Advanced Algorithm
 Design and Analysis (Lecture 9)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

Computational geometry

- Main goals of the lecture:
- to understand how the basic geometric operations are performed;
- to understand the basic idea of the sweeping algorithm design technique;
- to understand and be able to analyze the Graham's scan and the sweeping-line algorithm to determine whether any pair of line segments intersect. .

Computational geometry

- Computational geometry:
- Algorithmic basis for many scientific and engineering disciplines:
- Geographic Information Systems (GIS)
- Robotics
- Computer graphics
- Computer vision
- Computer Aided Design/Manufacturing (CAD/CAM),
- VLSI design, etc.
- The term first appeared in the 70's.
- We will deal with points and line segments in 2D space.

Basic problems: Orientation

- How to find "orientation" of two line segments?
- Three points: $p_{1}\left(x_{1}, y_{1}\right), p_{2}\left(x_{2}, y_{2}\right), p_{3}\left(x_{3}, y_{3}\right)$
- Is segment $\left(p_{1}, p_{3}\right)$ clockwise or counterclockwise from $\left(p_{1}, p_{2}\right)$?
- Equivalent to: Going from segment (p_{1}, p_{2}) to $\left(p_{2}, p_{3}\right)$ do we make a right or a left turn?

Collinear

Computing the orientation

- Orientation the standard way:
- slope of segment $\left(p_{1}, p_{2}\right): \sigma=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$
- slope of segment $\left(p_{2}, p_{3}\right): \tau=\left(y_{3}-y_{2}\right) /\left(x_{3}-x_{2}\right)$
- How do you compute then the orientation?
- counterclockwise (left turn): $\sigma<\tau$
- clockwise (right turn): $\sigma>\tau$
- collinear (no turn): $\sigma=\tau$

Cross product

- Finding orientation without division (to avoid numerical problems)
- $\left(y_{2}-y_{1}\right)\left(x_{3}-x_{2}\right)-\left(y_{3}-y_{2}\right)\left(x_{2}-x_{1}\right)=$?
- Positive - clockwise
- Negative - counterclockwise
- Zero - collinear
- This is (almost) a cross product of two vectors

$$
\left(x_{2}-x_{1}, y_{2}-y_{1}\right) \times\left(x_{3}-x_{2}, y_{3}-y_{2}\right)=\operatorname{det}\left(\begin{array}{ll}
x_{2}-x_{1} & x_{3}-x_{2} \\
y_{2}-y_{1} & y_{3}-y_{2}
\end{array}\right)
$$

Intersection of two segments

- How do we test whether two line segments intersect?
- What would be the standard way?
- What are the problems?

Intersection and orientation

- We can use just cross products to check for intersection!
- Two segments $\left(p_{1}, q_{1}\right)$ and (p_{2}, q_{2}) intersect if and only if one of the two is satisfied:
- General case:
- $\left(p_{1}, q_{1}, p_{2}\right)$ and $\left(p_{1}, q_{1}, q_{2}\right)$ have different orientations and
- $\left(p_{2}, q_{2}, p_{1}\right)$ and $\left(p_{2}, q_{2}, q_{1}\right)$ have different orientations
- Special case
- $\left(p_{1}, q_{1}, p_{2}\right),\left(p_{1}, q_{1}, q_{2}\right),\left(p_{2}, q_{2}, p_{1}\right)$, and (p_{2}, q_{2}, q_{1}) are all collinear and
- the x-projections of $\left(p_{1}, q_{1}\right)$ and $\left(p_{2}, q_{2}\right)$ intersect
- the y-projections of $\left(p_{1}, q_{1}\right)$ and (p_{2}, q_{2}) intersect

Orientation examples

- General case:
- $\left(p_{1}, q_{1}, p_{2}\right)$ and ($\left.p_{1}, q_{1}, q_{2}\right)$ have different orientations and
- $\left(p_{2}, q_{2}, p_{1}\right)$ and $\left(p_{2}, q_{2}, q_{1}\right)$ have different orientations

Orientation Examples (2)

$$
\begin{aligned}
& \left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{p}_{2}\right) \\
& \left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{q}_{2}\right) \\
& \left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{p}_{1}\right) \\
& \left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{q}_{1}\right) \\
&
\end{aligned}
$$

Orientation Examples (3)

- Special case
- $\left(p_{1}, q_{1}, p_{2}\right),\left(p_{1}, q_{1}, q_{2}\right),\left(p_{2}, q_{2}, p_{1}\right)$, and (p_{2}, q_{2}, q_{1}) are all collinear and
- the x-projections of $\left(p_{1}, q_{1}\right)$ and $\left(p_{2}, q_{2}\right)$ intersect
- the y-projections of $\left(p_{1}, q_{1}\right)$ and $\left(p_{2}, q_{2}\right)$ intersect

Determining Intersections

- Given a set of n segments, determine whether any two line segments intersect
- Note: not asking to report all intersections, just true or false.
- What would be the brute force algorithm and what is its worst-case complexity?

Observations

- Helpful observation:
- Two segments definitely do not intersect if their projections to the x axis do not intersect
- In other words: If segments intersect, there is some x_{L} such that line $x=x_{L}$ intersects both segments

Sweeping technique

- A powerful algorithm design technique: sweeping.
- Two sets of data are maintained:
- sweep-line status: the set of segments intersecting the sweep line L
- event-point schedule: where updates to L are required

Plane-sweeping algorithm

- Skeleton of the algorithm:
- Each segment end point is an event point
- At an event point, update the status of the sweep line and perform intersection tests
- left end point: a new segment is added to the status of L and it's tested against the rest
- right end point: it's deleted from the status of L
- Analysis:
- What is the worst-case comlexity?
- Worst-case example?

Improving the algorithm

- More useful observations:
- For a specific position of the sweep line, there is an order of segments in the y-axis;
- If segments intersect - there is a position of the sweep-line such that two segments are adjacent in this order;
- Order does not change in-between event points

Sweep-line status DS

- Sweep-line status data structure:
- Oerations:
- Insert
- Delete
- Below (Predecessor)
- Above (Successor)
- Balanced binary search tree T (e.g., Red-Black)
- The up-to-down order of segments on the line $L \Leftrightarrow$ the left-to-right order of in-order traversal of T
- How do you do comparison?

Pseudo Code

```
AnySegmentsIntersect(S)
01 T \leftarrow Ø
0 2 \text { sort the left and right end points of the segments}
    in S from left to right, breaking ties by putting
    left end points first
0 3 \text { for each point p in the sorted list of end points do}
04 if p is the left end point of a segment s then
05 Insert(T,s)
0 6 ~ i f ~ ( A b o v e ( T , s ) ~ e x i s t s ~ a n d ~ i n t e r s e c t s ~ s ) ~ o r ~
                                    (Below(T,s) exists and intersects s) then
07 return TRUE
0 8 ~ i f ~ p ~ i s ~ t h e ~ r i g h t ~ e n d ~ p o i n t ~ o f ~ a ~ s e g m e n t ~ s ~ t h e n ~
0 9 ~ i f ~ b o t h ~ A b o v e ( T , s ) ~ a n d ~ B e l o w ( T , s ) ~ e x i s t ~ a n d
                        Above(T,s) intersects Below(T,s) then
10 return TRUE
        Delete(T,s)
12 return FALSE
```


Example

- Which comparisons are done in each step?
- At which event the intersection is discovered? What if sweeping is from right to left?

Analysis, Assumptions

- Running time:
- Sorting the segments: $O(n \log n)$
- The loop is executed once for every end point (2n) taking each time $\mathrm{O}(\log n$) (e.g., red-black tree operation)
- The total running time is $\mathrm{O}(n \log n)$
- Simplifying assumptions:
- At most two segments intersect at one point
- No vertical segments

Sweeping technique principles

- Principles of sweeping technique:
- Define events and their order
- If all the events can be determined in advance
- sort the events
- Else use the priority queue to manage the events
- See which operations have to be performed with the sweep-line status at each event point
- Choose a data-structure for the sweep-line status to efficiently support those operations

Robot motion planning

- In motion planning for robots, sometimes there is a need to compute convex hulls.

Convex hull problem

- Convex hull problem:
- Let S be a set of n points in the plane. Compute the convex hull of these points.
- Intuition: rubber band stretched around the pegs
- Formal definition: the convex hull of S is the smallest convex polygon that contains all the points of S

What is convex

- A polygon P is said to be convex if:
- P is non-intersecting; and
- for any two points p and q on the boundary of P, segment (p, q) lies entirely inside P

Graham Scan

- Graham Scan algorithm.
- Phase 1: Solve the problem of finding the noncrossing closed path visiting all points

Finding non-crossing path

- How do we find such a non-crossing path:
- Pick the bottommost point a as the anchor point
- For each point p, compute the angle $\theta(p)$ of the segment (a, p) with respect to the x-axis.
- Traversing the points by increasing angle yields a simple closed path

Sorting by angle

- How do we sort by increasing angle?
- Observation: We do not need to compute the actual angle!
- We just need to compare them for sorting
$\theta(p)<\theta(q) \Leftrightarrow$ orientation $(\mathrm{a}, \mathrm{p}, \mathrm{q})=$ counterclockwise

Rotational sweeping

- Phase 2 of Graham Scan: Rotational sweeping
- The anchor point and the first point in the polar-angle order have to be in the hull
- Traverse points in the sorted order:
- Before including the next point n check if the new added segment makes a right turn
- If not, keep discarding the previous point (c) until the right turn is made

Implementation and analysis

- Implementation:
- Stack to store vertices of the convex hull
- Analysis:
- Phase 1: O($n \log n$)
- points are sorted by angle around the anchor
- Phase 2: O(n)
- each point is pushed into the stack once
- each point is removed from the stack at most once
- Total time complexity $\mathrm{O}(n \log n)$

