Advanced Algorithm Design and Analysis (Lecture 7)

SW5 fall 2004 Simonas Šaltenis E1-215b simas@cs.aau.dk

All-pairs shortest paths

Main goals of the lecture:

- to go through one more example of dynamic programming – to solve the all-pairs shortest paths and transitive closure of a weighted graph (the Floyd-Warshall algorithm);
- to see how algorithms can be adapted to work in different settings (idea for reweighting in Johnson's algorithm)
- to be able to compare the applicability and efficiency of the different algorithms solving the all-pairs shortest paths problems.

Input/Output

- What is the *input* and the *output* in the *all-pairs shortest path problem*?
 - What are the popular memory representations of a weighted graph?

Input: adjacency matrix

- Let n = |V|, then $W = (w_{ij})$ is an $n \ge n$ matrix, where
- $w_{ij} = 0$, if i = j;
- w_{ij} =weight of the edge (i,j) or ∞ , if $(i,j) \notin E$
- Output:
 - Distance matrix
 - Predecessor matrix

Input/Output

Output:

Distance matrix

• $D=(d_{ij})$ is an $n \ge n$ matrix, where $d_{ij} = \delta(i,j)$ – weight of the shortest path between vertices i and j.

Predecessor matrix

- P=(p_{ij}) is an n x n matrix, where p_{ij} = nil, if i = j or there is no shortest path from i to j, otherwise p_{ij} is the predecessor of j on a shortest path from i.
- The *i*-th row of this matrix *encodes* the shortest-path tree with root *i*.

Example graph

 Write an adjacency matrix for this graph.
 Give the first row of the predecessor matrix (to encode the shown shortest path tree).

Sub-problems

What are the sub-problems? Defined by which parameters?

Options:

- L^(m)(i,j) minimum weight of a path between i and j containing at most m edges.
- d^(k)(i,j) minimum weight of a path where the only *intermediate* vertices (not i or j) allowed are from the set {1, ..., k}.
- Floyd-Warshall algorithm uses d^(k)(i,j) as a sub-problem
 - $d^{(n)}(i,j)$ is the solution to the whole problem

Solving sub-problems

- How are sub-problems solved? Which choices have to be considered?
 - Let p be the shortest path from i to j containing only vertices from the set {1, ..., k}. Optimal sub-structure:
 - If vertex k is not in p then a shortest path with intermediate vertices in {1, ..., k-1} is also a shortest path with intermediate vertices in {1, ..., k}.
 - If k is an intermediate vertex in p, then we break down p into p₁(i to k) and p₂(k to j), where p₁ and p₂ are shortest paths with intermediate vertices in {1, ..., k-1}.
 - Choice either we include k in the shortest path or not!

Trivial Problems, Recurrence

What are the trivial problems?
 d⁽⁰⁾(i,j) = w_{ij}
 Recurrence:

- $d^{(k)}(i,j) = \begin{cases} w_{ij} & \text{if } k = 0\\ \min\left(d^{(k-1)}(i,j), d^{(k-1)}(i,k) + d^{(k-1)}(k,j)\right) & \text{if } k \ge 1 \end{cases}$
- What order have to be used to compute the solutions to sub-problems?
 - Increasing k
 - Can use one matrix D no danger of overwriting old values as d^(k)(i,k) = d^(k-1)(i,k) and d^(k)(k,j) = d^(k-1)(k,j)

The Floyd-Warshall algorithm

Floyd-Warshall (W[1..n] [1..n]) 01 $D \leftarrow W$ // $D^{(0)}$ 02 for k \leftarrow 1 to n do // compute $D^{(k)}$ 03 for i \leftarrow 1 to n do 04 for j \leftarrow 1 to n do 05 if D[i] [k] + D[k] [j] < D[i] [j] then 06 D[i] [j] \leftarrow D[i] [k] + D[k] [j] 07 return D

Computing predecessor matrix

How do we compute the predecessor matrix?
[nil if i = i or w. = \infty

Initialization: $p^{(0)}(i,j) = \begin{cases} nil & \text{if } i = j \text{ or } w_{ij} = \infty \\ i & \text{if } i \neq j \text{ and } w_{ii} < \infty \end{cases}$

Updating:

```
Floyd-Warshall (W[1..n] [1..n])

01 ...

02 for k \leftarrow 1 to n do // compute D<sup>(k)</sup>

03 for i \leftarrow 1 to n do

04 for i \leftarrow 1 to n do

05 if D[i][k] + D[k][j] < D[i][j] then

06 D[i][j] \leftarrow D[i][k] + D[k][j]

07 P[i][j] \leftarrow P[k][j]

08 return D
```

Analysis, Example

- When does it make sense to run Floyd-Warshall?
 - Running time: O(V³)
 - Graphs with and without negative edges
 - Sparse and dense graphs
 - Constants behind the O notation

Run the first iteration of the algorithm (k=1), show both D and P matrices.

Transitive closure of the graph

Input:

Un-weighted graph G: W[i][j] = 1, if (i,j)∈E, W[i][j] = 0 otherwise.

Output:

T[i][j] = 1, if there is a path from i to j in G,
 T[i][j] = 0 otherwise.

Algorithm:

- Just run Floyd-Warshall with weights 1, and make T[i][j] = 1, whenever D[i][j] < ∞.</p>
- More efficient: use only Boolean operators

Transitive closure algorithm

```
Transitive-Closure(W[1..n][1..n])

01 T \leftarrow W // T<sup>(0)</sup>

02 for k \leftarrow 1 to n do // compute T<sup>(k)</sup>

03 for i \leftarrow 1 to n do

04 for i \leftarrow 1 to n do

05 T[i][j] \leftarrow T[i][j] \vee (T[i][k] \wedge T[k][j])

06 return T
```

Sparse graphs

What if the graph is sparse?

- If no negative edges run repeated Dijkstra's
- If negative edges let us somehow change the weights of all edges (to w') and then run repeated Dijkstra's
- Requirements for *reweighting*:
 - Non-negativity: for each (u,v), $w'(u,v) \ge 0$
 - Shortest-path equivalence: for all pairs of vertices u and v, a path p is a shortest path from u to v using weights w if and only if p is a shortest path from u to v using weights w'.

Reweighting theorem Rweighting does not change shortest paths • Let $h: V \rightarrow \mathbf{R}$ be any function For each $(u,v) \in E$, define w'(u,v) = w(u,v) + h(u) - h(v).• Let $p = (v_0, v_1, ..., v_k)$ be any path from v_0 to v_k • Then: $w(p) = \delta(v_0, v_k) \Leftrightarrow w'(p) = \delta'(v_0, v_k)$

Choosing reweighting function

- How to choose function h?
- The idea of Johnson:
 - I. Augment the graph by adding vertex s and edges (s,v) for each vertex v with 0 weights.

2. Compute the shortest paths from s in the augmented graph (using Belman-Ford).

• 3. Make $h(v) = \delta(s, v)$

Johnson's algorithm

Why does it work?

- By definition of the shortest path: for all edges $(u,v), h(u) \le h(v) + w(u,v)$
- Thus, $w(u,v) + h(u) h(v) \ge 0$
- Johnson's algorithm:
 - I. Construct augmented graph
 - 2. Run Bellman-Ford (possibly report a negative cycle), to find $h(v) = \delta(s, v)$ for each vertex v
 - 3. Reweight all edges:
 - $w'(u,v) \leftarrow w(u,v) + h(u) h(v)$.
 - 4. For each vertex u:
 - Run Dijkstra's from u_i to find $\delta'(u, v)$ for each v
 - For each vertex $v: D[u][v] \leftarrow \delta'(u, v) + h(v) h(u)$

Example, Analysis Do the reweighting on this example: 3 -1 S 0 What is the running time of Johnson's? AALG, lecture 7, © Simonas Šaltenis, 2004 18