:
Un-weighted graph G: W[i][j] = 1, if (i,j)∈∈∈∈E, 
W[i][j] = 0 otherwise.

Output:
T[i][j] = 1, if there is a path from i to j in G, 
T[i][j] = 0 otherwise.

Algorithm:
Just run Floyd-Warshall with weights 1, and 
make T[i][j] = 1, whenever D[i][j] < ∞.∞.∞.∞.
More efficient: use only Boolean operators  
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Transitive closure algorithm

Transitive-Closure(W[1..n][1..n]) 
01 T ← W    // T(0)

02 for k ← 1 to n do // compute T(k)

03    for i ←1 to n do
04 for i ←1 to n do
05          T[i][j] ← T[i][j] ∨∨∨∨ (T[i][k] ∧∧∧∧ T[k][j]) 
06 return T
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Sparse graphs

What if the graph is sparse?
If no negative edges – run repeated Dijkstra’s
If negative edges – let us somehow change the 
weights of all edges (to w’) and then run  
repeated Dijkstra’s

Requirements for reweighting:
Non-negativity: for each (u,v), w’(u,v) ≥≥≥≥ 0
Shortest-path equivalence: for all pairs of 
vertices u and v, a path p is a shortest path 
from u to v using weights w if and only if p is a 
shortest path from u to v using weights w’. 
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Reweighting theorem

Rweighting does not change shortest paths
Let h: V → R be any function
For each (u,v)∈∈∈∈E, define 
w’(u,v) = w(u,v) + h(u) – h(v).
Let p = (v0, v1, …, vk) be any path from v0 to vk

Then: w(p)= δ δ δ δ (v0, vk)  ⇔  w’(p)= δδδδ’ (v0, vk)
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Choosing reweighting function

How to choose function h?
The idea of Johnson:

1. Augment the graph by adding vertex s and 
edges (s,v) for each vertex v with 0 weights.

2. Compute the shortest paths from s in the 
augmented graph (using Belman-Ford).
3. Make h(v) = δ δ δ δ (s, v)
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Johnson’s algorithm

Why does it work?
By definition of the shortest path: for all edges 
(u,v), h(u) ≤≤≤≤ h(v) + w(u,v)
Thus, w(u,v) + h(u) – h(v) ≥≥≥≥ 0

Johnson’s algorithm:
1. Construct augmented graph
2. Run Bellman-Ford (possibly report a negative 
cycle), to find h(v) = δδδδ (s, v) for each vertex v
3. Reweight all edges: 
• w’(u,v) ← w(u,v) + h(u) – h(v).

4. For each vertex u:
• Run Dijkstra’s from u, to find δ δ δ δ ’(u, v) for each v
• For each vertex v: D[u][v] ← δ δ δ δ ’(u, v) + h(v) – h(u) 
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Example, Analysis

Do the reweighting on this example:

What is the running time of Johnson’s?
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