
Advanced Algorithm
Design and Analysis (Lecture 8)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

AALG, lecture 8, © Simonas Šaltenis, 2004 2

Maximum flow

Main goals of the lecture:
to understand how flow networks and
maximum flow problem can be formalized;
to understand the Ford-Fulkerson method
and to be able to prove that it works correctly;
to understand the Edmonds-Karp algorithm
and the intuition behind the analysis of its
worst-case running time.
to be able to apply the Ford-Fulkerson method
to solve the maximum-bipartite-matching
problem.

AALG, lecture 8, © Simonas Šaltenis, 2004 3

Flow networks

What if weights in a graph are maximum
capacities of some flow of material?

Pipe network to transport fluid (e.g., water, oil)
• Edges – pipes, vertices – junctions of pipes

Data communication network
• Edges – network connections of different capacity,

vertices – routers (do not produce or consume data
just move it)

Concepts (informally):
• Source vertex s (where material is produced)
• Sink vertex t (where material is consumed)
• For all other vertices – what goes in must go out
• Goal: maximum rate of material flow from source to

sink

AALG, lecture 8, © Simonas Šaltenis, 2004 4

Formalization

How do we formalize flows?
Graph G=(V,E) – a flow network
• Directed, each edge has capacity c(u,v) ≥≥≥≥ 0
• Two special vertices: source s, and sink t
• For any other vertex v, there is a path s→…→v→…→t

Flow – a function f : V ×××× V → R
• Capacity constraint: For all u, v ∈∈∈∈ V: f(u,v) ≤≤≤≤ c(u,v)
• Skew symmetry: For all u, v ∈∈∈∈ V: f(u,v) = –f(v,u)
• Flow conservation: For all u ∈∈∈∈ V – {s, t}:

, or(,) (,) 0

(,) (,) 0
v V

v V

f u v f u V

f v u f V u
∈

∈

= =

= =

∑
∑

AALG, lecture 8, © Simonas Šaltenis, 2004 5

Cancellation of flows

Do we want to have positive flows going in
both directions between two vertices?

No! such flows cancel (maybe partially) each
other
Skew symmetry – notational convenience

13

11

54

15

10

14

19

3

s t9

a b

c d
2 5

3

3

6

6

13

11

54

15

10

14

19

3

s t9

a b

c d
3

3

3

6

6

AALG, lecture 8, © Simonas Šaltenis, 2004 6

Maximum flow

What do we want to maximize?
Value of the flow f:

(,) (,) (,)
v V

f f s v f s V f V t
∈

= = =∑

We want to find a flow of maximum value!

13

11

54

15

10

14

19

3

s t9

a b

c d
5

13

3

8

6

10
8

2

AALG, lecture 8, © Simonas Šaltenis, 2004 7

Augmenting path

Idea for the algorithm:
If we have some flow,…
…and can find a path p from s to t
(augmenting path), such that there is a > 0,
and for each edge (u,v) in p we can add a units
of flow: f(u,v) + a ≤≤≤≤ c(u,v)
Then just do it, to get a better flow!
Augmenting path in this graph?

13

11

54

15

10

14

19

3

s t9

a b

c d
5

13

3

8

6

10
8

2

AALG, lecture 8, © Simonas Šaltenis, 2004 8

The Ford-Fulkerson method

Ford-Fulkerson(G,s,t)
01 initialize flow f to 0 everywhere
02 while there is an augmenting path p do
03 augment flow f along p
04 return f

Sketch of the method:

How do we find augmenting path?
How much additional flow can we send
through that path?
Does the algorithm always find the
maximum flow?

AALG, lecture 8, © Simonas Šaltenis, 2004 9

Residual network

How do we find augmenting path?
It is any path in residual network:
• Residual capacities: cf(u,v) = c(u,v) – f(u,v)
• Residual network: Gf=(V,Ef), where

Ef = {(u,v) ∈∈∈∈ V ×××× V : cf(u,v) > 0}
• What happens when f(u,v) < 0 (and c(u,v) = 0)?
• Observation – edges in Ef are either edges in E or

their reversals: |Ef| ≤≤≤≤ 2|E|

Compute residual network: 13

11

54

15

10

14

19

3

s t9

a b

c d
5

13

3

8

6

10
8

2

AALG, lecture 8, © Simonas Šaltenis, 2004 10

Residual capacity of a path

How much additional flow can we send
through an augmenting path?

Residual capacity of a path p in Gf:
cf(p) = min{cf(u,v): (u,v) is in p}
Doing augmentation: for all (u,v) in p, we just
add this cf(p) to f(u,v) (and subtract it from
f(v,u))
Resulting flow is a valid flow with a larger
value.
What is the residual capacity of the path
(s,a,b,t)?

AALG, lecture 8, © Simonas Šaltenis, 2004 11

The Ford-Fulkerson method

Ford-Fulkerson(G,s,t)
01 for each edge (u,v) in G.E do
02 f(u,v) ← f(v,u) ← 0
03 while there exists a path p from s to t in residual

network Gf do
04 cf = min{cf(u,v): (u,v) is in p}
05 for each edge (u,v) in p do
06 f(u,v) ← f(u,v) + cf
07 f(v,u) ← -f(u,v)
08 return f

The algorithms based on this method differ in how
they choose p in step 03.

AALG, lecture 8, © Simonas Šaltenis, 2004 12

Cuts

A cut is a partition of V into S and T = V – S,
such that s ∈ ∈ ∈ ∈ S and t ∈ ∈ ∈ ∈ T
The net flow (f(S,T)) through the cut is the
sum of flows f(u,v), where u ∈ ∈ ∈ ∈ S and v ∈ ∈ ∈ ∈ T
The capacity (c(S,T)) of the cut sum of
capacities c(u,v), where u ∈ ∈ ∈ ∈ S and v ∈ ∈ ∈ ∈ T
Minimum cut – a cut with the smallest
capacity of all cuts
|f|= f(S,T)

Does it always find the maximum flow?

13

11

54

15

10

14

19

3

s t9

a b

c d
5

13

3

8

6

10
9

1
1

AALG, lecture 8, © Simonas Šaltenis, 2004 13

Correctness of Ford-Fulkerson

Max-flow min-cut theorem:
If f is the flow in G, the following conditions a
re equivalent:
• 1. f is a maximum flow in G
• 2. The residual network Gf contains no augmenting

paths
• 3. |f| = c(S,T) for some cut (S,T) of G

We have to prove three parts:

From this we have 1.⇔⇔⇔⇔2., which means that
the Ford-Fulkerson method always correctly
finds a maximum flow

1.

2.3.

AALG, lecture 8, © Simonas Šaltenis, 2004 14

Worst-case running time

What is the worst-case running time of this
method?

Let’s assume integer flows.
Each augmentation increases the value of loop
by some positive amount.
Augmentation can be done in O(E).
Total worst-case running time O(E|f*|), where
f* is the max-flow found by the algorithm.
Can we run into this worst-case?
Lesson: how an augmenting path is chosen is
very important!

AALG, lecture 8, © Simonas Šaltenis, 2004 15

Edmonds-Karp algorithm

Take shortest path (in terms of number
of edges) as an augmenting path –
Edmonds-Karp algorithm

How do we find such a shortest path?
Running time O(VE2), because the number of
augmentations is O(VE)
To prove this we need to prove that:
• The length of the shortest path does not decrease
• Each edge can become critical at most ~ V/2 times.

Edge (u,v) on an augmenting path p is critical if it has
the minimum residual capacity in the path:
cf(u,v) = cf(p)

AALG, lecture 8, © Simonas Šaltenis, 2004 16

Non-decreasing shortest paths

Why does the length of a shortest path
from s to any v does not decrease?

Observation: Augmentation may add some
edges to residual network or remove some.
Only the added edges (“shortcuts”) may
potentially decrease the length of a shortest
path.
Let’s supose (s,…,v) – the shortest decreased-
length path and let’s derive a contradiction

AALG, lecture 8, © Simonas Šaltenis, 2004 17

Number of augmentations

Why each edge can become critical at most
~V/2 times?

Scenario for edge (u,v):
• Critical the first time: (u,v) on an augmenting path
• Disappears from the network
• Reappears on the network: (v,u) has to be on an

augmenting path
• We can show that in-between these events the

distance from s to u increased by at least 2.
• This can happen at most V/2 times

We have proved that the running time of
Edmonds-Karp is O(VE2).

AALG, lecture 8, © Simonas Šaltenis, 2004 18

Example of Edmonds-Karp

Run the Edmonds-Karp algorithm on the
following graph:

13

11

54

15

10

14

19

3

s t9

a b

c d

AALG, lecture 8, © Simonas Šaltenis, 2004 19

Multiple sources or sinks

What if we have more sources or sinks?
Augment the graph to make it with one source
and one sink!

13

11

54
10

9

s1 t1

s2 t2

s3

117

4

6

8

13

11

54
10

∞∞∞∞

s t
9

s1 t1

s2 t2

s3

117

4

6

8

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

AALG, lecture 8, © Simonas Šaltenis, 2004 20

Application of max-flow

Maximum bipartite matching problem
Matching in a graph is a subset M of edges
such that each vertex has at most one edge of
M incident on it. It puts vertices in pairs.
We look for maximum matching in a bipartite
graph, where V = L ∪∪∪∪ R, L and R are disjoint
and all edges go between L and R
Dating agency example:
• L – women, R – men.
• An edge between vertices: they have a chance to be

“compatible” (can be matched)
• Do as many matches between “compatible” persons

as possible

AALG, lecture 8, © Simonas Šaltenis, 2004 21

Maximum bipartite matching

How can we reformulate this problem to
become a max-flow problem?

What is the running time of the algorithm if
we use the Ford-Fulkerson method?

