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Maximum flow

m Main goals of the lecture:

m to understand how flow networks and
maximum flow problem can be formalized;

m to understand the Ford-Fulkerson method
and to be able to prove that it works correctly;

m to understand the Edmonds-Karp algorithm
and the intuition behind the analysis of its
worst-case running time.

m to be able to apply the Ford-Fulkerson method
to solve the maximum-bipartite-matching
problem.
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Flow networks

m What if weights in a graph are maximum
capacities of some flow of material?

m Pipe network to transport fluid (e.g., water, oil)
e Edges - pipes, vertices - junctions of pipes
s Data communication network

e Edges — network connections of different capacity,
vertices — routers (do not produce or consume data
just move it)

m Concepts (informally):

e Source vertex s (where material is produced)

e Sink vertex t (where material is consumed)

e For all other vertices — what goes in must go out

o Goil: maximum rate of material flow from source to
sin
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Formalization

m How do we formalize flows?

s Graph G=(V,E) - a flow network
e Directed, each edge has capacity c(u,v) =20
e Two special vertices: source s, and sink t
e For any other vertex v, there is a path s—...—»v—...—>t

s Flow - a functionf: VxV >R
e Capacity constraint: Forall u, ve V: f(u,v) <c(u,v)
o Skew symmetry: Forallu, ve V: fluyv) = -f(v,u)
e Flow conservation: Forall ue V - {s, t}:

Y flu,v)=fw,V)=0, or

vel

Y fvu)= f(V,u)=0

vel
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Cancellation of flows

m Do we want to have positive flows going in
both directions between two vertices?

m No! such flows cancel (maybe partially) each
other

s Skew symmetry — notational convenience
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Maximum flow

m What do we want to maximize?
m Value of the flow f:

=2 f ) =f(s.V) = f(V,0)

m We want to find a flow of maximum value!
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Augmenting path

m Idea for the algorithm:
m If we have some flow,...

m ..and can find a path p from sto t
(augmenting path), such that thereisa > 0,
and for each edge (u,v) in p we can add a units
of flow: f(u,v) + a < c(u,v)

m Then just do it, to get a better flow!
m Augmenting path in this graph?
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The Ford-Fulkerson method

m Sketch of the method:

Ford-Fulkerson (G, s, t)

01l initialize flow £ to 0 everywhere

02 while there is an augmenting path p do
03 augment flow f along p

04 return £

m How do we find augmenting path?

m How much additional flow can we send
through that path?

m Does the algorithm always find the
maximum flow?
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Residual network

m How do we find augmenting path?

m It is any path in residual network:
e Residual capacities: c{u,v) = c(u,v) - f(u,v)
e Residual network: G~=(V,E;), where
E-={(uv)e VxV:cdu,v) >0}
e What happens when f(u,v) < 0 (and c(u,v) = 0)?

e Observation — edges in E, are either edges in E or
their reversals: |E/ <2|E|
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Residual capacity of a path

m How much additional flow can we send
through an augmenting path?
m Residual capacity of a path p in G¢:
CAp) = min{cdu,v): (u,v) isin p}
s Doing augmentation: for all (u,v) in p, we just

add this c{p) to f(u,v) (and subtract it from
f(v,u))

m Resulting flow is a valid flow with a larger
value.

m What is the residual capacity of the path
(S/ a/ b/ t)?
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The Ford-Fulkerson method

Ford-Fulkerson (G, s, t)

01 for each edge (u,v) in G.E do

02 f(u,v) «<f(v,u) <« 0

03 while there exists a path p from s to t in residual
network G do

04 af = aEd{E (A SOk KEl vl Bl e |
05 for each edge (u,v) in p do

06 f(u,v) < £(u,v) + c;

07 f(v,u) « -f(u,v)

08 return £

m The algorithms based on this method differ in how
they choose p in step 03.
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Cuts

m Does it always find the maximum flow?

m Acutis apartitionof VintoSand 7T=V -5,
suchthatse Sandte T

m The net flow (f(S,7)) through the cut is the
sum of flows f(u,v), where ueSandveT

m The capacity (c(S,T)) of the cut sum of
capacities c(u,v), where ue SandveT

m Minimum cut - a cut with the smallest
capacity of all cuts

m |[f]= (S, T)
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Correctness of Ford-Fulkerson

m Max-flow min-cut theorem:

m If fis the flow in G, the following conditions a
re equivalent:
e 1. fis a maximum flow in G

e 2. The residual network G; contains no augmenting
paths

e 3. |f] = c(S,T) for some cut (5,7) of G
1.
s We have to prove three parts: > <y
3.02,

m From this we have 1.2., which means that
the Ford-Fulkerson method always correctly
finds @ maximum flow

AALG, lecture 8, © Simonas Saltenis, 2004

13



Worst-case running time

m What is the worst-case running time of this
method?
m Let's assume integer flows.

s Each augmentation increases the value of loop
by some positive amount.

s Augmentation can be done in O(E).

m Total worst-case running time O(E|f*|), where
f* is the max-flow found by the algorithm.

m Can we run into this worst-case?

m Lesson: how an augmenting path is chosen is
very important!
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Edmonds-Karp algorithm

m Jake shortest path (in terms of number
of edges) as an augmenting path -
Edmonds-Karp algorithm

m How do we find such a shortest path?

s Running time O(VE?), because the number of
augmentations is O(VE)

m To prove this we need to prove that:

e The length of the shortest path does not decrease

e Fach edge can become critical at most ~ V/2 times.
Edge (u,v) on an augmenting path p is critical if it has
the minimum residual capacity in the path:

cAu,v) = cAp)
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Non-decreasing shortest paths

m Why does the length of a shortest path
from s to any v does not decrease?

m Observation: Augmentation may add some
edges to residual network or remove some.

m Only the added edges (“shortcuts”) may
potentially decrease the length of a shortest
path.

m Let's supose (s,...,v) — the shortest decreased-
length path and let’s derive a contradiction
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Number of augmentations

m Why each edge can become critical at most
~\V//2 times?
m Scenario for edge (u,v):
e Critical the first time: (u,v) on an augmenting path

e Disappears from the network

e Reappears on the network: (v,u) has to be on an
augmenting path

e \We can show that in-between these events the
distance from s to u increased by at least 2.

e This can happen at most V/2 times

m We have proved that the running time of
Edmonds-Karp is O(VE?).
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Example of Edmonds-Karp

m Run the Edmonds-Karp algorithm on the
following graph:

15 A@—— @19
‘ I’G
14 G @ 3
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Multiple sources or sinks

m What if we have more sources or sinks?

s Augment the graph to make it with one source
and one sink!

AALG, lecture 8, © Simonas Saltenis, 2004 19



Application of max-flow

m Maximum bipartite matching problem

m Matching in a graph is a subset M of edges
such that each vertex has at most one edge of
M incident on it. It puts vertices in pairs.

s We look for maximum matching in a bipartite
graph, where V =L U R, L and R are disjoint
and all edges go between L and R

s Dating agency example:
e [ —women, R — men.

e An edge between vertices: they have a chance to be
“compatible” (can be matched)

e Do as many matches between “compatible” persons
as possible
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Maximum bipartite matching

m How can we reformulate this problem to
become a max-flow problem?

m What is the running time of the algorithm if
we use the Ford-Fulkerson method?
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