Advanced Algorithm
Design and Analysis (Lecture 7)

SW5 fall 2004
Simonas Saltenis
E1-215b
simas@cs.aau.dk

All-pairs shortest paths

m Main goals of the lecture:

m to go through one more example of dynamic
programming - to solve the all-pairs shortest
paths and transitive closure of a weighted
graph (the Floyd-Warshall algorithm);

m to see how algorithms can be adapted to work
in different settings (idea for reweighting in
Johnson’s algorithm)

m to be able to compare the applicability and
efficiency of the different algorithms solving the
all-pairs shortest paths problems.

AALG, lecture 7, © Simonas Saltenis, 2004 2

Input/Output

m What is the input and the output in the all-
pairs shortest path problem??
m What are the popular memory representations
of a weighted graph

s Input: adjacency matrix
e Let n = |V|, then W=(w;) is an n X n matrix, where
e w;=0, ifi =j,
e w;=weight of the edge (/,j) or o, if (i,j)eE
= Output:
e Distance matrix
e Predecessor matrix

AALG, lecture 7, © Simonas Saltenis, 2004 3

Input/Output

m Output:

= Distance matrix
e D=(d;) is an n X n matrix, where d;; = 6 (/,j) — weight
of the shortest path between vertices i and j.
= Predecessor matrix

e P=(p;) is an n x n matrix, where p; = nil, if i = j or
there is no shortest path from /j to j, otherwise p;; is
the predecessor of j on a shortest path from /.

e The j-th row of this matrix encodes the shortest-path
tree with root /.

AALG, lecture 7, © Simonas Saltenis, 2004

Example graph

m Write an adjacency matrix for this graph.

m Give the first row of the predecessor
matrix (to encode the shown shortest path
tree).

AALG, lecture 7, © Simonas Saltenis, 2004 5

Sub-problems

m What are the sub-problems? Defined by
which parameters?

m Options:

m L(M)(jj) — minimum weight of a path between i
and j containing at most m edges.

m d®(j,j) — minimum weight of a path where the
only intermediate vertices (not j or j) allowed
are from the set {1, ..., k}.

m Floyd-Warshall algorithm uses d®)(j,j) as a
sub-problem
m d")(i,j) is the solution to the whole problem

AALG, lecture 7, © Simonas Saltenis, 2004 6

Solving sub-problems

m How are sub-problems solved? Which
choices have to be considered?

m Let p be the shortest path from 7/ to j containing
only vertices from the set {1, ..., k}. Optimal
sub-structure:

o If vertex k is not in p then a shortest path with
intermediate vertices in {1, ..., k-1} is also a shortest
path with intermediate vertices in {1, ..., k}.

o If k is an intermediate vertex in p, then we break
down p into p,(/ to k) and p,(k to j), where p, and p,
are shortest paths with intermediate vertices in {1, ...,

k-17%.
m Choice - either we include k in the shortest
path or not!

AALG, lecture 7, © Simonas Saltenis, 2004 7

Trivial Problems, Recurrence

m What are the trivial problems?
= dO(if) = w,
m Recurrence:

T ifk=0
d (la]) T : (k=) ;s = (k1) /- (k1) | :
min (4“7 @i, j), d* (6, k)+d“ P (k, j)) ifk=1

m What order have to be used to compute the
solutions to sub-problems?
m Increasing k

m Can use one matrix D - no danger of overwriting old
values as d®W(ij k) = d&V(j k) and d®¥(k,j) = dk1(k,j)

AALG, lecture 7, © Simonas Saltenis, 2004

The Floyd-Warshall algorithm

Floyd-Warshall (W[1..n] [1..n])

01l D « W VI D%

02 for k <1 ton do // compute D

03 for 1 <1 to n do

04 for j <1 to n do

05 if D[i] [k] + DI[k][j] < DI[i]l [j] then
06 D[i] [J] <« DI[i] [k] + DI[KkI] []]

07 return D

AALG, lecture 7, © Simonas Saltenis, 2004

Computing predecessor matrix

m How do we compute the predecessor

matrix? HiLHTH
IRIRNNL A e Y A
m Initialization: p (G, j)=1.

i 1fi# jandw, <eo

s Updating:

Floyd-Warshall (W[1l..n] [1..n])

(e B.

02 for k <1 ton do // compute DX

03 for 1 <1 to n do

04 for i <1 to n do

05 if D[i] [k] + DI[k][j] < D[i] [j] then
06 D[i] [J] <« DI[1i] [k] + DI[k] []]

07 P[i] [J] <« PI[KkI []]

08 return D

AALG, lecture 7, © Simonas Saltenis, 2004

10

Analysis, Example

m When does
Warshall?

it make sense to run Floyd-

s Running time: O(V3)

m Graphs wit
m Sparse anc

n and without negative edges
dense graphs

m Constants

behind the O notation

8
B Run the first iteration of the @ (2)

algorithm (k=1), show both
D and P matrices. 1

AALG, lecture 7, © Simonas Saltenis, 2004 11

Transitive closure of the graph

m Input:

m U

n-weighted graph G: WI[i][j] = 1, if (i,j)eE,

WI[il[j] = 0 otherwise.
m Output:

m]/

/][j] = 1, if there is a path from jto jin G,

T

/][] = O otherwise.

m Algorithm:

m Just run Floyd-Warshall with weights 1, and
make T[/][j] = 1, whenever D[i][j] < o-.

m More efficient: use only Boolean operators

AALG, lecture 7, © Simonas Saltenis, 2004 12

Transitive closure algorithm

Transitive-Closure (W[1l..n] [1..n])
01 T « W VI PR

02 for k <1 ton do // compute T
03 for 1 <1 to n do

04 for 1 <1 to n do

05 T[1i] [J] < TI[i]l [3] v (T[i] [k] A T[k][3])
06 return T

AALG, lecture 7, © Simonas Saltenis, 2004

13

Sparse graphs

m What if the graph is sparse?
m If no negative edges - run repeated Dijkstra’s

m If negative edges - let us somehow change the
weights of all edges (to w’) and then run
repeated Dijkstra’s

m Requirements for reweighting.
m Non-negativity: for each (u,v), wlu,v) 20

m Shortest-path equivalence: for all pairs of
vertices u and v, a path p is a shortest path
from u to v using weights w if and only if p is a
shortest path from v to v using weights w’.

AALG, lecture 7, © Simonas Saltenis, 2004 14

Reweighting theorem

m Rweighting does not change shortest paths
m Let h: V — R be any function
m For each (u,v)eE, define
w'(u,v) = w(u,v) + h(u) - h(v).
m Letp = (vy, V4, ..., V) be any path from v, to v,

m Then: w(p)= 6(vy, Vi) © wip)= 6" (Vo, Vi)

AALG, lecture 7, © Simonas Saltenis, 2004 15

Choosing reweighting function

m How to choose function h?

m The idea of Johnson:

s 1. Augment the graph by adding vertex s and
edges (s,v) for each vertex v with 0 weights.

m 2. Compute the shortest paths from s in the
augmented graph (using Belman-Ford).

m 3. Make h(v) = 6 (s, V)

AALG, lecture 7, © Simonas Saltenis, 2004 16

Johnson’s algorithm

m Why does it work?
m By definition of the shortest path: for all edges
(u,v), h(u) <h(v) + w(u,v)
m Thus, w(u,v) + h(u) - h(v) 20
m Johnson’s algorithm:
m 1. Construct augmented graph

m 2. Run Bellman-Ford (possibly report a negative
cycle), to find h(v) = 6 (s, v) for each vertex v

= 3. Reweight all edges:
e w'(u,v) « w(u,v) + h(u) - h(v).
m 4. For each vertex u:
e Run Dijkstra’s from u, to find 6 '(u, v) for each v
e For each vertex v: D[u][v] < é6'(u, v) + h(v) - h(u)

AALG, lecture 7, © Simonas Saltenis, 2004 17

Example, Analysis

m Do the reweighting on this example:

51

m What is the running time of Johnson’s?

AALG, lecture 7, © Simonas Saltenis, 2004

18

