
Advanced Algorithm
Design and Analysis (Lecture 7)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

AALG, lecture 7, © Simonas Šaltenis, 2004 2

All-pairs shortest paths

Main goals of the lecture:
to go through one more example of dynamic
programming – to solve the all-pairs shortest
paths and transitive closure of a weighted
graph (the Floyd-Warshall algorithm);
to see how algorithms can be adapted to work
in different settings (idea for reweighting in
Johnson’s algorithm)
to be able to compare the applicability and
efficiency of the different algorithms solving the
all-pairs shortest paths problems.

AALG, lecture 7, © Simonas Šaltenis, 2004 3

Input/Output

What is the input and the output in the all-
pairs shortest path problem?

What are the popular memory representations
of a weighted graph?
Input: adjacency matrix
• Let n = |V|, then W=(wij) is an n x n matrix, where
• wij=0, if i = j;
• wij=weight of the edge (i,j) or ∞∞∞∞, if (i,j)∉∉∉∉E

Output:
• Distance matrix
• Predecessor matrix

AALG, lecture 7, © Simonas Šaltenis, 2004 4

Input/Output

Output:
Distance matrix
• D=(dij) is an n x n matrix, where dij = δ δ δ δ (i,j) – weight

of the shortest path between vertices i and j.

Predecessor matrix
• P=(pij) is an n x n matrix, where pij = nil, if i = j or

there is no shortest path from i to j, otherwise pij is
the predecessor of j on a shortest path from i.

• The i-th row of this matrix encodes the shortest-path
tree with root i.

AALG, lecture 7, © Simonas Šaltenis, 2004 5

Example graph

Write an adjacency matrix for this graph.
Give the first row of the predecessor
matrix (to encode the shown shortest path
tree).

4

3

5

1 2
8

8

21

1 1

43

AALG, lecture 7, © Simonas Šaltenis, 2004 6

Sub-problems

What are the sub-problems? Defined by
which parameters?
Options:

L(m)(i,j) – minimum weight of a path between i
and j containing at most m edges.
d(k)(i,j) – minimum weight of a path where the
only intermediate vertices (not i or j) allowed
are from the set {1, …, k}.

Floyd-Warshall algorithm uses d(k)(i,j) as a
sub-problem

d(n)(i,j) is the solution to the whole problem

AALG, lecture 7, © Simonas Šaltenis, 2004 7

Solving sub-problems

How are sub-problems solved? Which
choices have to be considered?

Let p be the shortest path from i to j containing
only vertices from the set {1, …, k}. Optimal
sub-structure:
• If vertex k is not in p then a shortest path with

intermediate vertices in {1, …, k-1} is also a shortest
path with intermediate vertices in {1, …, k}.

• If k is an intermediate vertex in p, then we break
down p into p1(i to k) and p2(k to j), where p1 and p2
are shortest paths with intermediate vertices in {1, …,
k-1}.

Choice – either we include k in the shortest
path or not!

AALG, lecture 7, © Simonas Šaltenis, 2004 8

Trivial Problems, Recurrence

What are the trivial problems?
d(0)(i,j) = wij

Recurrence:

()
()

(1) (1) (1)

 if 0
(,)

min (,), (,) (,) if 1
ijk

k k k

w k
d i j

d i j d i k d k j k− − −

==  + ≥

What order have to be used to compute the
solutions to sub-problems?

Increasing k
Can use one matrix D – no danger of overwriting old
values as d(k)(i,k) = d(k-1)(i,k) and d(k)(k,j) = d(k-1)(k,j)

AALG, lecture 7, © Simonas Šaltenis, 2004 9

The Floyd-Warshall algorithm

Floyd-Warshall(W[1..n][1..n])
01 D ← W // D(0)

02 for k ← 1 to n do // compute D(k)

03 for i ←1 to n do
04 for j ←1 to n do
05 if D[i][k] + D[k][j] < D[i][j] then
06 D[i][j] ← D[i][k] + D[k][j]
07 return D

AALG, lecture 7, © Simonas Šaltenis, 2004 10

Computing predecessor matrix

Updating:

How do we compute the predecessor
matrix?

Initialization: (0) if or
(,)

 if and
ij

ij

nil i j w
p i j

i i j w
= = ∞

=  ≠ < ∞

Floyd-Warshall(W[1..n][1..n])
01 …
02 for k ← 1 to n do // compute D(k)

03 for i ←1 to n do
04 for i ←1 to n do
05 if D[i][k] + D[k][j] < D[i][j] then
06 D[i][j] ← D[i][k] + D[k][j]
07 P[i][j] ← P[k][j]
08 return D

AALG, lecture 7, © Simonas Šaltenis, 2004 11

Analysis, Example

When does it make sense to run Floyd-
Warshall?

Running time: O(V3)
Graphs with and without negative edges
Sparse and dense graphs
Constants behind the O notation

4

3

5

1 2
8

8

21

1 1

43
Run the first iteration of the
algorithm (k=1), show both
D and P matrices.

AALG, lecture 7, © Simonas Šaltenis, 2004 12

Transitive closure of the graph

Input:
Un-weighted graph G: W[i][j] = 1, if (i,j)∈∈∈∈E,
W[i][j] = 0 otherwise.

Output:
T[i][j] = 1, if there is a path from i to j in G,
T[i][j] = 0 otherwise.

Algorithm:
Just run Floyd-Warshall with weights 1, and
make T[i][j] = 1, whenever D[i][j] < ∞.∞.∞.∞.
More efficient: use only Boolean operators

AALG, lecture 7, © Simonas Šaltenis, 2004 13

Transitive closure algorithm

Transitive-Closure(W[1..n][1..n])
01 T ← W // T(0)

02 for k ← 1 to n do // compute T(k)

03 for i ←1 to n do
04 for i ←1 to n do
05 T[i][j] ← T[i][j] ∨∨∨∨ (T[i][k] ∧∧∧∧ T[k][j])
06 return T

AALG, lecture 7, © Simonas Šaltenis, 2004 14

Sparse graphs

What if the graph is sparse?
If no negative edges – run repeated Dijkstra’s
If negative edges – let us somehow change the
weights of all edges (to w’) and then run
repeated Dijkstra’s

Requirements for reweighting:
Non-negativity: for each (u,v), w’(u,v) ≥≥≥≥ 0
Shortest-path equivalence: for all pairs of
vertices u and v, a path p is a shortest path
from u to v using weights w if and only if p is a
shortest path from u to v using weights w’.

AALG, lecture 7, © Simonas Šaltenis, 2004 15

Reweighting theorem

Rweighting does not change shortest paths
Let h: V → R be any function
For each (u,v)∈∈∈∈E, define
w’(u,v) = w(u,v) + h(u) – h(v).
Let p = (v0, v1, …, vk) be any path from v0 to vk

Then: w(p)= δ δ δ δ (v0, vk) ⇔ w’(p)= δδδδ’ (v0, vk)

AALG, lecture 7, © Simonas Šaltenis, 2004 16

Choosing reweighting function

How to choose function h?
The idea of Johnson:

1. Augment the graph by adding vertex s and
edges (s,v) for each vertex v with 0 weights.

2. Compute the shortest paths from s in the
augmented graph (using Belman-Ford).
3. Make h(v) = δ δ δ δ (s, v)

1

-1

-1-2
3

0

0

0

0

s

AALG, lecture 7, © Simonas Šaltenis, 2004 17

Johnson’s algorithm

Why does it work?
By definition of the shortest path: for all edges
(u,v), h(u) ≤≤≤≤ h(v) + w(u,v)
Thus, w(u,v) + h(u) – h(v) ≥≥≥≥ 0

Johnson’s algorithm:
1. Construct augmented graph
2. Run Bellman-Ford (possibly report a negative
cycle), to find h(v) = δδδδ (s, v) for each vertex v
3. Reweight all edges:
• w’(u,v) ← w(u,v) + h(u) – h(v).

4. For each vertex u:
• Run Dijkstra’s from u, to find δ δ δ δ ’(u, v) for each v
• For each vertex v: D[u][v] ← δ δ δ δ ’(u, v) + h(v) – h(u)

AALG, lecture 7, © Simonas Šaltenis, 2004 18

Example, Analysis

Do the reweighting on this example:

What is the running time of Johnson’s?

1

-1

-1-2

0
3

0

0

0

s

