Advanced Algorithm
 Design and Analysis (Lecture 8)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

Maximum flow

- Main goals of the lecture:
- to understand how flow networks and maximum flow problem can be formalized;
- to understand the Ford-Fulkerson method and to be able to prove that it works correctly;
- to understand the Edmonds-Karp algorithm and the intuition behind the analysis of its worst-case running time.
- to be able to apply the Ford-Fulkerson method to solve the maximum-bipartite-matching problem.

Flow networks

- What if weights in a graph are maximum capacities of some flow of material?
- Pipe network to transport fluid (e.g., water, oil)
- Edges - pipes, vertices - junctions of pipes
- Data communication network
- Edges - network connections of different capacity, vertices - routers (do not produce or consume data just move it)
- Concepts (informally):
- Source vertex s (where material is produced)
- Sink vertex t (where material is consumed)
- For all other vertices - what goes in must go out
- Goal: maximum rate of material flow from source to sink

Formalization

- How do we formalize flows?
- Graph $G=(V, E)$ - a flow network
- Directed, each edge has capacity $c(u, v) \geq 0$
- Two special vertices: source s, and sink t
- For any other vertex v, there is a path $s \rightarrow \ldots \rightarrow v \rightarrow \ldots \rightarrow t$
- Flow - a function $f: V \times V \rightarrow \boldsymbol{R}$
- Capacity constraint: For all $u, v \in V: f(u, v) \leq c(u, v)$
- Skew symmetry: For all $u, v \in V: f(u, v)=-f(v, u)$
- Flow conservation: For all $u \in V-\{s, t\}$:

$$
\begin{aligned}
& \sum_{v \in V} f(u, v)=f(u, V)=0, \text { or } \\
& \sum_{v \in V} f(v, u)=f(V, u)=0
\end{aligned}
$$

Cancellation of flows

- Do we want to have positive flows going in both directions between two vertices?
- No! such flows cancel (maybe partially) each other
- Skew symmetry - notational convenience

Maximum flow

- What do we want to maximize?
- Value of the flow f :

$$
|f|=\sum_{v \in V} f(s, v)=f(s, V)=f(V, t)
$$

- We want to find a flow of maximum value!

Augmenting path

- Idea for the algorithm:
- If we have some flow,...
- ... and can find a path p from s to t (augmenting path), such that there is a>0, and for each edge (u, v) in p we can add a units of flow: $f(u, v)+a \leq c(u, v)$
- Then just do it, to get a better flow!
- Augmenting path in this graph?

The Ford-Fulkerson method

- Sketch of the method:

```
Ford-Fulkerson(G,s,t)
01 initialize flow f to 0 everywhere
02 while there is an augmenting path p do
03 augment flow f along p
0 4 ~ r e t u r n ~ f ~
```

- How do we find augmenting path?
- How much additional flow can we send through that path?
- Does the algorithm always find the maximum flow?

Residual network

- How do we find augmenting path?
- It is any path in residual network:
- Residual capacities: $c_{f}(u, v)=c(u, v)-f(u, v)$
- Residual network: $G_{f}=\left(V, E_{f}\right)$, where

$$
E_{f}=\left\{(u, v) \in V \times V: c_{f}(u, v)>0\right\}
$$

- What happens when $f(u, v)<0$ (and $c(u, v)=0$)?
- Observation - edges in E_{f} are either edges in E or their reversals: $\left|E_{f}\right| \leq 2|E|$
- Compute residual network:

Residual capacity of a path

- How much additional flow can we send through an augmenting path?
- Residual capacity of a path p in G_{f} :

$$
c_{f}(p)=\min \left\{c_{f}(u, v):(u, v) \text { is in } p\right\}
$$

- Doing augmentation: for all (u, v) in p, we just add this $c_{f}(p)$ to $f(u, v)$ (and subtract it from $f(v, u))$
- Resulting flow is a valid flow with a larger value.
- What is the residual capacity of the path (s, a, b, t) ?

The Ford-Fulkerson method

```
Ford-Fulkerson (G, s,t)
01 for each edge ( \(u, v\) ) in G.E do
\(02 \mathrm{f}(\mathrm{u}, \mathrm{v}) \leftarrow \mathrm{f}(\mathrm{v}, \mathrm{u}) \leftarrow 0\)
03 while there exists a path \(p\) from \(s\) to \(t\) in residual
    network \(G_{f}\) do
\(04 \quad c_{f}=\min \left\{c_{f}(u, v):(u, v)\right.\) is in \(\left.p\right\}\)
05 for each edge ( \(u, v\) ) in \(p\) do
\(06 \quad \mathrm{f}(\mathrm{u}, \mathrm{v}) \leftarrow \mathrm{f}(\mathrm{u}, \mathrm{v})+\mathrm{C}_{\mathrm{f}}\)
07
    \(\mathrm{f}(\mathrm{v}, \mathrm{u}) \leftarrow-\mathrm{f}(\mathrm{u}, \mathrm{v})\)
08 return f
```

- The algorithms based on this method differ in how they choose p in step 03.

Cuts

- Does it always find the maximum flow?
- A cut is a partition of V into S and $T=V-S$, such that $s \in S$ and $t \in T$
- The net flow $(f(S, T))$ through the cut is the sum of flows $f(u, v)$, where $u \in S$ and $v \in T$
- The capacity $(c(S, T)$) of the cut sum of capacities $c(u, v)$, where $u \in S$ and $v \in T$
- Minimum cut - a cut with the smallest capacity of all cuts
- $|f|=f(S, T)$

Correctness of Ford-Fulkerson

- Max-flow min-cut theorem:
- If f is the flow in G , the following conditions a re equivalent:
- 1. f is a maximum flow in G
- 2. The residual network G_{f} contains no augmenting paths
- 3. $|f|=c(S, T)$ for some cut (S, T) of G
- We have to prove three parts:

- From this we have $1 . \Leftrightarrow 2$., which means that the Ford-Fulkerson method always correctly finds a maximum flow

Worst-case running time

- What is the worst-case running time of this method?
- Let's assume integer flows.
- Each augmentation increases the value of loop by some positive amount.
- Augmentation can be done in $O(E)$.
- Total worst-case running time $O\left(E\left|f^{*}\right|\right)$, where f^{*} is the max-flow found by the algorithm.
- Can we run into this worst-case?
- Lesson: how an augmenting path is chosen is very important!

Edmonds-Karp algorithm

- Take shortest path (in terms of number of edges) as an augmenting path -Edmonds-Karp algorithm
- How do we find such a shortest path?
- Running time $O\left(V E^{2}\right)$, because the number of augmentations is $O(V E)$
- To prove this we need to prove that:
- The length of the shortest path does not decrease
- Each edge can become critical at most ~ V/2 times. Edge (u, v) on an augmenting path p is critical if it has the minimum residual capacity in the path:

$$
c_{f}(u, v)=c_{f}(p)
$$

Non-decreasing shortest paths

- Why does the length of a shortest path from s to any v does not decrease?
- Observation: Augmentation may add some edges to residual network or remove some.
- Only the added edges ("shortcuts") may potentially decrease the length of a shortest path.
- Let's supose (s, \ldots, v) - the shortest decreasedlength path and let's derive a contradiction

Number of augmentations

- Why each edge can become critical at most ~V/2 times?
- Scenario for edge (u, v):
- Critical the first time: (u, v) on an augmenting path
- Disappears from the network
- Reappears on the network: (v, u) has to be on an augmenting path
- We can show that in-between these events the distance from s to u increased by at least 2.
- This can happen at most $V / 2$ times
- We have proved that the running time of Edmonds-Karp is $O\left(V E^{2}\right)$.

Example of Edmonds-Karp

- Run the Edmonds-Karp algorithm on the following graph:

Multiple sources or sinks

- What if we have more sources or sinks?
- Augment the graph to make it with one source and one sink!

Application of max-flow

- Maximum bipartite matching problem
- Matching in a graph is a subset M of edges such that each vertex has at most one edge of M incident on it. It puts vertices in pairs.
- We look for maximum matching in a bipartite graph, where $V=L \cup R, L$ and R are disjoint and all edges go between L and R
- Dating agency example:
- L - women, R - men.
- An edge between vertices: they have a chance to be "compatible" (can be matched)
- Do as many matches between "compatible" persons as possible

Maximum bipartite matching

- How can we reformulate this problem to become a max-flow problem?
- What is the running time of the algorithm if we use the Ford-Fulkerson method?

