Advanced Algorithm
 Design and Analysis (Lecture 7)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

All-pairs shortest paths

- Main goals of the lecture:
- to go through one more example of dynamic programming - to solve the all-pairs shortest paths and transitive closure of a weighted graph (the Floyd-Warshall algorithm);
- to see how algorithms can be adapted to work in different settings (idea for reweighting in Johnson's algorithm)
- to be able to compare the applicability and efficiency of the different algorithms solving the all-pairs shortest paths problems.

Input/Output

- What is the input and the output in the allpairs shortest path problem?
- What are the popular memory representations of a weighted graph?
- Input: adjacency matrix
- Let $n=|V|$, then $W=\left(w_{i j}\right)$ is an $n \times n$ matrix, where
- $w_{i j}=0$, if $i=j$;
- $w_{i j}=$ weight of the edge (i, j) or ∞, if $(i, j) \notin E$
- Output:
- Distance matrix
- Predecessor matrix

Input/Output

- Output:
- Distance matrix
- $D=\left(d_{i j}\right)$ is an $n \times n$ matrix, where $d_{i j}=\delta(i, j)$ - weight of the shortest path between vertices i and j.
- Predecessor matrix
- $P=\left(p_{i j}\right)$ is an $n \times n$ matrix, where $p_{i j}=n i l$, if $i=j$ or there is no shortest path from i to j, otherwise $p_{i j}$ is the predecessor of j on a shortest path from i.
- The i-th row of this matrix encodes the shortest-path tree with root i.

Example graph

- Write an adjacency matrix for this graph.
- Give the first row of the predecessor matrix (to encode the shown shortest path tree).

Sub-problems

- What are the sub-problems? Defined by which parameters?
- Options:
- $L^{(m)}(i, j)$ - minimum weight of a path between i and j containing at most m edges.
- $d^{(k)}(i, j)$ - minimum weight of a path where the only intermediate vertices (not i or j) allowed are from the set $\{1, \ldots, k\}$.
- Floyd-Warshall algorithm uses $d^{(k)}(i, j)$ as a sub-problem
- $d^{(n)}(i, j)$ is the solution to the whole problem

Solving sub-problems

- How are sub-problems solved? Which choices have to be considered?
- Let p be the shortest path from i to j containing only vertices from the set $\{1, \ldots, k\}$. Optimal sub-structure:
- If vertex k is not in p then a shortest path with intermediate vertices in $\{1, \ldots, k-1\}$ is also a shortest path with intermediate vertices in $\{1, \ldots, k\}$.
- If k is an intermediate vertex in p, then we break down p into $p_{1}(i$ to $k)$ and $p_{2}(k$ to $j)$, where p_{1} and p_{2} are shortest paths with intermediate vertices in $\{1, \ldots$, $k-1\}$.
- Choice - either we include k in the shortest path or not!

Trivial Problems, Recurrence

- What are the trivial problems?
- $d^{(0)}(i, j)=w_{i j}$
- Recurrence:
$d^{(k)}(i, j)= \begin{cases}w_{i j} & \text { if } k=0 \\ \min \left(d^{(k-1)}(i, j), d^{(k-1)}(i, k)+d^{(k-1)}(k, j)\right) & \text { if } k \geq 1\end{cases}$
- What order have to be used to compute the solutions to sub-problems?
- Increasing k
- Can use one matrix D - no danger of overwriting old values as $d^{(k)}(i, k)=d^{(k-1)}(i, k)$ and $d^{(k)}(k, j)=d^{(k-1)}(k, j)$

The Floyd-Warshall algorithm

```
Floyd-Warshall (W[1..n] [1..n])
\(01 \mathrm{D} \leftarrow \mathrm{W} \quad / / \mathrm{D}^{(0)}\)
02 for \(k \leftarrow 1\) to \(n\) do // compute \(D^{(k)}\)
03 for \(i \leftarrow 1\) to \(n\) do
04 for \(j \leftarrow 1\) to \(n\) do
05 if \(D[i][k]+D[k][j]<D[i][j]\) then
\(06 \quad \mathrm{D}[\mathrm{i}][\mathrm{j}] \leftarrow \mathrm{D}[\mathrm{i}][\mathrm{k}]+\mathrm{D}[\mathrm{k}][\mathrm{j}]\)
07 return D
```


Computing predecessor matrix

- How do we compute the predecessor matrix?
- Initialization: $\quad p^{(0)}(i, j)= \begin{cases}n i l & \text { if } i=j \text { or } w_{i j}=\infty \\ i & \text { if } i \neq j \text { and } w_{i j}<\infty\end{cases}$
- Updating:

```
Floyd-Warshall(W[1..n][1..n])
01 ...
0 2 ~ f o r ~ k ~ \leftarrow 1 ~ t o ~ n ~ d o ~ / / ~ c o m p u t e ~ D ~ ( k ) ~
03 for i \leftarrow1 to n do
04 for i \leftarrow1 to n do
05 if D[i][k] + D[k][j] < D[i][j] then
06 D[i][j] \leftarrowD[i][k] + D[k][j]
07 P[i][j] \leftarrowP[k][j]
0 8 ~ r e t u r n ~ D ~
```


Analysis, Example

- When does it make sense to run FloydWarshall?
- Running time: $O\left(V^{\beta}\right)$
- Graphs with and without negative edges
- Sparse and dense graphs
- Constants behind the O notation
- Run the first iteration of the algorithm ($k=1$), show both D and P matrices.

Transitive closure of the graph

- Input:
- Un-weighted graph G : $W[i][j]=1$, if $(i, j) \in E$, $W[i][j]=0$ otherwise.
- Output:
- $T[i][j]=1$, if there is a path from i to j in G, $T[i][j]=0$ otherwise.
- Algorithm:
- Just run Floyd-Warshall with weights 1, and make $T[i][j]=1$, whenever $D[i][j]<\infty$.
- More efficient: use only Boolean operators

Transitive closure algorithm

Transitive-Closure (W[1..n] [1..n])
$01 \mathrm{~T} \leftarrow \mathrm{~W} \quad / / \mathrm{T}^{(0)}$
02 for $k \leftarrow 1$ to n do // compute $\mathrm{T}^{(\mathrm{k})}$
03 for $i \leftarrow 1$ to n do
04 for $i \leftarrow 1$ to n do
$05 \quad \mathrm{~T}[\mathrm{i}][\mathrm{j}] \leftarrow \mathrm{T}[\mathrm{i}][\mathrm{j}] \vee(\mathrm{T}[\mathrm{i}][\mathrm{k}] \wedge \mathrm{T}[\mathrm{k}][\mathrm{j}])$
06 return T

Sparse graphs

- What if the graph is sparse?
- If no negative edges - run repeated Dijkstra's
- If negative edges - let us somehow change the weights of all edges (to w) and then run repeated Dijkstra's
- Requirements for reweighting:
- Non-negativity: for each $(u, v), w^{\prime}(u, v) \geq 0$
- Shortest-path equivalence: for all pairs of vertices u and v, a path p is a shortest path from u to v using weights w if and only if p is a shortest path from u to v using weights w^{\prime}.

Reweighting theorem

- Rweighting does not change shortest paths
- Let $h: \mathrm{V} \rightarrow \mathbf{R}$ be any function
- For each $(u, v) \in E$, define

$$
w^{\prime}(u, v)=w(u, v)+h(u)-h(v) .
$$

- Let $p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ be any path from v_{0} to v_{k}
- Then: $w(p)=\delta\left(v_{0}, v_{k}\right) \Leftrightarrow w^{\prime}(p)=\delta^{\prime}\left(v_{0}, v_{k}\right)$

Choosing reweighting function

- How to choose function h ?
- The idea of Johnson:
- 1. Augment the graph by adding vertex s and edges (s, v) for each vertex v with 0 weights.

- 2. Compute the shortest paths from s in the augmented graph (using Belman-Ford).
- 3. Make $h(v)=\delta(s, v)$

Johnson's algorithm

- Why does it work?
- By definition of the shortest path: for all edges $(u, v), h(u) \leq h(v)+w(u, v)$
- Thus, $w(u, v)+h(u)-h(v) \geq 0$
- Johnson's algorithm:
- 1. Construct augmented graph
- 2. Run Bellman-Ford (possibly report a negative cycle), to find $h(v)=\delta(s, v)$ for each vertex v
- 3. Reweight all edges:
- $w^{\prime}(u, v) \leftarrow w(u, v)+h(u)-h(v)$.
- 4. For each vertex u :
- Run Dijkstra's from u, to find $\delta^{\prime}(u, v)$ for each v
- For each vertex $v: D[u][v] \leftarrow \delta^{\prime}(u, v)+h(v)-h(u)$

Example, Analysis

- Do the reweighting on this example:

- What is the running time of Johnson's?

