
OOP: Inheritance 1

Inheritance
• Reuse of code
• Extension and intension
• Class specialization and class extension
• Inheritance
• The protected keyword revisited
• Inheritance and methods
• Method redefinition
• The composite design pattern

 A widely example using inheritance

• Finally, the final keyword

OOP: Inheritance 2

How to Reuse Code?
• Write the class completely from scratch (one extreme)

 What some programmers always want to do!
• Find an existing class that exactly match your requirements

(another extreme)
 The easiest for the programmer!

• Built it from well-tested, well-documented existing classes
 A very typical reuse, called composition reuse!

• Reuse an existing class with inheritance
 Requires more knowledge of the existing classes than composition

reuse.
 Today's main topic.

Composition is “flirting”, inheritance is “meet the parents”!

OOP: Inheritance 3

Class Specialization
• In specialization a class is considered an Abstract Data Type

(ADT).
• The ADT is defined as a set of coherent values on which a set

of operations (methods) are defined.

• A specialization of a class C1 is a new class C2 where
 The instances of C2 are a subset of the instances of C1.
 Operations defined of C1 are also defined on C2.
 Operations defined on C1 can be redefined in C2.

C1

C2

Mammal

Dog

OOP: Inheritance 4

• The extension of a specialized class C2 is a subset of the
extension of the general class C1.

• “is-a” Relationship
 A C2 object is a C1 object (but not vice-versa).
 There is an “is-a” relationship between C1 and C2.
 We will later discuss a “has-a” relationship

Extension of C2
Extension of C1

Extension

C1

C2

OOP: Inheritance 5

Class Specialization, Example
Shape

 draw()
 resize()

Circle
 draw()
 resize()

Line
 draw()
 resize()

Rectangle
 draw()
 resize()

Square
 draw()
 resize()

Shape

Circle Line

Rectangle
Square

Should the extensions
be overlapping?

OOP: Inheritance 6

Class Extension
• In class extension a class is considered a module.
• A module is a syntactical frame where a number of variables

and method are defined, found in, e.g., Modula-2 and PL/SQL.
• Class extension is important in the context of reuse. Class

extension makes it possible for several modules to share code,
i.e., avoid to have to copy code between modules.

• A class extension of a class C3 is a new class C4
 In C4 new properties (variables and methods) are added
 The properties of C3 are also properties of C4

C3

C4

OOP: Inheritance 7

Intension
• The intension of an extended class C4 is a superset of the

intension of C3.

Intension of C4
Intension of C3

Person
cpr
name

Employee
salary
dept

C3

C4

salary and dept
cpr and name

Employee

Person

OOP: Inheritance 8

Inheritance
• Inheritance is a way to derive a new class from an existing

class.

• Inheritance can be used for
 Specializing an ADT, i.e., class specialization
 Extending an existing class, i.e., class extension
 Often both class specialization and class extension takes place when a

class inherits from an existing class.

OOP: Inheritance 9

Module Based vs. Object Oriented

• Class C4 is created by copying C3.

• There are C3 and C4 instances.

• Instance of C4 have all C3 properties.

• C3 and C4 are totally separated.

• Maintenance of C3 properties must be
done two places

• Languages, e.g., Ada, Modula2,
PL/SQL

smarter

C3

C4

C3

C4

• Class C4 inherits from C3.

• There are C3 and C4 instances.

• Instance of C4 have all C3 properties.

• C3 and C4 are closely related.

• Maintenance of C3 properties must be
done in one place.

• Languages, C++, C#, Java, Python,
Smalltalk

Module based Object oriented

OOP: Inheritance 10

Composition vs. Inheritance
Shape

 draw()
 resize()

Circle
 draw()
 resize()

Line
 draw()
 resize()

Rectangle
 draw()
 resize()
Square

 draw()
 resize()

Car

 start()
 drive()

 Engine
 Gearbox
 Doors[4]

X
a()
b()

Y
c()
d()
e()

Pure composition

Pure inheritance
(substitution)

Class extension

OOP: Inheritance 11

Inheritance in Java

Subclass
 method1()
 method3()

Superclass
 method1()
 method2()

class Subclass extends Superclass {
// <class body>

}

OOP: Inheritance 12

public class Vehicle {
private String make;
private String model;
public Vehicle() { make = ""; model = ""; }

 public String toString() {
 return "Make: " + make + " Model: " + model;
 }
 public String getMake(){ return make; }

public String getModel() { return model; }
}
// another file
public class Car extends Vehicle {

private double price;
 public Car() {

super(); // called implicitly can be left out
price = 0.0;

}
public String toString() { // method overridden

return "Make: " + getMake() + " Model: " + getModel()
+ " Price: " + price;

}
public double getPrice(){ return price; }

}

Inheritance Example

Car
toString()
getPrice()

Vehicle
toString()
getMake()
getModel()

OOP: Inheritance 13

Class Specialization and Class Extension
• The Car type with respect to extension and intension

Class Extension
• Car is a class extension of
Vehicle.

• The intension of Car is
increased with the variable
price.

Class Specialization
• Car is a class specialization

of Vehicle.
• The extension of Car is

decreased compared to the
class Vehicle.

OOP: Inheritance 14

Instantiating and Initialization

• The Square, that inherits from Rectangle, that inherits
from Shape is instantiated as a single object, with properties
from the three classes Square, Rectangle, and Shape.

Shape

Circle Line Rectangle
Square

Shape
Properties

Rectangle
Properties

Square
Properties

Square instance

OOP: Inheritance 15

Inheritance Bad Examples

Rectangle
Dog

Beer

ColdBeer HotBeer

Person
Singer

Bono

Car
Porsche

OOP: Inheritance 16

Inheritance and Constructors
• Constructors are not inherited.
• A constructor in a subclass must initialize variables in the class

and variables in the superclass.
 What about private fields in the superclass?

• It is possible to call the superclass' constructor in a subclass.
 Default behavior: Superclass constructor called if exists
public class Vehicle{

private String make, model;
public Vehicle(String ma, String mo) {

make = ma; model = mo;
}

}
public class Car extends Vehicle{

private double price;
 public Car() {
 // System.out.println("Start"); // not allowed

super(“”, “”); // must be called
price = 0.0;

}
}

OOP: Inheritance 17

Class Hierarchies in Java
• Class Object is the root of the inheritance hierarchy in Java.
• If no superclass is specified a class inherits implicitly from
Object.

• If a superclass is specified explicitly the subclass will inherit
Object.

Shape

Circle Line Rectangle
Square

Object

OOP: Inheritance 18

Order of Instantiation and Initialization
• The storage allocated for the object is initialized to binary zero

before anything else happens.
• Static initialization is first done in the base class then the

derived classes.
• The base-class constructor is called. (all the way up to
Object).

• Member initializers are called in the order of declaration.
• The body of the derived-class constructor is called.

OOP: Inheritance 19

Inheritance and Constructors, cont.
class A {

public A(){
System.out.println("A()");
// when called from B the B.doStuff() is called
doStuff();

}
public void doStuff(){ System.out.println("A.doStuff()");}

}
class B extends A{

int i = 7;
public B(){System.out.println("B()");}
public void doStuff(){ System.out.println("B.doStuff() " + i);}

}
public class Base{

public static void main(String[] args){
B b = new B();
b.doStuff();

}
}

//prints
A()
B.doStuff() 0
B()
B.doStuff() 7

OOP: Inheritance 20

Interface to Subclasses and Clients

1. The properties of C3 that clients
can use.

2. The properties of C3 that C4 can
use.

3. The properties of C4 that clients
can use.

4. The properties of C4 that
subclasses of C4 can use.

C3

C4

1

3
2

4

= interface

OOP: Inheritance 21

protected, Revisited
• It must be possible for a subclass to access properties in a

superclass.
 private will not do, it is to restrictive
 public will not do, it is to generous

• A protected variable or method in a class can be accessed by
subclasses but not by clients.

• Which is more restrictive protected or package access?

• Change access modifiers when inheriting
 Properties can be made “more public”.
 Properties cannot be made “more private”.

OOP: Inheritance 22

protected, Revisited

Shape

Circle Line Rectangle
Square

private
protectedClient

public

OOP: Inheritance 23

protected, Example
public class Vehicle1 {

protected String make;
protected String model;
public Vehicle1() { make = ""; model = "";}

 public String toString() {
 return "Make: " + make + " Model: " + model;
 }

public String getMake(){ return make;}
public String getModel() { return model;}

}
public class Car1 extends Vehicle1 {

private double price;
 public Car1() {

price = 0.0;
}
public String toString() {

return "Make: " + make + " Model: " + model
+ " Price: " + price;

}
public double getPrice(){ return price; }

}

Car
 getPrice()

Vehicle
toString()
getMake()
getModel()

OOP: Inheritance 24

Class Hierarchies in General
• Class hierarchy: a set of classes related by inheritance.

• Possibilities with inheritance
 Cycles in the inheritance hierarchy is not allowed.
 Inheritance from multiple superclass may be allowed.
 Inheritance from the same superclass more than once may be allowed.

A

B

C D

A

B

C

A

D

B C

A

B C

• “Multiple and repeated inheritance is a basic feature of Eiffel.”
[Meyer pp. 62].

OOP: Inheritance 25

Method/Variable Redefinition
• Redefinition: A method/variable in a subclass has the same as a

method/variable in the superclass.
• Redefinition should change the implementation of a method, not

its semantics.
• Redefinition in Java class B inherits from class A if

 Method: Both versions of the method is available in instances of B.
Can be accessed in B via super.

 Variable: Both versions of the variable is available in instances of B.
Can be accessed in B via super.

• “There are no language support in Java that checks that a
method redefinition does not change the semantics of the
method. In the programming language Eiffel assertions (pre-
and post conditions) and invariants are inherited.” [Meyer pp.
228].

OOP: Inheritance 26

Upcasting
• Treat a subclass as its superclass

Car
 getPrice()

Vehicle
toString()
getMake()
getModel()

U
pc

as
t

// example
Car c = new Car();
Vehicle v;
v = c; // upcast
v.toString(); // okay
v.getMake(); // okay
//v.getPrice(); // not okay

• Central feature in object-oriented program
 Covered in the next lecture

• Should be obvious that a method/field cannot be made more
“private” in a subclass when redefining method/field.
 However, it can be made more public.

OOP: Inheritance 27

The Ikea Component List Problem
• A part can be just the part itself (a brick).
• A part can consists of part that can consists of parts and so on.

As an example a garden house consists of the following parts
 Garden house

 walls
 door

▴ knob
▴ window

– frame
– glass

 window
▴ frame
▴ glass

 floor

• Regardless whether it is a simple or composite part we just want
to print the list.

OOP: Inheritance 28

Design of The Ikea Component List

List

Component
 print()
 add()
 remove()

Single
 print()

components

for all components c
c.print() print()

 add()
 remove()

ComponentClient
use

• The composite design pattern
 Used extensively when building Java GUIs (AWT/Swing)

OOP: Inheritance 29

 Implementation of The Ikea Component List
public class Component{

public void print(){
 System.out.println("Do not call print on me!"); }

public void add(Component c){
System.out.println("Do not call add on me!");}

}
public class Single extends Component{

private String name;
public Single(String n){ name = n;}
public void print(){System.out.println(name);}

}
public class List extends Component{
 // uses parent class

private Component[] comp; private int count;
public List(){ comp = new Component[100]; count = 0; }
public void print(){ for(int i = 0; i <= count - 1; i++){

comp[i].print();
 }

}
public void add(Component c){ comp[count++] = c;}

}

OOP: Inheritance 30

 Implementation of The Ikea Component List
public class ComponentClient{ // Ikea
 public Component makeWindow(){ // helper function

Component win = new List();
win.add(new Single("frame")); win.add(new Single("glass"));
return win;

 }
 public Component makeDoor(){ // helper function

Component door = new List();
door.add(new Single("knob")); door.add(makeWindow());
return door;

 }
 public Component makeGardenHouse(){ // helper function

Component h = new List();
h.add(makeDoor()); h.add(makeWindow()); // etc
return h;

 }
 public static void main(String[] args){

ComponentClient c = new ComponentClient();
Component brick = new Single("brick");
Component myHouse = c.makeGardenHouse();
brick.print();
myHouse.print();

}

OOP: Inheritance 31

Evaluation of The Ikea Component List
• Made List and Single classes look alike when printing from

the client's point of view.
 The main objective!

• Can make instances of Component class, not the intension
 Can call dummy add/remove methods on these instances

• Can call add/remove method of Single objects, not the
intension.

• Fixed length, not a great implementation
• Nice design!

OOP: Inheritance 32

The final Keyword
• Fields

 Compile-time constant (very useful)
final static double PI = 3.14

 Run-time constant (useful)
final int RAND = (int) Math.random * 10

• Arguments (not very useful)
double foo (final int i)

• Methods
 Prevents overridden in a subclass (use this very carefully)
 Private methods are implicitly final

• Final class (use this very carefully)
 Cannot inherit from the class

• Many details on the impacts of final.

OOP: Inheritance 33

Summary
• Reuse

 Use composition when ever possible more flexible and easier to
understand than inheritance.

• Java supports specialization and extension via inheritance
 Specialization and extension can be combined.

• A subclass automatically gets the fields and method from the
superclass.
 They can be redefined in the subclass

• Java supports single inheritance, all have Object as superclass
• Designing good reusable classes is (very) hard!

 while(!goodDesign()){ reiterateTheDesign(); }

OOP: Inheritance 34

Method Combination
Different method combination
• It is programmatically controlled

 Method doStuff on A controls the activation of doStuff on B
 Method doStuff on B controls the activation of doStuff on A
 Imperative method combination

• There is an overall framework in the run-time environment that
controls the activation of doStuff on A and B.
 doStuff on A should not activate doStuff on B, and vice versa
 Declarative method combination

• Java support imperative method combination.

OOP: Inheritance 35

Changing Parameter and Return Types
A

 doStuff(S x)

B
 doStuff(T x)

S
 sMethod()

T
 tMethod()

class B extends A {
void doStuff (T x){

x.tMethod();
}

}

A a1 = new A();
B b1 = new B();
S s1 = new S();
a1 = b1;
a1.doStuff (s1); // can we use an S object here?

OOP: Inheritance 36

Covarians and Contravarians
• Covarians: The type of the parameters to a method varies in the

same way as the classes on which the method is defined.
• Constravarians: The type of the parameters to a method varies

in the opposite way as the classes on which the method is
defined.

