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Maximum flow

Main goals of the lecture:
to understand how flow networks and 
maximum flow problem can be formalized;
to understand the Ford-Fulkerson method 
and to be able to prove that it works correctly;
to understand the Edmonds-Karp algorithm 
and the intuition behind the analysis of its 
worst-case running time.  
to be able to apply the Ford-Fulkerson method 
to solve the maximum-bipartite-matching
problem.
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Flow networks

What if weights in a graph are maximum 
capacities of some flow of material?

Pipe network to transport fluid (e.g., water, oil)
• Edges – pipes, vertices – junctions of pipes

Data communication network 
• Edges – network connections of different capacity, 

vertices – routers (do not produce or consume data 
just move it)

Concepts (informally): 
• Source vertex s (where material is produced)
• Sink vertex t (where material is consumed)
• For all other vertices – what goes in must go out
• Goal: maximum rate of material flow from source to 

sink
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Formalization

How do we formalize flows?
Graph G=(V,E) – a flow network
• Directed, each edge has capacity c(u,v) ≥≥≥≥ 0
• Two special vertices: source s, and sink t
• For any other vertex v, there is a path s→…→v→…→t

Flow – a function f : V ×××× V → R
• Capacity constraint: For all u, v ∈∈∈∈ V: f(u,v) ≤≤≤≤ c(u,v)
• Skew symmetry: For all u, v ∈∈∈∈ V: f(u,v) = –f(v,u)
• Flow conservation: For all u ∈∈∈∈ V – {s, t}:
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Cancellation of flows

Do we want to have positive flows going in 
both directions between two vertices?

No! such flows cancel (maybe partially) each 
other
Skew symmetry – notational convenience
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Maximum flow

What do we want to maximize?
Value of the flow f: 
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We want to find a flow of maximum value!

13

11

54

15

10

14

19

3

s t9

a b

c d
5

13

3

8

6

10
8

2



AALG, lecture 8, © Simonas Šaltenis, 2004 7

Augmenting path

Idea for the algorithm:
If we have some flow,…
…and can find a path p from s to t 
(augmenting path), such that there is a > 0, 
and for each edge (u,v) in p we can add a units 
of flow: f(u,v) + a ≤≤≤≤ c(u,v)
Then just do it, to get a better flow!
Augmenting path in this graph? 
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The Ford-Fulkerson method

Ford-Fulkerson(G,s,t) 
01 initialize flow f to 0 everywhere
02 while there is an augmenting path p do
03    augment flow f along p
04 return f

Sketch of the method:

How do we find augmenting path?
How much additional flow can we send 
through that path?
Does the algorithm always find the 
maximum flow?
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Residual network

How do we find augmenting path?
It is any path in residual network:
• Residual capacities: cf(u,v) = c(u,v) – f(u,v)
• Residual network: Gf=(V,Ef), where 

Ef = {(u,v) ∈∈∈∈ V ×××× V : cf(u,v) > 0}
• What happens when f(u,v) < 0 (and c(u,v) = 0)?
• Observation – edges in Ef are either edges in E or 

their reversals: |Ef| ≤≤≤≤ 2|E|

Compute residual network: 13
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Residual capacity of a path

How much additional flow can we send 
through an augmenting path?

Residual capacity of a path p in Gf:
cf(p) = min{cf(u,v): (u,v) is in p}
Doing augmentation: for all (u,v) in p, we just 
add this cf(p) to f(u,v) (and subtract it from 
f(v,u))
Resulting flow is a valid flow with a larger 
value. 
What is the residual capacity of the path
(s,a,b,t)?
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The Ford-Fulkerson method

Ford-Fulkerson(G,s,t) 
01 for each edge (u,v) in G.E do 
02    f(u,v) ← f(v,u) ← 0 
03 while there exists a path p from s to t in residual 

network Gf do
04    cf = min{cf(u,v): (u,v) is in p}
05    for each edge (u,v) in p do
06        f(u,v) ← f(u,v) + cf
07        f(v,u) ← -f(u,v)
08 return f

The algorithms based on this method differ in how 
they choose p in step 03.
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Cuts 

A cut is a partition of V into S and T = V – S, 
such that s ∈ ∈ ∈ ∈ S and t ∈ ∈ ∈ ∈ T
The net flow (f(S,T)) through the cut is the 
sum of flows f(u,v), where u ∈ ∈ ∈ ∈ S and v ∈ ∈ ∈ ∈ T
The capacity (c(S,T)) of the cut sum of 
capacities c(u,v), where u ∈ ∈ ∈ ∈ S and v ∈ ∈ ∈ ∈ T
Minimum cut – a cut with the smallest 
capacity of all cuts
|f|= f(S,T)

Does it always find the maximum flow?
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Correctness of Ford-Fulkerson

Max-flow min-cut theorem:
If f is the flow in G, the following conditions a 
re equivalent:
• 1. f is a maximum flow in G
• 2. The residual network Gf contains no augmenting 

paths
• 3. |f| = c(S,T) for some cut (S,T) of G

We have to prove three parts:

From this we have 1.⇔⇔⇔⇔2., which means that 
the Ford-Fulkerson method always correctly 
finds a maximum flow

1.

2.3.
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Worst-case running time

What is the worst-case running time of this 
method?

Let’s assume integer flows.
Each augmentation increases the value of loop 
by some positive amount.
Augmentation can be done in O(E).
Total worst-case running time O(E|f*|), where 
f* is the max-flow found by the algorithm.
Can we run into this worst-case?
Lesson: how an augmenting path is chosen is 
very important!   
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Edmonds-Karp algorithm

Take shortest path (in terms of number 
of edges) as an augmenting path –
Edmonds-Karp algorithm

How do we find such a shortest path?
Running time O(VE2), because the number of 
augmentations is O(VE)
To prove this we need to prove that:
• The length of the shortest path does not decrease
• Each edge can become critical at most ~ V/2 times. 

Edge (u,v) on an augmenting path p is critical if it has 
the minimum residual capacity in the path: 
cf(u,v) = cf(p) 
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Non-decreasing shortest paths 

Why does the length of a shortest path 
from s to any v does not decrease?

Observation: Augmentation may add some 
edges to residual network or remove some.
Only the added edges (“shortcuts”) may 
potentially decrease the length of a shortest 
path.
Let’s supose (s,…,v) – the shortest decreased-
length path and let’s derive a contradiction 
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Number of augmentations

Why each edge can become critical at most 
~V/2 times?

Scenario for edge (u,v):
• Critical the first time: (u,v) on an augmenting path
• Disappears from the network
• Reappears on the network: (v,u) has to be on an 

augmenting path
• We can show that in-between these events the 

distance from s to u increased by at least 2.
• This can happen at most V/2 times

We have proved that the running time of 
Edmonds-Karp is O(VE2).
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Example of Edmonds-Karp

Run the Edmonds-Karp algorithm on the 
following graph:
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Multiple sources or sinks

What if we have more sources or sinks?
Augment the graph to make it with one source 
and one sink! 
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Application of max-flow

Maximum bipartite matching problem
Matching in a graph is a subset M of edges 
such that each vertex has at most one edge of 
M incident on it. It puts vertices in pairs.
We look for maximum matching in a bipartite
graph, where V = L ∪∪∪∪ R,  L and R are disjoint 
and all edges go between L and R
Dating agency example: 
• L – women, R – men.
• An edge between vertices: they have a chance to be 

“compatible” (can be matched)
• Do as many matches between “compatible” persons 

as possible
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Maximum bipartite matching

How can we reformulate this problem to 
become a max-flow problem?

What is the running time of the algorithm if 
we use the Ford-Fulkerson method? 


