
HUGIN API
REFERENCE MANUAL

Version 6.3

HUGIN API Reference Manual

Copyright 1990–2004 by Hugin Expert A/S.

All Rights Reserved.

This manual was prepared using the LATEX Document Preparation System
and the PDFTEX typesetting software.

Set in 11 point Bitstream Charter, Bitstream Courier, and AMS Euler.

Version 6.3, November 2004.

UNIX is a trademark of The Open Group

POSIX is a trademark of IEEE

Sun, Solaris, Sun Enterprise, and Java are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and in other countries.

Microsoft, Visual C++, Windows, Windows 95, and Windows NT are trademarks
or registered trademarks of Microsoft Corporation in the United States and/or
other countries.

Mac OS is a registered trademark of Apple Computer, Inc.

X Window System is a trademark of X Consortium, Inc.

Bitstream and Bitstream Charter are registered trademarks of Bitstream Inc.

Hugin Expert, the Hugin Raven Logo, Hugin API, Hugin Regular, and Hugin
Runtime are trademarks of Hugin Expert A/S.

Preface

The “HUGIN API 6.3 Reference Manual” provides a reference for the C lan-
guage Application Program Interface to the HUGIN system. However, brief
descriptions of the Java and C++ versions are also provided (see Chapter 1).

The present manual assumes familiarity with the methodology of Bayesian
belief networks and influence diagrams as well as knowledge of the C pro-
gramming language and programming concepts.

As an introduction to Bayesian belief networks and influence diagrams, the
book by F. V. Jensen [10] is recommended. Deeper treatments of the subject
are given in the books by Cowell et al [5] and Pearl [20].

Overview of the manual

Chapter 1 explains how to use the HUGIN API within your own applications.
It also gives some general information on the functions and data types de-
fined by the HUGIN API and explains the mechanisms for error handling.
Finally, instructions on how to take advantage of multi-processor systems to
speed up inference are given.

Chapter 2 describes the functions for creating and modifying belief networks
and influence diagrams, collectively known as domains. It also explains how
to save and load domains to/from knowledge base files.

Chapter 3 provides the tools for constructing object-oriented belief network
and influence diagram models. Moreover, a function for converting an
object-oriented model to an equivalent domain is given (which is needed be-
cause inference cannot be performed directly in an object-oriented model).

Tables are used to represent conditional probability distributions, utility
functions, sets of experience counts, and sets of fading factors associated
with the nodes of the network, as well as joint probability distributions and
so-called “mixture marginals” (representing marginal distributions of con-
tinuous nodes). Chapter 4 explains how to access and modify the contents
of tables.

iii

Chapter 5 describes how the contents of a conditional probability or a utility
table can be generated from a mathematical description of the relationship
between a node and its parents.

Chapter 6 explains how to transform a domain into a secondary structure
(a junction forest), suitable for inference. This transformation is known
as compilation. It also explains how to improve performance of inference
by controlling the triangulation step and by performing approximation and
compression.

Chapter 7 explains how to access the collection of junction trees of a com-
piled domain and how to traverse a junction tree.

Chapter 8 shows how to handle the beliefs and the evidence that form the
core of the reasoning process in the HUGIN inference engine. It is described
how evidence is entered into the inference engine, how belief values are
obtained from the inference engine, and how evidence can be saved as a
text file for later use.

Chapter 9 documents the functions used to control the inference engine
itself. It is explained how the reasoning process can be started in order to
obtain revised beliefs once evidence has been entered.

Chapter 10 explains how conditional probability distributions can be adapted
as new evidence is observed, and Chapter 11 describes how both the net-
work structure and the conditional probability distributions can be extracted
(“learned”) from data (a set of cases).

Chapter 12 describes the NET language, a language used to specify the
nodes and the structure of a network as well as the numerical data required
to form a complete specification.

Chapter 13 describes how to enter and modify information that is purely
descriptive. This information is not used by other parts of the HUGIN API.
It is used by the HUGIN GUI application to generate a graphical display of a
network.

Finally, an index is provided. The index contains the names of all functions,
types, and constants of enumeration types, defined in this manual.

Overview of new features in HUGIN API version 2

• Version 2 of the HUGIN API introduces influence diagrams. An influ-
ence diagram is a belief network augmented with decisions and utili-
ties. Edges in the influence diagram into a random variable represents
probabilistic dependencies while edges into a decision variable rep-
resents availability of information at the time the decision is taken.
Assuming a total ordering of the decisions, an optimal decision policy
using maximization of expected utility for choosing between decision
alternatives can be computed.

iv

Version 2 of the HUGIN API allows specification of and inference and
decision making with influence diagrams. This version will also take
advantage of the case where the overall utility is a sum of a set of local
utilities.

• New propagation methods: (1) In addition to the well-known ‘sum’-
propagation method, a ‘max’-propagation method that identifies the
most probable configuration of all variables and computes its proba-
bility is introduced, and (2) a new way to incorporate evidence, known
as ‘fast-retraction’, permits the computation, for each variable, of the
conditional probability of that variable given evidence on the remain-
ing variables (useful for identifying suspicious findings). Thus, four
different ways of propagating evidence are now available.

• Models with undirected edges, so-called ‘chain graph’ models, are now
permitted. This extends the class of models so that automatically gen-
erated models are more easily used with HUGIN (in automatically gen-
erated models, the direction of an association is only rarely identified).
Chain graph models are currently only available via NET specifications
(Chapter 12).

• Extraction of the joint probability distribution for a group of variables,
even when the group is not a subset of any clique, is now possible.

• Version 2 of the HUGIN API allows construction and editing of belief
networks and influence diagrams.

• Analysis of data conflicts, previously only available within the HUGIN
GUI application, is now also available via the API.

• Simulation: given evidence, a configuration for all variables can be
sampled according to the distribution determined by the evidence.

• The interface of the API has undergone a major clean-up and redesign.
The naming has been made more consistent: a common prefix h is
introduced, all functions operating on the same type of object has a
common prefix (e.g., all functions with a node as ‘primary’ argument
shares the common prefix h node)

• The concept of a ‘current’ or ‘selected’ domain has been removed. The
domain to be operated upon is now an explicit argument.

• Backwards compatibility: Application programs built using the docu-
mented functions and types of previous versions of the HUGIN API can
still be compiled and should work as expected, although use of these
older functions and types in new applications is strongly discouraged.

v

Overview of new features in HUGIN API version 3

• Version 3 of the HUGIN API introduces belief networks with Condi-
tional Gaussian (CG) nodes. These represent variables with a Gaus-
sian (also known as a ‘normal’) distribution conditional on the values
of their parents. The inference is exact (i.e., no discretization is per-
formed).

• It is no longer required to keep a copy of the initial distribution stored
in a disk file or in memory in order to initialize the inference engine.
Instead, the initial distribution can be computed (when needed) from
the conditional probability and utility tables.

• It is now possible for the user to associate attributes (key/value pairs)
with nodes and domains. The advantage over the traditional user data
(as known from previous versions of the HUGIN API) is that these
attributes are saved with the domain in both the NET and the HUGIN
KB formats.

• It is no longer necessary to recompile a domain when some conditional
probability or utility potential has changed. When HUGIN notices that
some potential has changed, the updated potential will be taken into
account in subsequent propagations.

• It is now possible to reorganize the layout of conditional probability
and utility potentials (Section 4.5).

• The HUGIN API is now provided in two versions: a (standard) ver-
sion using single-precision floating-point arithmetic and a version us-
ing double-precision floating-point arithmetic. The double-precision
version may prove useful in computations with continuous random
variables (at the cost of a larger space requirement).

Overview of new features in HUGIN API version 4

• Version 4 of the HUGIN API makes it possible to generate conditional
probability and utility potentials based on mathematical descriptions
of the relationships between nodes and their parents. The language
provided for such descriptions permits both deterministic and proba-
bilistic relationships to be expressed.

This facility is implemented as a front end to the HUGIN inference en-
gine: The above mentioned descriptions only apply to discrete nodes,
implying that continuous distributions (such as the gamma distribu-
tion) are discretized. Thus, inference with such distributions are only
approximate. The only continuous distributions for which the HUGIN
API provides exact inference are the CG distributions.

vi

See Chapter 5 for further details.

• The table for a node is no longer deleted when a parent is removed or
the number of states is changed (either for the node itself or for some
parent). Instead, the table is resized (and the contents updated).

This change affects the following functions: h node remove parent(23),
h node set number of states(25), and h node delete(21) (since deletion
of a node implies removing it as a parent of its children).

Overview of changes and new features in HUGIN API version 4.1

• An “arc-reversal” operation is provided: This permits the user to re-
verse the direction of an edge between two chance nodes of the same
kind, while at the same time preserving the joint probability distribu-
tion of the belief network or influence diagram.

• A “Noisy OR” distribution has been added to the table generation fa-
cility (Chapter 5).

• Support for C compilers that don’t conform to the ISO Standard C
definition has been dropped.

Overview of changes and new features in HUGIN API version 4.2

• The traditional function-oriented version of the HUGIN API has been
supplemented by object-oriented versions for the Java and C++ lan-
guage environments.

• The most time-consuming operations performed during inference have
been made threaded. This makes it possible to speed up inference by
having individual threads execute in parallel on multi-processor sys-
tems.

• The class of belief networks with CG nodes that can be handled by
HUGIN has been extended. A limitation of the old algorithm has been
removed by the introduction of the recursive combination operation
(see [16] for details).

• Evidence entered to a domain is no longer removed when an (ex-
plicit or implicit) “uncompile” operation is performed. Also, evidence
can be entered (and retracted) when the domain is not compiled.
These changes affect all functions that enter, retract, or query (en-
tered) evidence, as well as h domain uncompile(80) and the functions
that perform implicit “uncompile” operations — with the exception of
h node set number of states(25) which still removes the entered evi-
dence.

vii

Overview of changes and new features in HUGIN API version 5

• A batch learning method (based on the EM algorithm) has been im-
plemented. Given a set of cases and optional expert-supplied priors, it
finds1 the best unrestricted model matching the data and the priors.

• The sequential learning method (also known as adaptation) has been
reimplemented and given a new API interface. (HUGIN API version
1.2 provided the first implementation of sequential learning.)

• The HUGIN KB file format (the .hkb files) has changed. This was
done in order to accommodate adaptation information and evidence.
Also, junction tree tables (for compiled domains) are not stored in the
HUGIN KB file anymore.

The HUGIN API version 5 will load HUGIN KB files produced by HUGIN
API versions 3 or later.

• The NET language has been extended in order to accommodate adap-
tation information.

• A single-precision version of the HUGIN API is now able to load a
HUGIN KB file created by a double-precision version of the HUGIN
API — and vice versa.

Overview of changes and new features in HUGIN API version 5.1

• The simulation procedure has been extended to handle networks with
continuous variables. Also, a method for simulation in uncompiled
domains has been added. See Section 9.7.

• HUGIN will now only generate tables from a model when (the in-
ference engine thinks) the generated table will differ from the most
recently generated table. Such tests are now performed by the com-
pilation, propagation, and reset-inference-engine operations (in pre-
vious versions of the HUGIN API, the compilation operation always
generated all tables, and the propagation and reset-inference-engine
operations never generated any tables).

Also, tables can now be [re]generated individually on demand.

See Section 5.8 for more information.

• The number of values to use per (bounded) interval of a (parent) in-
terval node can now be specified on a per-model basis. This provides
a way to trade accuracy for computation speed. See Section 5.9.

1The EM algorithm is an iterative method that searches for a maximum of a function.
There is, however, no guarantee that the maximum is global. It might be a local maximum —
or even a saddle point.

viii

• Iterators for the attributes of nodes and domains are now provided.
See Section 2.9.2.

• The HUGIN KB file format (the .hkb files) has changed. This was
done in order to accommodate the above mentioned features.

The HUGIN API version 5.1 will load HUGIN KB files produced by
versions 3 or later (up to version 5.1). But note that support for older
formats may be dropped in future versions of the HUGIN API.

• The NET language has been extended with a model attribute for speci-
fying the number of values to use per (bounded) interval of a (parent)
interval node.

Also, if both a specification using the model attributes and a specifi-
cation using the data attribute are provided, then the specification in
the data attribute is used. Previous versions of the HUGIN API used
the model in such cases.

See Section 12.5.2 for more information.

Overview of changes and new features in HUGIN API version 5.2

• An algorithm for learning the structure of a belief network given a set
of cases has been implemented. See Section 11.3.

• Simulation in uncompiled domains (Section 9.7) is now permitted
when the set of nodes with evidence form an ancestral set of instan-
tiated nodes (i.e., no likelihood evidence is present, and if a chance
node is instantiated, so are all of its parents). Decision nodes must, of
course, be instantiated.

• If a domain is saved (as a HUGIN KB file) in compiled form, h kb load
domain(34) attempts to load it in that form as well. As the contents of
the junction tree tables are not stored in the HKB file, the inference
engine must be initialized from the user-specified tables and models.
This can fail for various reasons (e.g., the tables and/or models con-
tain invalid data). In this case, instead of refusing to load the domain,
h kb load domain instead returns the domain in uncompiled form.

• The log2, log10, sin, cos, tan, sinh, cosh, and tanh functions and the
Negative Binomial distribution have been added to the table genera-
tion facility.

• The HUGIN KB file format has changed (again), but version 5.2 of the
HUGIN API will load HKB files produced by versions 3 or later (up to
version 5.2). But note that support for older formats may be dropped
in future versions of the HUGIN API.

ix

Overview of changes and new features in HUGIN API version 5.3

• The structure learning algorithm now takes advantage of domain knowl-
edge in order to constrain the set of possible networks. Such knowl-
edge can be knowledge of the direction of an edge, the presence or
absence of an edge, or both. See Section 11.4.

• A new operator (“Distribution”) for specifying arbitrary finite discrete
distributions has been introduced. This operator is only permitted for
discrete variables (i.e., not interval variables).

• The discrete distributions (Binomial, Poisson, Negative Binomial, and
Geometric) now also work for interval nodes.

• New functions for the table generator: the “floor” and “ceil” functions
round real numbers to integers; the “abs” function computes the ab-
solute value of a number, and the “mod” (modulo) function computes
the remainder of a division.

• The HUGIN KB file format has changed (again), but version 5.3 of the
HUGIN API will load HKB files produced by versions 3 or later (up to
version 5.3). But note that support for older formats may be dropped
in future versions of the HUGIN API.

Overview of changes and new features in HUGIN API version 5.4

• A new triangulation method has been implemented. This method
makes it possible to find a (minimal) triangulation with minimum
sum of clique weights. For some large networks, this method has im-
proved time and space complexity of inference by an order of mag-
nitude (sometimes even more), compared to the heuristic methods
provided by earlier versions of the HUGIN API.

See Section 6.3 for more information.

• The computations used in the inference process have been reorganized
to make better use of the caches in modern CPUs. The result is faster
inference.

Overview of changes and new features in HUGIN API version 6

• Object-oriented models for belief networks and influence diagrams
can now be constructed using HUGIN API functions (see Chapter 3).
Also, NET language support for object-oriented models (including gen-
eration and parsing of NET specifications) is available (see Chapter 12).

x

• Support for API functions prior to Version 2 of the HUGIN API has
been dropped.2

• Loading of HKB files produced by API versions prior to version 5.0 has
been dropped. If you have an old release, please save your domains
using the NET format before upgrading.

• Some functions have been superseded by better ones: h domain write
net has been replaced by h domain save as net(148), h net parse has
been replaced by h net parse domain(145), and h string to expression
has been replaced by h string parse expression(61). However, the old
functions still exist in the libraries, but the functions should not be
used in new applications.

Overview of changes and new features in HUGIN API version 6.1

• The HUGIN API is now thread-safe. See Section 1.8 for further details.

• Functions to save and load cases have been added to the API. See
Section 8.7.

• The heuristic used in the total-weight triangulation method for large
networks have been improved.

Overview of changes and new features in HUGIN API version 6.2

• HUGIN KB files are now automatically compressed using the Zlib li-
brary (www.zlib.org). This change implies that the developer (i.e.,
the user of the HUGIN API) must explicitly link to the Zlib library, if
the application makes use of HKB files. See Section 1.2.

• HUGIN KB files can now be protected by a password. The following
new functions supersede old functions: h domain save as kb(34) and
h kb load domain(34).

• The EM learning algorithm can now be applied to object-oriented
models. See the h domain learn class tables(129) function.

• Functions to save and load case data (as used by the learning algo-
rithms — Section 11.1) have been added to the API. See Section 11.2.

• Functions to parse a list of node names stored in a text file are now
provided. Such functions are useful for handling, e.g., collections of
elimination orders for triangulations. See h domain parse nodes(79)

and h class parse nodes(79).
2If this poses a problem for you, please contact Hugin Expert A/S at the email address:

suppport@hugin.com

xi

www.zlib.org

• The HUGIN API Reference Manual is now provided as a hyperlinked
PDF file.

Overview of changes and new features in HUGIN API version 6.3

• A function for replacing the class of an instance node with another
compatible class (i.e., the interface of the new class must be a superset
of the interface of the class being replaced), while preserving all input
and output relations associated with the instance node. This is useful
when, for example, a new version of an instantiated class becomes
available. See h node substitute class(43).

• A function for replacing a parent of a node with another compatible
node, while preserving the validity of existing tables and model asso-
ciated with the child node. See h node switch parent(23).

• The C++ HUGIN API is now available as both a single-precision and a
double-precision library.

A note on the API function descriptions

The description of functions in this manual are given in terms of ISO/ANSI C
function prototypes, giving the names and types of the functions and their
arguments.

The notation “h domain compile(75)” is used to refer to an API function (in
this case, the h domain compile function). The parenthesized, superscripted
number (75) refers to the page where the function is described.

A note on the examples

Throughout the manual, brief examples are provided to illustrate the use
of particular functions. These examples will not be complete applications.
Rather, they will be small pieces of code that show how a function (or a
group of functions) might be used.

While each example is intended to illustrate the use of a particular function,
other functions of the HUGIN API will be used to make the examples more
realistic. As this manual is not intended as a tutorial but as a reference,
many examples will use functions described later in the manual. There-
fore, if you read the manual sequentially, you cannot expect to be able to
understand all examples the first time through.

For the sake of brevity, most examples do not include error checking. It
should be pointed out that using this practice in real applications is strongly
discouraged.

xii

Acknowledgements

Lars P. Fischer wrote the HUGIN API 1.1 manual, and Per Abrahamsen wrote
the HUGIN API 1.2 (Extensions) manual. The present document is partly
based on these manuals.

I would also like to thank Marianne Bangsø, Søren L. Dittmer, Uffe Kjærulff,
Michael Lang, Anders L. Madsen, Lars Nielsen, Lars Bo Nielsen, and Kristian
G. Olesen for providing constructive comments and other contributions that
have improved this document as well as the API itself. In particular, Anders
L. Madsen wrote a large part of Chapter 10.

Any errors and omissions remaining in this manual are, however, my re-
sponsibility.

— Frank Jensen

Hugin Expert A/S

November, 2004

xiii

xiv

Contents

Preface iii

1 General Information 1

1.1 Introduction . 1

1.2 Using the HUGIN API on UNIX platforms 2

1.3 Using the HUGIN API on Windows platforms 4

1.4 Naming conventions . 8

1.5 Types . 9

1.6 Errors . 10

1.6.1 Handling errors . 12

1.6.2 General errors . 13

1.7 Taking advantage of multiple processors 13

1.7.1 Multiprocessing in the Solaris Operating Environment 14

1.7.2 Multiprocessing on Windows platforms 15

1.8 Using the HUGIN API in a multithreaded application 16

2 Nodes and Domains 19

2.1 Types . 19

2.1.1 Node category . 19

2.1.2 Node kind . 20

2.2 Domains: Creation and deletion 20

2.3 Nodes: Creation and deletion 20

2.4 The links of the network . 21

2.5 The number of states of a node 25

2.6 The conditional probability and the utility table 26

2.7 The name of a node . 28

2.8 Iterating through the nodes of a domain 29

2.9 User data . 29

xv

2.9.1 Arbitrary user data . 30
2.9.2 User-defined attributes 31

2.10 HUGIN Knowledge Base files 33

3 Object-Oriented Belief Networks and Influence Diagrams 37
3.1 Classes and class collections 37
3.2 Creating classes and class collections 38
3.3 Deleting classes and class collections 38
3.4 Naming classes . 38
3.5 Creating basic nodes . 39
3.6 Naming nodes . 39
3.7 The interface of a class . 40
3.8 Creating instances of classes 41
3.9 Putting the pieces together . 43
3.10 Creating a runtime domain 44
3.11 Node iterator . 47
3.12 User data . 47

4 Tables 49
4.1 What is a table? . 49
4.2 The nodes and the contents of a table 51
4.3 Deleting tables . 52
4.4 The size of a table . 52
4.5 Rearranging the contents of a table 53

5 Generating Tables 55
5.1 Subtyping of discrete nodes 55
5.2 Expressions . 56
5.3 Syntax for expressions . 60
5.4 Creating and maintaining models 62
5.5 Labeled nodes . 64
5.6 Numeric nodes . 64
5.7 Statistical distributions . 65

5.7.1 Continuous distributions 65
5.7.2 Discrete distributions 66

5.8 Generating tables . 68
5.9 How the computations are done 70

5.9.1 Deterministic relationships 71

xvi

6 Compiling Domains 73
6.1 What is compilation? . 73
6.2 Compilation . 75
6.3 Triangulation . 76
6.4 Getting a compilation log . 79
6.5 Uncompilation . 80
6.6 Compression . 81
6.7 Approximation . 82

7 Cliques and Junction Trees 85
7.1 Types . 85
7.2 Junction trees . 86
7.3 Cliques . 87
7.4 Traversal of junction trees . 87

8 Evidence and Beliefs 89
8.1 Evidence . 89

8.1.1 Discrete evidence . 89
8.1.2 Continuous evidence 90

8.2 Entering evidence . 90
8.2.1 About likelihood evidence 91

8.3 Retracting evidence . 91
8.4 Retrieving beliefs . 92
8.5 Retrieving expected utilities 95
8.6 Examining evidence . 95
8.7 Case files . 96

9 Inference 99
9.1 Propagation methods . 99

9.1.1 Summation and maximization 99
9.1.2 Evidence incorporation mode 100
9.1.3 Inference in influence diagrams 101

9.2 Propagation . 101
9.3 Conflict of evidence . 103
9.4 The normalization constant 104
9.5 Initializing the domain . 105
9.6 Querying the state of the inference engine 107
9.7 Simulation . 109

xvii

10 Sequential Updating of Conditional Probability Tables 111

10.1 Experience counts and fading factors 111

10.2 Updating tables . 114

11 Learning Network Structure and Conditional Probability Tables 117

11.1 Data . 117

11.2 Data files . 120

11.3 Learning network structure 123

11.4 Domain knowledge . 125

11.5 Learning conditional probability tables 126

12 The NET Language 131

12.1 Overview of the NET language 132

12.2 Basic nodes . 132

12.3 Class instances . 135

12.4 The structure of the model . 136

12.5 Potentials . 138

12.5.1 Direct specification of the numbers 138

12.5.2 Using the table generation facility 140

12.5.3 Adaptation information 142

12.6 Global information . 143

12.7 Lexical matters . 145

12.8 Parsing NET files . 145

12.9 Saving class collections, classes, and domains as NET files . . 148

13 Display Information 149

13.1 The label of a node . 149

13.2 The position of a node . 150

13.3 The size of a node . 150

A Belief networks with Conditional Gaussian variables 153

Bibliography 155

Index 158

xviii

Chapter 1

General Information

This chapter explains how to use the HUGIN API within your own applica-
tions. It also gives some general information on the functions and data types
defined by the HUGIN API and explains the mechanisms for error handling.
Finally, instructions on how to take advantage of multi-processor systems to
speed up inference is given.

1.1 Introduction

The HUGIN API contains a high performance inference engine that can be
used as the core of knowledge based systems built using Bayesian belief net-
works or influence diagrams. A knowledge engineer can build knowledge
bases that model the application domain, using probabilistic descriptions
of causal relationships in the domain. Given this description, the HUGIN
inference engine can perform fast and accurate reasoning.
The HUGIN API is provided in the form of a library that can be linked into
applications written using the C, C++, or Java programming languages. The
C version provides a traditional function-oriented interface, while the C++
and Java versions provide an object-oriented interface. The present manual
describes the C interface. The C++ and Java interfaces are described in
online documentation supplied with the respective libraries.
On Windows platforms only, a Visual Basic language interface is also avail-
able.
The HUGIN API is used just like any other library. It does not require any
special programming techniques or program structures. The HUGIN API
does not control your application. Rather, your application controls the
HUGIN API by telling it which operations to perform. The HUGIN inference
engine sits passive until you engage it.
Applications built using the HUGIN API can make use of any other library
packages such as database servers, GUI toolkits, etc. The HUGIN API itself

1

only depends on (in addition to the Standard C library) the presence of the
Zlib library (www.zlib.org), which is preinstalled in the Solaris, Linux,
and Mac OS X operating environments.

1.2 Using the HUGIN API on UNIX platforms

The first step in using the C version of the HUGIN API is to include the
definitions for the HUGIN functions and data types in the program. This is
done by inserting the following line at the top of the program source code:

include <hugin.h>

The header file <hugin.h> contains all the definitions for the API.

When compiling the program, you must inform the C compiler where the
header file is stored. Assuming the HUGIN system has been installed in the
directory /usr/local/hugin, the following command is used:

cc -I/usr/local/hugin/include -c myapp.c

This will compile the source code file myapp.c and store the result in the
object code file myapp.o, without linking. The -I option adds the directory
/usr/local/hugin/include to the search path for include files.

If you have installed the HUGIN system somewhere else, the path above
must be modified as appropriate. If the environment variable HUGINHOME
has been defined to point to the location of the HUGIN installation, the
following command can be used:

cc -I$HUGINHOME/include -c myapp.c

Using the environment variable, HUGINHOME, has the advantage that if the
HUGIN system is moved, only the environment variable must be changed.

When the source code, possibly stored in several files, has been compiled,
the object files must be linked to create an executable file. At this point, it
is necessary to specify that the object files should be linked with the HUGIN
library:

cc myapp.o other.o -L$HUGINHOME/lib -lhugin -lm -lz

The -L$HUGINHOME/lib option specifies the directory to search for the
HUGIN libraries, while the -lhugin option specifies the library to link
with. The -lz option directs the compiler/linker to link with the Zlib li-
brary (www.zlib.org). This option is needed if either of the h domain
save as kb(34) or h kb load domain(34) functions is used.

If the source code for your application is a single file, you can simplify the
above to:

2

www.zlib.org
www.zlib.org

cc -I$HUGINHOME/include myapp.c
-L$HUGINHOME/lib -lhugin -lm -lz -o myapp

compiling the source code file myapp.c and storing the final application in
the executable file myapp. (Note that the above command should be typed
as a single line.)

Following the above instructions will result in an executable using the single-
precision version of the HUGIN API library. If, instead, you want to use
the double-precision version of the HUGIN API library, you must define
H DOUBLE when you invoke the compiler, and specify -lhugin2 for the
linking step:

cc -DH_DOUBLE -I$HUGINHOME/include myapp.c
-L$HUGINHOME/lib -lhugin2 -lm -lz -o myapp

(Again, all this should be typed on one line.)

The above might look daring, but it would typically be done in a Makefile
so that you will only have to do it once for each project.

The <hugin.h> header file has been designed to work with both ISO C
compliant compilers and C++ compilers. For C++ compilers, the <hugin.h>
header file depends on the symbol __cplusplus being defined.

Some API functions take pointers to stdio FILE objects as arguments. This
implies that inclusion of <hugin.h> also entails inclusion of <stdio.h>.
Moreover, in order to provide suitable type definitions, the standard C header
file <stddef.h> is also included.

Object-oriented versions of the HUGIN API: Java and C++

The standard HUGIN API as defined by the <hugin.h> header file and de-
scribed in the present manual has a function-oriented interface style. Object-
oriented versions, more appropriate for use in object-oriented language en-
vironments, have been made for the Java and C++ languages. These ver-
sions have almost identical interfaces, and it should be very easy for devel-
opers to switch between them (if this should ever be necessary).

The Java and C++ versions use classes for modeling domains, nodes, etc.
To each class belongs a set of methods enabling you to manipulate objects
of the class. These methods will throw exceptions when errors occur. The
exception classes are all subclasses of the main HUGIN exception class, Ex-
ceptionHugin. In Java, this is an extension of the standard Java Exception
class.

The classes, methods, and exceptions are all specified in the online docu-
mentation distributed together with these interfaces.

3

C++ To use the C++ HUGIN API definitions in your code, you must include
the <hugin> header file (note that there is no suffix):

include <hugin>

All entities defined by the C++ API are defined within the HAPI namespace.
To access these entities, either use the HAPI:: prefix or place the following
declaration before the first use of C++ API entities (but after the <hugin>
header file has been included):

using namespace HAPI;

Like the C API, the C++ API is available in two versions: a single-precision
version and a double-precision version. To use the single-precision version,
use a command like the following for compiling and linking:

g++ -I$HUGINHOME/include myapp.c
-L$HUGINHOME/lib -lhugincpp -lm -lz -o myapp

(This should be typed on one line.) To use the double-precision version,
define the H DOUBLE preprocessor symbol and specify -lhugincpp2 for
the linking step:

g++ -DH_DOUBLE -I$HUGINHOME/include myapp.c
-L$HUGINHOME/lib -lhugincpp2 -lm -lz -o myapp

(Again, this should be typed on one line.)

Java The Java version of the HUGIN API library is provided as two files:

• hapi63.jar contains the Java interface to the underlying C library.
The hapi63.jar file must be located in a directory mentioned by the
CLASSPATH environment variable.

• libhapi63.so contains the native version of the HUGIN API for the
platform used. When running the Java VM, this file must be located in
a directory mentioned by the LD_LIBRARY_PATH environment vari-
able.

The Java version of the HUGIN API is a double-precision library.
A Java VM that supports the Java 2 Platform (http://java.sun.com/
j2se/) is required.

1.3 Using the HUGIN API on Windows platforms

C, C++, Java, and Visual Basic language interfaces for the HUGIN API are
provided on Windows platforms.

4

http://java.sun.com/j2se/
http://java.sun.com/j2se/

Please note that the library files shipped with developer versions of HUGIN
for Windows are compiled with Microsoft Visual C++(version 6). It is not
immediately possible to use these libraries with other C/C++ development
environments such as, for example, C++ Builder from Borland Software Cor-
poration. If you need libraries for other IDEs than Microsoft Visual C++,
please contact info@hugin.com.

C version of the HUGIN API

The C version of the HUGIN API is installed in the HDE6.3C subdirectory of
the main HUGIN installation directory.
On Windows platforms, the compiler will typically be part of an integrated
development environment. To make, for example, Microsoft Visual C++
aware of the location of the header and library files, perform the following
steps in the Visual C++ IDE.

• Add the files hugin.h and hugin.lib to your Visual C++ project.
The files are located in the include and lib subdirectories of the
HDE6.3C directory.

• Choose Build ‖ Set active configuration, and pick the “Release” config-
uration.

• Choose Project ‖ Settings from the menu. Pick the “C/C++” tab-sheet,
and select the “Preprocessor” category. Then add the include di-
rectory of the HUGIN installation (i.e., C:\Program Files\Hugin
Expert\Hugin Developer 6.5\HDE6.3C\include) to the text-
box labeled “Additional include directories”.

• Choose Project ‖ Settings from the menu. In this dialogue, pick the
“C/C++” tab-sheet, select the “Code Generation” category, and select
“Multi-Threaded DLL”.

The above steps set up Microsoft Visual C++ to use the single-precision ver-
sion of the HUGIN API. If you want to use the double-precision version,
add hugin2.lib instead of hugin.lib. Also, define H_DOUBLE=1 in the
“Preprocessor Definitions” textbox (also found in the “Preprocessor” cate-
gory of the “C/C++” tab-sheet of Project ‖ Settings).
When running the compiled program, the file hugin.dll (or hugin2.dll
for double-precision) must be located in the search path. These files are
located in the lib subdirectory of the HDE6.3C directory.

C++ object-oriented version of the HUGIN API

The C++ version of the HUGIN API is installed in the HDE6.3CPP subdi-
rectory of the main HUGIN installation directory. The documentation for

5

all classes and their members is found in the doc subdirectory below the
HDE6.3CPP directory.
To use the C++ HUGIN API definitions in your code, you must include the
<hugin> header file (note that there is no suffix):

include <hugin>

All entities defined by the C++ API are defined within the HAPI namespace.
To access these entities, either use the HAPI:: prefix or place the following
declaration before the first use of C++ API entities (but after the <hugin>
header file has been included):

using namespace HAPI;

The steps needed to make Microsoft Visual C++ aware of the location of the
header and library files for the C++ version of the HUGIN API are similar to
those needed for the C version:

• Add the files hugin and hugincpp.lib to your Visual C++ project.
The files are located in the include and lib subdirectories of the
HDE6.3CPP directory.

• Choose Build ‖ Set active configuration, and pick the “Release” config-
uration.

• Choose Project ‖ Settings from the menu. Pick the “C/C++” tab-sheet
and select the “Preprocessor” category. Then add the include di-
rectory of the HUGIN installation (i.e., C:\Program Files\Hugin
Expert\Hugin Developer 6.5\HDE6.3CPP\include) to the
textbox labeled “Additional include directories”.

• Choose Project ‖ Settings from the menu. In this dialogue, pick the
“C/C++” tab-sheet, select the “Code Generation” category, and select
“Multi-Threaded DLL”.

The above steps set up Microsoft Visual C++ to use the single-precision ver-
sion of the C++ API. If you want to use the double-precision version, add
hugincpp2.lib instead of hugincpp.lib. Also, define H_DOUBLE=1
in the “Preprocessor Definitions” textbox (also found in the “Preprocessor”
category of the “C/C++” tab-sheet of Project ‖ Settings).
When running the executable, the file hugincpp.dll (or hugincpp2.dll
for double-precision) must be located in the search path. These files are lo-
cated in the lib subdirectory of the HDE6.3CPP directory.

Java version of the HUGIN API

The Java version of the HUGIN API is installed in the HDE6.3J subdirectory
of the main HUGIN installation directory.

6

Documentation for all classes and their members is installed in the doc
subdirectory below the HDE6.3J directory. An entry to this documentation
is installed in the Start-up menu.

When running a Hugin-based Java application, the Java VM must have ac-
cess to the following files:

• hapi63.jar: This file is installed in the lib subdirectory of the main
installation directory. Add this jar to the classpath when running the
Java VM: For the Sun J2SE Java VM, set the CLASSPATH environ-
ment variable to hold C:\Program Files\Hugin Expert\Hugin
Developer 6.5\HDE6.3J\lib\hapi63.jar, or specify it using
the -cp (or the -classpath) option of the java.exe command.

• hapi63.dll: This file is installed in the bin subdirectory of the main
installation directory. When running the Java VM, this file must be
in the search path (or specified using the -Djava.library.path
option).

• zlib1.dll: This is installed in the System32 (or System, depend-
ing on your OS version) subdirectory.

The Java version of the HUGIN API is a double-precision library.

A Java VM that supports the Java 2 Platform (http://java.sun.com/
j2se/) is required.

Visual Basic version of the HUGIN API

The Visual Basic version of the HUGIN API is installed in the HDE6.3X sub-
directory of the main HUGIN installation directory.

The documentation for all classes and members for the Visual Basic HUGIN
API is installed in the doc subdirectory of the HDE6.3X directory located
within the main installation directory. An entry to this documention is in-
stalled in the Hugin group in the Start-up menu.

To use the Visual Basic HUGIN API in your code, perform the following step:

• Choose Project ‖ References from the menu. In the list of available
modules, select the “Hugin API ActiveX Server”.

When running the program, the following files must be accessible:

• hapi63.dll: This is installed in the bin subdirectory of the Visual
Basic HUGIN API subdirectory. It is automatically registered when
Hugin is installed.

• nphapi63.dll: This is installed in the System32 (or System, de-
pending on your OS version) subdirectory.

7

http://java.sun.com/j2se/
http://java.sun.com/j2se/

• zlib1.dll: This is installed in the System32 (or System, depend-
ing on your OS version) subdirectory.

The Visual Basic HUGIN API is a single-precision version of the HUGIN API.

1.4 Naming conventions

Naming conventions for the C version

The C HUGIN API reserves identifiers beginning with h . Your application
should not use any such names as they might interfere with the HUGIN
API. (The HUGIN API also uses names beginning with h internally; you
shouldn’t use any such names either.)

The HUGIN API uses various types for representing domains, nodes, tables,
cliques, junction trees, error codes, triangulation methods, etc.

All types defined by the HUGIN API have the suffix t.

The set of types, defined by the HUGIN API, can be partitioned into two
groups: scalar types and opaque references.

Naming conventions for the Java and C++ versions

The Java and C++ HUGIN API classes have been constructed based on the
different HUGIN API opaque pointer types (see Section 1.5). For example,
the h domain t type in C corresponds to the Domain class in Java/C++.
The convention is that you uppercase all letters following an underscore
character (), remove the h prefix and t (or T after uppercasing) suffix,
and remove all remaining underscore characters. So, for example, the fol-
lowing classes are defined in the Java and C++ APIs: Clique, Expression,
JunctionTree, Model, Node, and Table.

There are some differences between C and object-oriented languages such
as Java and C++ that made it natural to add some extra classes. These
include different Node subclasses (DiscreteChanceNode, DiscreteDecision-
Node, BooleanDCNode, LabelledDDNode, etc.) and a lot of Expression sub-
classes (AddExpression, ConstantExpression, BinomialDistribution, BetaDis-
tribution, etc.). Each group forms their own class hierarchy below the corre-
sponding superclass. Some of the most specialized Node classes use abbrevi-
ations in their names (to avoid too long class names): e.g., BooleanDCNode
is a subclass of DiscreteChanceNode which again is a subclass of Node. Here,
BooleanDCNode is abbreviated from BooleanDiscreteChanceNode.

The methods defined on the Java/C++ HUGIN API classes all correspond
to similar C API functions. For example, the setName method of the Node

8

class corresponds to h node set name(28). The rule is: the h prefix is re-
moved, letters immediately following all (other) underscore characters are
uppercased, and, finally, the underscore characters themselves are removed.
There are some exceptions where functions correspond to class constructors:
e.g., the h domain new node(20) function in the C version corresponds to a
number of different Node subclass constructors in the Java/C++ versions.

1.5 Types

Opaque pointer types

All (structured) objects within the HUGIN API are represented as opaque
pointers. An opaque pointer is a well-defined, typed, pointer that points
to some data that is not further defined. Using opaque pointers makes it
possible to manipulate references to data, without knowing the structure of
the data itself.

This means that the HUGIN API provides pointers to these types but does
not define the structure of the data pointed at. The real data are stored in
structures, but the definitions of these structures are hidden. The reason
for this is that manipulation of these structures requires knowledge of the
workings of the inference engine, and that hiding the structure makes ap-
plications independent of the actual details, preventing that future changes
to the internals of the HUGIN API require changes in user programs.

Values of opaque pointer types should only be used in the following ways:

• As sources and destinations of assignments.

• As arguments to and return values from functions (both HUGIN API
and user-defined functions).

• In comparisons with NULL or 0 or another opaque pointer value of the
same type.

You should never try to dereference these pointers. Objects, referenced by
an opaque pointer, should only be manipulated using the API functions. This
ensures that the internal data structures are always kept consistent.

Scalar types

Probabilistic reasoning is about numbers, so the HUGIN API will of course
need to handle numbers. The beliefs and utilities used in the inference en-
gine are of type h number t, which is defined as a single-precision floating-
point value in the standard version of the HUGIN library. The HUGIN API
also defines another floating-point type, h double t, which is defined as a

9

double-precision floating-point type in the standard version of the HUGIN
API. This type is used to represent quantities that are particularly sensitive to
range (e.g., the joint probability of evidence — see h domain get normaliza-
tion constant(104)) and precision (e.g., the summation operations performed
as part of a marginalization operation is done with double precision).
The reason for introducing the h number t and h double t types is to make
it easier to use higher precision versions of the HUGIN API with just a simple
recompilation of the application program with some extra flags defined.
The HUGIN API uses a number of enumeration types. Some examples: The
type h triangulation method t defines the possible triangulation methods
used during compilation; the type h error t defines the various error codes
returned when errors occur during execution of API functions. Both of these
types will have new values added as extra features are added to the HUGIN
API in the future.
Many functions return integer values. However, these integer values have
different meanings for different functions.
Functions with no natural return value simply return a status result that
indicates if the function failed or succeeded. If the value is zero, the function
succeeded; if the value is nonzero, the function failed and the value will
be the error code of the error. Such functions can be easily recognized by
having the return type h status t.
Some functions have the return type h boolean t. Such functions have truth
values (i.e., ‘true’ and ‘false’) as their natural return values. These functions
will return a positive integer for ‘true’, zero for ‘false’, and a negative integer
if an error occurs. The nature of the error can be revealed by using the
h error code(11) function and friends.
The HUGIN API also defines a number of other types for general use: The
type h string t is used for character strings (this type is used for node
names, file names, labels, etc.). The type h count t is an integral type to
denote “counts” (e.g., the number of states of a node), and h index t is an
integral type to denote indexes into ordered lists (e.g., an identification of
a particular state of a node); all (non-error) values of these types are non-
negative, and a negative value from a function returning a value of one of
these types indicates an error.

1.6 Errors

Several types of errors can occur when using a function from the HUGIN
API. These errors can be the result of errors in the application program, of
running out of memory, of corrupted data files, etc.
As a general principle, the HUGIN API will try to recover from any error as
well as possible. The API will then inform the application program of the

10

problem and take no further action. It is then up to the application program
to choose an appropriate action.
This way of error handling is chosen to give the application programmer the
highest possible degree of freedom in dealing with errors. The HUGIN API
will never make a choice of error handling, leaving it up to the application
programmer to create as elaborate an error recovery scheme as needed.
When a HUGIN API function fails, the data structures will always be left in a
consistent state. Moreover, unless otherwise stated explicitly for a particular
function, this state can be assumed identical to the state before the failed
API call.
To communicate errors to the user of the HUGIN API, the API defines the
enumeration type h error t. This type contains constants to identify the
various types of errors. All constants for values of the h error t type have
the prefix h error .
All functions in the HUGIN API (except those described in this section) set an
error indicator. This error indicator can be inspected using the h error code
function.

x h error t h error code (void)

Return the error indicator for the most recent call to an API function (other
than h error code, h error name, and h error description). If this call was
successful, h error code will return h error none (which is equal to zero). If
this call failed, h error code will return a nonzero value indicating the nature
of the error. If no relevant API call has been made, h error code will return
h error none (but see also Section 1.8 for information on the error indicator
in multithreaded applications).
All API functions return a value. Instead of explicitly calling h error code to
check for errors, this return value can usually be used to check the status
(success or failure) of an API call.
All functions with no natural return value (i.e., the return type is void) have
been modified to return a value. These functions have return type h status t
(which is an alias for an integral type). A zero result from such a function
indicates success while a nonzero result indicates failure. Other functions
use an otherwise impossible value to indicate errors. For example, consider
the h node get belief (92) function which returns the belief for a state of a
(chance) variable. This is a nonnegative number (and less than or equal
to one since it is a probability). This function returns a negative number
if an error occurred. Such a convention is not possible for the h node get
expected utility(95) function since any real number is a valid utility; in this
case, the h error code function must be used.
Also, most functions that return a pointer value use NULL to indicate errors.
The only exception is the group of functions that handle arbitrary “user
data” (see Section 2.9.1) since NULL can be a valid datum.

11

It is important that the application always checks for errors. Even the most
innocent-looking function might generate an error.
Note that, if an API function returns a value indicating that an error oc-
curred, the inference engine may be in a state where normal progress of
the application is impossible. This is the case if, say, a domain could not be
loaded. For the sanity of the application it is therefore good programming
practice to always examine return values and check for errors, just like when
using ordinary Standard C library calls.

1.6.1 Handling errors

The simplest way to deal with errors in an application is to print an error
message and abort execution of the program. To generate an appropriate
error message, the following functions can be used.
Each error has a short unique name, which can be used for short error mes-
sages.

x h string t h error name (h error t code)

Return the name of the error with code code. If code is not a valid error code,
"no_such_error" is returned.

x h string t h error description (h error t code)

Return a long description of the error with code code. This description is
suitable for display in, e.g., a message window. The string contains no ‘new-
line’ characters, so you have to format it yourself.

Example 1.1 The following code fragment attempts to load a domain from the
HUGIN Knowledge Base file named file name. The file is assumed to be protected
by password.

h_domain_t d;
...
if ((d = h_kb_load_domain (file_name, password)) == NULL)
{

fprintf (stderr, "h_kb_load_domain failed: %s\n",
h_error_description (h_error_code ()));

exit (EXIT_FAILURE);
}

If the domain could not be loaded, an error message is printed and the program ter-
minates. Lots of things could cause the load operation to fail: the file is non-existing
or unreadable, the HUGIN KB file was generated by an incompatible version of the
API, the HUGIN KB file was corrupted, insufficient memory, etc.

More sophisticated error handling is also possible by reacting to a specific
error code.

12

Example 1.2 The propagation functions (see Section 9.2) may detect errors that
will often not be considered fatal. Thus, more sophisticated error handling than
simple program termination is required.

h_domain_t d;
...
if (h_domain_propagate

(d, h_equilibrium_sum, h_mode_normal) != 0)
switch (h_error_code ())
{
case h_error_inconsistency_or_underflow:

/* impossible evidence has been detected,
retract some evidence and try again */

...
break;

...
default:

...
}

1.6.2 General errors

Here is a list of some error codes that most functions might generate.

h error usage This error code is returned when a “trivial” violation of the
interface for an API function has been detected. Examples of this error:
NULL pointers are usually not allowed as arguments (if they are, it will
be stated so explicitly); asking for the belief in a non-existing state of
a node; etc.

h error no memory The API function failed because there was insufficient
(virtual) memory available to perform the operation.

h error io Functions that involve I/O (i.e., reading from and writing to files
on disk). The errors could be: problems with permissions, files do not
exist, disk is full, etc.

1.7 Taking advantage of multiple processors

In order to achieve faster inference through parallel execution on multi-
processor systems, many of the most time-consuming table operations have
been made threaded. Note, however, that in the current implementation
table operations for compressed domains (see Section 6.6) are not threaded.

The creation of threads (or tasks) is controlled by two parameters: the de-
sired level of concurrency and the grain size. The first of these parameters

13

specifies the maximum number of threads to create when performing a spe-
cific table operation, and the second parameter specifies a lower limit on
the size of the tasks to be performed by the threads. The size of a task is
approximately equal to the number of floaing-point operations needed to
perform the task (e.g., the number of elements to sum when performing a
marginalization task).

x h status t h domain set concurrency level
(h domain t domain, size t level)

This function sets the level of concurrency associated with domain to level
(this must be a positive number). Setting the concurrency level parame-
ter to 1 will cause all table operations (involving tables originating from
domain) to be performed sequentially. The initial value of this parameter
is 1.
Note that the concurrency level and the grain size parameters are specific to
each domain.1 Hence, the parameters must be explicitly set for all domains
for which parallel execution is desired.

x h count t h domain get concurrency level (h domain t domain)

This function returns the current concurrency level associated with domain.

x h status t h domain set grain size (h domain t domain, size t size)

This function sets the grain size parameter associated with domain to size
(this value must be positive). The initial value of this parameter is 10 000.

x h count t h domain get grain size (h domain t domain)

This function returns the current value of the grain size parameter associ-
ated with domain.
A table operation involving discrete nodes can naturally be divided into a
number (n) of suboperations corresponding to the state values of one or
more of the discrete nodes. These suboperations are distributed among a
number (m) of threads such that each thread performs either bn/mc or
dn/me suboperations. The number m of threads is chosen to be the highest
number satisfying m ≤ l and m ≤ n

/
dg/se, where l is the concurrency

level, s is the suboperation size, and g is the grain size. If no number m ≥ 2

satisfies these conditions, the table operation is performed sequentially.

1.7.1 Multiprocessing in the Solaris Operating Environment

In order to take advantage of multi-processor systems running the Solaris
Operating Environment, you must link your application with a threads li-
brary:

1Chapter 2 explains the domain concept as used in the HUGIN API.

14

cc myapp.o otherfile.o
-L$HUGINHOME/lib -lhugin -lm -lz -lpthread

(This should be typed on one line.)

If you omit the -lpthread linker option, you get a single-threaded exe-
cutable.

Note that the Solaris Operating Environment provides two threads libraries:
libpthread for POSIX threads and libthread for Solaris threads. The
(Solaris version of the) HUGIN API can be used with both of these libraries.2

Due to the nature of the Solaris scheduling system and the fact that the
threads created by the HUGIN API are compute-bound, it is necessary (that
is, in order to take advantage of multiple processors) to declare how many
threads should be running at the same time.
This is done using the POSIX threads function pthread setconcurrency (or the
Solaris threads function thr setconcurrency).

Example 1.3 Assuming we have a system (running the Solaris Operating Environ-
ment) with four processors (and we want to use them all for running our applica-
tion), we tell the HUGIN API to create up to four threads at a time, and we tell the
Solaris scheduler to run four threads simultaneously.

include <hugin.h>
include <pthread.h>
...
h_domain_t d;
...
h_domain_set_concurrency_level (d, 4);
pthread_setconcurrency (4);
...
/* do compilations, propagations, and other stuff

that involves inference */

We could use thr setconcurrency instead of pthread setconcurrency (in that case we
would include <thread.h> instead of <pthread.h>).

1.7.2 Multiprocessing on Windows platforms

The HUGIN API can only be used in “multithreaded mode” on Windows
platforms, so nothing special needs to be done for multiprocessing. (See
Section 1.3 for instructions on how to use the HUGIN API in a Windows
application.)

2Experiments performed on a Sun Enterprise 250 running Solaris 7 (5/99) indicates that
the best performance is achieved using the POSIX threads library.

15

1.8 Using the HUGIN API in a multithreaded applica-
tion

The HUGIN API can be used safely in a multithreaded application. The ma-
jor obstacle to thread-safety is shared data — for example, global variables.
The only global variable in the HUGIN API is the error code variable. When
the HUGIN API is used in a multithreaded application, an error code vari-
able is maintained for each thread. This variable is allocated the first time
it is accessed. It is recommended that the first HUGIN API function (if any)
being called in a specific thread be the h error code(11) function. If this func-
tion returns zero, it is safe to proceed (i.e., the error code variable has been
successfully allocated). If h error code returns nonzero, the thread must not
call any other HUGIN API function, since the HUGIN API functions critically
depend on being able to read and write the error code variable. (Failure to
allocate the error code variable is very unlikely, though.)

Example 1.4 This code shows the creation of a thread, where the function exe-
cuted by the thread calls h error code(11) as the first HUGIN API function. If this
call returns zero, it is safe to proceed.
This example uses POSIX threads.

include <hugin.h>
include <pthread.h>
pthread_t thread;
void *data; /* pointer to data used by the thread */

void *thread_function (void *data)
{

if (h_error_code () != 0)
return NULL; /* it is not safe to proceed */

/* now the Hugin API is ready for use */
...

}
...
pthread_create (&thread, NULL, thread_function, data);

Note that the check for h error code(11) returning zero should also be performed
for the main (only) thread in a multithreaded (singlethreaded) application, when
using a thread-safe version of the HUGIN API (all APIs provided by Hugin Expert
A/S is thread-safe as of version 6.1).

In order to create a multithreaded application, it is necessary to link with a
thread library. See the previous section for instructions on how to do this.
(You most likely also need to define additional compiler flags in order to get
thread-safe versions of functions provided by the operating system — see the
system documentation for further details.)

16

The most common usage of the HUGIN API in a multithreaded applica-
tion will most likely be to have one or more dedicated threads to process
their own domains (e.g., insert and propagate evidence, and retrieve new
beliefs). In this scenario, there is no need (and is also unnecessarily in-
efficient) to protect each node or domain by a mutex (mutual exclusion)
variable, since only one thread has access to the domain. However, if there
is a need for two threads to access a common domain, a mutex must be
explicitly used.

Example 1.5 The following code fragment shows how a mutex variable is used
to protect a domain from being accessed by more than one thread simultaneously.
(This example uses POSIX threads.)

include <hugin.h>
include <pthread.h>
h_domain_t d;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
...
/* In Thread A: */
if (pthread_mutex_lock (&mutex) != 0)

/* handle error */ ...;
else
{

/* now domain ‘d’ can be used;
for example, evidence can be entered and
propagated, and beliefs can be retrieved;
or, the network can be modified; etc. */

...
pthread_mutex_unlock (&mutex);

}
...
/* In Thread B: */
if (pthread_mutex_lock (&mutex) != 0)

/* handle error */ ...;
else
{

/* use domain ‘d’ */
...
pthread_mutex_unlock (&mutex);

}

Since domain d is being used by more than one thread, it is important that while
one thread is modifying the data structures belonging to d, other threads do not
attempt to read or write the same data structures. This is achieved by requiring all
threads to lock the mutex variable while they access the data structures of d. The
thread library ensures that only one thread at a time can lock the mutex variable.

Many HUGIN API functions that operate on nodes also modify the state
of the domain or class to which the nodes belong. For example, entering

17

evidence to a node clearly modifies the state of the node, but it also modifies
book-keeping information relating to evidence within the domain to which
the node belongs.

On the other hand, many HUGIN API functions only read attributes of a
class, domain, or node. Such functions can be used simultaneously from dif-
ferent threads on the same or related objects, as long as it has been ensured
that no thread is trying to modify the objects concurrently with the read op-
erations. Examples of functions that only read attributes are: h node get cat-
egory(21), h domain get attribute(32), h node get belief (92), etc.

In general, all functions with get or is as part of their names do not
modify data, unless their descriptions explicitly state that they do. Examples
of the latter category are:

• h node get name(28) and h class get name(39) will assign names to the
node or class, if no name has previously been assigned. (If the node
or class is known to be named, then these functions will not modify
data.)

• h node get table(26), h node get experience table(112), and h node get
fading table(113) will create a table if one doesn’t already exist.

• h domain get marginal(93) and h node get distribution(94) must, in the
general case, perform a propagation (which needs to modify the junc-
tion tree).

• All HUGIN API functions returning a list of nodes may have to allocate
and store the list.

18

Chapter 2

Nodes and Domains

The functions described in this chapter allow an application to construct and
modify “flat” belief network and influence diagram models, known as do-
mains. Chapter 3 provides functions for constructing object-oriented models
for belief networks and influence diagrams. An object-oriented model must
be converted to a domain before it can be used for inference.
A large part of the functions (those that operate on nodes) described in this
chapter also apply to nodes in object-oriented models. If special consider-
ations apply to any such function being used for nodes in object-oriented
models, it is stated in the description of the function.

2.1 Types

Nodes and domains are the fundamental objects used in the construction of
belief network and influence diagram models in HUGIN. The HUGIN API
introduces the opaque pointer types h node t and h domain t to represent
these objects.

2.1.1 Node category

In ordinary belief networks, all nodes represent random variables. However,
in influence diagrams, we also need to represent decisions and utilities. In
order to distinguish between the different sorts of nodes, the HUGIN API
associates with each node a category, represented as a value of the enu-
meration type h node category t. The constants of the h node category t
type are named: h category chance (for nodes representing random vari-
ables), h category decision, h category utility, and h category instance (for
representing class instances in object-oriented models — see Section 3.8);
additionally, the special constant h category error is defined for handling er-
rors.

19

2.1.2 Node kind

Another grouping of nodes exists, called the kind1 of a node. This refers to
a characterization of the state space of a node. The HUGIN API introduces
the enumeration type h node kind t to represent it. There are currently
two kinds of nodes: discrete and continuous, denoted by the enumeration
constants h kind discrete and h kind continuous. (In addition, the special
constant h kind error is used for handling errors.) Discrete nodes have a
finite number of states. Continuous nodes are real-valued and have a spe-
cial kind of distribution, known as a Conditional Gaussian (CG) distribution,
meaning that the distribution is Gaussian (also known as ‘normal’) given
the values of their parents. For this reason, continuous nodes will also be
referred to as CG nodes.
Currently, the HUGIN API does not support influence diagrams with con-
tinuous nodes. Thus, all nodes of an influence diagram must be of kind
h kind discrete.
(See the Appendix for further information on CG variables.)

2.2 Domains: Creation and deletion

Before nodes can be created, a domain structure must be allocated.

x h domain t h new domain (void)

Create a new empty domain. If creation fails, NULL is returned.
When a domain is no longer needed, the internal memory used by the do-
main can be reclaimed and made available for other purposes.

x h status t h domain delete (h domain t domain)

This releases all (internal) memory resources used by domain.
Note that any existing references to objects owned by domain are invalidated
by h domain delete.

2.3 Nodes: Creation and deletion

x h node t h domain new node
(h domain t domain, h node category t category,

h node kind t kind)

Create a new node of the indicated category and kind within domain. The
node will have default values assigned to its attributes, i.e, it will be name-

1The terms category and kind have been deliberately chosen so as not to conflict with the
traditional vocabulary used in programming languages. Thus, the terms ‘class’ and ‘type’
were ruled out.

20

less, it will have just one state (if the kind is ‘discrete’ and the category is
‘chance’ or ‘decision’), and it will have no table. The attributes of the new
node should be explicitly set using the relevant API functions.

If domain is compiled, the corresponding compiled structure will be re-
moved since it no longer reflects the domain (see Section 6.5).

On error, the function returns NULL.

x h domain t h node get domain (h node t node)

Retrieve the domain to which node belongs. If node is NULL (or node belongs
to a class — see Chapter 3), NULL is returned.

x h node category t h node get category (h node t node)

Return the category of node. If an error occurs, h category error is returned.

x h node kind t h node get kind (h node t node)

Return the kind of node. If an error occurs, h kind error is returned.

The following function is intended for editing a network. If a complete
domain is to be disposed of, use h domain delete(20) instead.

x h status t h node delete (h node t node)

Remove node (and all links involving node) from the domain to which node
belongs. If node has any children, the tables of those children will be ad-
justed (see h node remove parent(23) for a description of the adjustment pro-
cedure). Also, the domain to which node belongs will be “uncompiled” (see
Section 6.5).

If node belongs to a class (see Chapter 3) instead of a domain, then special
actions are taken, if node is an interface node, an instance node, or an output
clone. See Section 3.7 and Section 3.8 for further details.

2.4 The links of the network

The links of an ordinary belief network or influence diagram are directed
edges between the nodes of the network. [Undirected edges are also possi-
ble, but the API interface to support them has not yet been defined. How-
ever, see Chapter 12 for a description of the NET language interface.]

If there exists a directed edge from a node u to a node v, we say that u is
a parent of v and that v is a child of u. The HUGIN API provides functions
for adding and removing parents to/from a node, replacing a parent with
another compatible parent, reversing a directed edge between two nodes,
as well as functions for retrieving the current set of parents and children of
a node.

21

The semantics of links depend on the categories of the nodes involved.
For chance nodes, the incoming links represent probabilistic dependence:
The distribution of a chance node is conditionally independent of all non-
descendants of the node given the states of its parents. For decision nodes,
the incoming links represent availability of information: The states of the
parents of a decision node will be known when the decision is to be made.
Note that more information may be available: The decisions in an influence
diagram must be ordered with respect to time, and any previous decisions
and observations will also be available at the time of the decision. For util-
ity nodes, the parents represent the set of nodes that the utility depends on.
Utility nodes cannot have children in the network.

The network cannot be an arbitrary directed graph. It must be acyclic. More-
over, for influence diagrams, the network must contain a (directed) path
containing all decisions. This defines the temporal ordering of the decisions
(i.e., the order in which the decisions are to be made).

It is not possible to link nodes from different domains.

The quantitative part of the relationship between a (chance or utility) node
and its parents is represented as a table (see Chapter 4) or, indirectly, through
a model (see Chapter 5). When links are added, removed, or reversed, the
tables and models involved are automatically updated.

x h status t h node add parent (h node t child, h node t parent)

Add node parent (which must be a chance or a decision node) as a new
parent of node child (i.e., add a directed link from parent to child). If parent
is continuous, then child must also be continuous (in other words, discrete
nodes cannot have continuous parents).

If adding the link would create a directed cycle in the network, the operation
is not performed. The operation is also not performed, if child belongs to a
class (see Chapter 3) and is an input node of that class — see h node add to
inputs(40).

The tables2 of child will be updated as follows: For each configuration of
states of the parents of child, the value(s) of the new table will be indepen-
dent of the state of parent and will be equal to the value(s) of the corre-
sponding configuration of the old table. The model (if any) of child is not
affected by this function.

Finally, the domain to which child and parent belong will be “uncompiled”
(see Section 6.5).

2In addition to a conditional probability table, other tables can be associated with a link
between two chance nodes: Experience and fading tables (Section 10.1) can be created for
purposes of parameter learning. All tables are updated in the same manner.

22

x h status t h node remove parent (h node t node, h node t parent)

Remove the directed link from parent to node. The tables (if any) of node is
updated as follows: If parent is discrete, the contents of the updated table
will be the portion of the old table corresponding to parent being in its first
state (see Section 2.5); if parent is continuous, the β(i)-parameters (see
h node set beta(28)) for the parent→child link will be deleted from the table.
The model (if any) of node is updated as follows: If parent is a “model node”
(see Section 5.4), then the model is deleted; otherwise, all expressions in
the model that uses parent are deleted.
Finally, the domain to which node belongs will be “uncompiled” (see Sec-
tion 6.5).

x h status t h node switch parent
(h node t node, h node t old parent, h node t new parent)

Substitute new parent for old parent as a parent of node, while preserving
the validity of the tables and model of node (all references to old parent are
replaced by references to new parent). The old parent and new parent nodes
must be “compatible” — see below for the definition of compatibility.
If switching parents would create a directed cycle in the network, the oper-
ation is not performed.
As usual, when the structure of the network is modified, the domain is “un-
compiled” (see Section 6.5).
In order for two nodes to be compatible, the following conditions must hold:
The nodes must have

• the same category (must be chance or decision) and kind;

• the same subtype (see Section 5.1) and the same number of states (if
the nodes are discrete);

• the same list of state labels (if the nodes are labeled);

• the same list of state values (if the nodes are numbered or of interval
subtype).

The motivation behind this definition is that compatible nodes should be
interchangeable with respect to the table generator (see Chapter 5). That
is, replacing one node in a model with another compatible node should not
affect the table produced by the table generator. That is also the reason
for only requiring the lists of state labels to be identical for labeled nodes,
although all discrete nodes can have state labels.

x h status t h node reverse edge (h node t node1, h node t node2)

Reverse the directed edge between node1 and node2. This is done in such a
way that the joint probability distribution defined by the modified domain

23

is equivalent to the original domain. In order to accomplish this, node1
inherits the parents of node2 (except node1, of course), and vice-versa for
node2.
The operation is not performed, if reversal of the edge would create a di-
rected cycle in the network.
The experience and fading tables (see Section 10.1) as well as models (if
any) of node1 and node2 are deleted.
Finally, the domain to which node1 and node2 belong will be “uncompiled”
(see Section 6.5).

x h node t ∗h node get parents (h node t node)

Return a NULL-terminated list comprising the parents of node.
If node has no parents, an empty list is returned (i.e., an array with only one
element, a NULL pointer). If an error occurs, a NULL pointer is returned.
The nodes in the list of parents are not stored in any particular order. The
list of nodes is a list stored within the node structure; thus, the application
should not attempt to free it.

Example 2.1 The following code prints out all the parents of a node:

h_node_t *parents;
h_node_t *p;
h_node_t n;
...
if ((parents = h_node_get_parents (n)) == 0)

/* handle error */;
else
{

printf ("The parents of %s are:\n",
h_node_get_name (n));

for (p = parents; *p != 0; p++)
printf ("%s\n", h_node_get_name (*p));

}

If you use the list returned by h node get parents (or the similar function
h node get children — see below) to control the iteration of a loop (e.g., a
for-loop as in the example above), then don’t use API functions that modify
the list in the body of the loop. For example, calling h node add parent(22)

will modify the list of parents for the child and the list of children for the
parent. (Both the contents and the location in memory will be modified.)
The other functions to watch out for are h node remove parent(23) and h
node delete(21).
You can avoid such problems if you make a private copy of the list prior to
entering the loop.

24

x h node t ∗h node get children (h node t node)

Return a NULL-terminated list comprising the children of node. If an error
occurs, NULL is returned.

The list of nodes is a list stored within the node structure; thus, the applica-
tion should not try to free it.

2.5 The number of states of a node

As mentioned above, discrete nodes in the HUGIN API has a finite number
of states. The enumeration of the states follows traditional C conventions:
If a node has n states, then the first state has index 0, the second state has
index 1, . . . , and the last state has index n − 1.

The following function is used to specify the number of states of a discrete
node.

x h status t h node set number of states (h node t node, size t n)

Set the number of states of node (a discrete chance or decision node) to n
(which must be a positive integer). Moreover, if n is different from the
current number of states of node, the domain to which node belongs will
be “uncompiled” (see Section 6.5), and any evidence entered to node (see
Section 8.2) will be removed.

Changing the number of states for a node also has implications for all tables
in which the node appears. The affected tables are the table associated with
the node itself and the tables associated with each of the children of the
node (see Section 2.6 for a description of such tables).

Let 〈N1, . . . , Nk, . . . , Nl〉 be the list of nodes of some table where the num-
ber of states of node Nk is changed from nk to mk, and let 〈i1, . . . , ik−1,

ik, ik+1, . . . , il〉 be a configuration of that table (see Section 4.1 for an ex-
planation of node lists and configurations). If mk < nk, the data in the
updated table associated with configurations for which ik < mk will be the
same as the data associated with the same configurations in the old table.
If mk > nk, the data in the updated table associated with the configuration
〈i1, . . . , ik−1, ik, ik+1, . . . , il〉 (ik ≥ nk) will be the same as the data associ-
ated with the configuration 〈i1, . . . , ik−1, 0, ik+1, . . . , il〉 in the old table.

x h count t h node get number of states (h node t node)

Return the number of states of node (which must be a discrete chance or
decision node). If an error occurs, a negative number is returned.

25

2.6 The conditional probability and the utility table

Associated with each chance node in a belief network/influence diagram is
a conditional probability table, and associated with each utility node is a
utility table. (Decision nodes do not have tables associated with them.)

For discrete nodes, the tables are manipulated directly. For continuous
nodes, the parameters of the CG distributions are entered using special func-
tions.

x h table t h node get table (h node t node)

Retrieve the table associated with node (which must be a chance or a utility
node). [If node doesn’t have a table, a table will be created.] If node is a
chance node, the table is the conditional probability table for node given its
parents; if node is a utility node, the table contains a utility value for each
configuration of states of the parents of node. The set of nodes associated
with the table will be the discrete parents of node (in unspecified order), fol-
lowed by node if node is a chance node, followed by the continuous parents
of node (in unspecified order). On error, the function returns NULL.

Note that the table returned is not a copy, but the real thing. This implies
that you can edit the table of node by using functions that provide access to
the internal data structures of tables (see Chapter 4).

As previously mentioned, this table is modified whenever the set of parents
of node is changed and whenever the number of states of any discrete parent
(or node itself, if node is a discrete chance node) is changed. After such a
change, any handles to the internal data structures of the table that the
application may be holding must be “refreshed” (i.e., retrieved again from
the table).

If node is a discrete chance node, please note that if you change its table,
that, for each configuration of states of the parents, the probabilities of the
states of node should be nonnegative and sum to 1. If not, the probabilities
will be adjusted by the inference engine and a warning will be reported
on the log (provided a log is requested). There are no such restrictions on
utility tables.

It is also possible to specify the contents of a node table indirectly through
the table generation facility (see Chapter 5). If this facility is used for some
node table, then the contents of that table is generated from a mathemat-
ical description of the relationship between the node and its parents. It is
possible to modify the contents generated from such a description, but note
that the inference engine will regenerate the table when certain parameters
are changed (see Section 5.8 for precise details).

If the contents of a table is changed, the updated table will be used by the
inference engine, provided it has been notified of the change. HUGIN API

26

functions that change node tables will automatically provide this notifica-
tion. However, for changes made by storing directly into a table (i.e., using
the array pointer returned by h table get data(51) for storing values), an ex-
plicit notification must be provided. The following function does this.

x h status t h node touch table (h node t node)

Notify the inference engine that the table of node has been modified by
storing directly into its data array. This notification must be provided before
subsequent calls to other HUGIN API functions.

Omission of such a notification may cause the inference engine to malfunction!

Example 2.2 This piece of code shows how to specify the probability table for the
variable A in the “Chest Clinic” belief network [17]. This variable is binary and has
no parents: P(A= yes) = 0.01 and P(A= no) = 0.99.

h_node_t A;
h_table_t table = h_node_get_table (A);
h_number_t *data = h_table_get_data (table);

data[0] = 0.01;
data[1] = 0.99;

h_node_touch_table (A);

The conditional distribution for a continuous random variable Y with dis-
crete parents I and continuous parents Z is a (one-dimensional) Gaussian
distribution conditional on the values of the parents:

p(Y |I = i, Z = z) = N(α(i) + β(i)Tz, γ(i))

[This is known as a CG distribution.] Note that the mean depends linearly
on the continuous parent variables and that the variance does not depend
on the continuous parent variables. However, both the linear function and
the variance are allowed to depend on the discrete parent variables. (These
restrictions ensure that exact inference is possible.)

The following six functions are used to set and get the individual elements of
the conditional distribution for a continuous node. In the prototypes of these
functions,3 node is a continuous chance node, parent is a continuous parent
of node, i refers to a discrete parent state configuration (see Section 4.1
for an explanation of configuration indexes), and alpha, beta, and gamma
refer to the α(i), β(i), and γ(i) components of a CG distribution as specified
above.

3The names of the functions have been chosen because of lack of (imagination for) better
alternatives.

27

x h status t h node set alpha
(h node t node, h double t alpha, size t i)

x h status t h node set beta
(h node t node, h double t beta, h node t parent, size t i)

x h status t h node set gamma
(h node t node, h double t gamma, size t i)

Here, gamma must be nonnegative.

x h double t h node get alpha (h node t node, size t i)

x h double t h node get beta (h node t node, h node t parent, size t i)

x h double t h node get gamma (h node t node, size t i)

For the last three functions: If an error is detected, a negative value is re-
turned, but this is not of any use for error detection (except for h node get
gamma), since any real value is valid for both the α(i) and β(i) parameters.
Thus, errors must be checked for using the h error code(11) function.

2.7 The name of a node

If a textual representation of a domain in the NET specification language
(Chapter 12) is to be produced, or a compilation log is wanted, the nodes of
the domain must be given names. Otherwise, names are not needed.

x h status t h node set name (h node t node, h string t name)

Create a copy of name and assign it to node. The name must be a valid name
(i.e., it must follow the rules that govern the validity of C identifiers — see
Section 12.7), and no other node in the domain to which node belongs must
have the same name.

x h string t h node get name (h node t node)

Retrieve the name of node. If node has not previously been assigned a name,
a valid name will automatically be assigned. This function returns NULL on
error (e.g., node is NULL or an out-of-memory error occurred).
Note that the name returned by h node get name is not a copy. Thus, the
application should not attempt to free it after use.

x h node t h domain get node by name
(h domain t domain, h string t name)

Return the node with name name in domain, or NULL if no node with that
name exists in domain, or if an error occurs (i.e., domain or name is NULL).

28

2.8 Iterating through the nodes of a domain

An application may need to perform some action for all nodes of a domain.
To handle such situations, HUGIN provides a set of functions for iterating
through the nodes of a domain, using an ordering determined by the age of
the nodes: the first node in the ordering is the youngest node (i.e., the most
recently created node that hasn’t been deleted), . . . , and the last node is the
oldest node.

If the application needs the nodes in some other order, it must obtain all the
nodes, using the functions described below, and sort the nodes according to
the desired order.

x h node t h domain get first node (h domain t domain)

Return a pointer to the first node of domain, using the ordering described
above, or NULL if domain contains no nodes, or domain is NULL (this is con-
sidered an error).

x h node t h node get next (h node t node)

Return the node that follows node in the ordering, or a NULL pointer if node
is the last node in the ordering, or if node is NULL (which is considered an
error).

Example 2.3 A simple example is counting the number of nodes in a domain:

int count_nodes (h_domain_t d)
{

h_node_t n;
int count = 0;

for (n = h_domain_get_first_node (d); n != 0;
n = h_node_get_next (n))

count++;
return count;

}

This function will count the number of nodes in domain d. Note that error checking
should be added.

2.9 User data

Applications sometimes need to associate data with the nodes of a domain
(or the domain itself). Examples of such data: the window used to display
the beliefs of a node, the last time the display was updated, the external
source used to obtain findings for a node, etc.

29

The HUGIN API provides two ways to associate user data with domains and
nodes:

• as arbitrary data, managed by the user, or

• as attributes (key/value pairs — where the key is an identifier, and the
value is a character string), managed by the HUGIN API.

2.9.1 Arbitrary user data

The HUGIN API provides a slot within the node structure for exclusive use
by the application. This slot can be used to hold a pointer to arbitrary data,
completely controlled by the user.

x h status t h node set user data (h node t node, void ∗p)

Store the pointer p within the node structure of node.

x void ∗h node get user data (h node t node)

Return the value stored within the user data slot of node. If no value has
been stored, the stored value is NULL, or node is NULL (this is an error), NULL

is returned.

Please note that HUGIN does not do anything with the user data stored
within the nodes. It simply passes the pointers around. It is the responsi-
bility of the application programmer to ensure that the data is valid, that
pointers are accessed correctly, etc. Also note that when you delete a do-
main, the data pointed to by the user data pointers is not deleted as HUGIN
cannot know whether the storage was obtained dynamically. If it was in-
deed allocated using malloc, you should free all such data before calling
h domain delete(20).

Example 2.4 In an application displaying the beliefs of nodes in windows, each
node will have a window associated with it. The simplest way to keep track of
these belief windows is to store them in the user data fields of the nodes.

Creating and storing a belief window can be done in the following way:

belief_window w;
h_node_t n;
...
w = create_belief_window (n);
h_node_set_user_data (n, (void*) w);

where create belief window is a function defined by the application. Note the cast
to type void ∗ in the call to h node set user data (for this to work properly, belief
window should be a pointer type).

30

Now, the belief window can be used in the following way:

belief_window w;
h_node_t n;
...
w = (belief_window) h_node_get_user_data (n);
update_belief_window (w, n);

where update belief window is a function defined by the application. Again, note
the cast of the pointer type.

Using the user data facility is analogous to adding an extra slot to the node
data structure. It must be noted that only one such slot can be added. If
more are needed, store a list of slots or create a compound data type (e.g.,
a C structure). Note also that the extra slot is not saved in HUGIN KB or
in NET files. If this is needed, the application programmer must create the
necessary files. Alternatively, the attribute facility, described in the next
subsection, can be used.

It is also possible to associate user data with a domain as a whole. This is
done using the functions below.

x h status t h domain set user data (h domain t domain, void ∗p)

Store the pointer p in the user data slot of domain.

x void ∗h domain get user data (h domain t domain)

Return the value stored in the user data slot of domain. If no value has been
stored, the stored value is NULL, or domain is NULL (this is an error), NULL is
returned.

2.9.2 User-defined attributes

In the previous subsection, we described a way to associate arbitrary data
with a node or a domain object. That data can be anything (e.g., it can be
a list, a tree, etc.); however, if more than one data object is desired, then
the user must build and maintain a data structure for the objects herself;
also, the data are not saved in the HUGIN KB (Section 2.10) or the NET file
(Chapter 12).

Sometimes we need the ability to associate several user-specified data ob-
jects with domains and nodes and to have these data objects saved in the
HUGIN KB and the NET files. The HUGIN API provides this feature but at the
cost of requiring the data to be C-strings (i.e., sequences of non-null char-
acters terminated by a null character). Each data object (string) is stored

31

under a name — a key, which must be a C-identifier (i.e., a sequence of let-
ters and digits, starting with a letter, and with an underscore counting as a
letter).

x h status t h node set attribute
(h node t node, h string t key, h string t value)

Insert (or update, if key is already defined) the key/value-pair in the attribute
list for node. If value is NULL, the attribute is removed.

x h string t h node get attribute (h node t node, h string t key)

Lookup the value associated with key in the attribute list for node. If key is
not present, or if an error occurs, NULL is returned.

The string returned by h node get attribute is stored in the attribute list for
node; thus, the application should not try to free the string.

The following two functions perform similar operations on domains.

x h status t h domain set attribute
(h domain t domain, h string t key, h string t value)

x h string t h domain get attribute
(h domain t domain, h string t key)

If you want to create your own attributes, pick some attribute names that
are not likely to clash with somebody elses choices (or with names that the
HUGIN API or the HUGIN GUI application might use in the future). For
example, use a common prefix for your attribute names.

In order to access the values of attributes, one must know the names of
the attributes in advance. The following set of functions provides a mecha-
nism for iterating over the list of attributes associated with a given node or
domain.

The notion of an attribute as a key/value pair is represented by the opaque
pointer type h attribute t.

x h attribute t h node get first attribute (h node t node)

Retrieve the first attribute object for node. If the attribute list is empty (or
node is NULL), NULL is returned.

x h attribute t h domain get first attribute (h domain t domain)

Retrieve the first attribute object for domain. If the attribute list is empty (or
domain is NULL), NULL is returned.

The attributes returned by these functions are actual objects within the at-
tribute lists of node or domain. Do not attempt to free them.

32

x h attribute t h attribute get next (h attribute t attribute)

Retrieve the attribute object that follows attribute in the attribute list con-
taining attribute. If attribute is the last object in the list, or attribute is NULL

(this will trigger a usage error), NULL is returned.

Given an attribute object, the following functions can be used to retrieve the
key and value parts of the attribute.

x h string t h attribute get key (h attribute t attribute)

x h string t h attribute get value (h attribute t attribute)

Retrieve the key or value associated with attribute. (These are the actual
strings stored within the attribute — do not free them after use.)

Note that using either h node set attribute or h domain set attribute will mod-
ify (or even delete, if the value argument is NULL) objects in the attribute lists
for the affected node or domain.

2.10 HUGIN Knowledge Base files

When a domain has been created, it can be saved to a file in a portable
binary format. Such a file is known as a HUGIN Knowledge Base (HUGIN
KB, or simply HKB, for short) file; by convention, we give such files the
extension .hkb. (A domain can also be saved in a textual format, called the
NET format — see Chapter 12.)

An HKB file contains essentially a dump of the internal data structures of a
domain, and the size of the HKB file roughly corresponds to the amount of
internal memory used by the domain, with the exception that if the domain
is compiled (see Chapter 6), then the contents of the HKB file include only
information about the structure of the junction trees, not the numerical data
stored in the tables of the junction trees; the contents of those tables are
recomputed when the HKB file is loaded.4 Also, the case data used by the
structure learning and EM algorithms (see Chapter 11) are not stored in the
HKB file.

Moreover, if the domain is compressed (see Section 6.6), this fact will be
reflected in the HKB file as well. This is important if compressed domains

4This is a change in HUGIN API version 5. Previous versions of the HUGIN API also
saved the contents of the junction tree tables as part of the HKB file. Some of the HUGIN API
functions (e.g., h domain propagate(101)) used this to [re]initialize the inference engine when
evidence had changed or was retracted. However, tests have shown that loading junction
tree tables from the HKB file is only faster than recomputing them when the HKB file is small
enough to be cached in memory via the I/O system. In that case, it is slightly faster to save
directly to memory via h domain save to memory(106). If enough memory is available, it is
recommended that this function is used to speed up initialization of the inference engine.

33

are to be created on machines with large amounts of (virtual) memory and
used on machines with small amounts of (virtual) memory.

There is no published specification of the HKB format, and since the format
is binary (and non-obvious), the only way to load an HKB file is to use the
appropriate HUGIN API function. This property makes it possible to protect
HKB files from unauthorized access: A password can be embedded in the
HKB file, when the file is created; this password must then be supplied,
when the HKB file is loaded. (The password is embedded in the HKB file in
“encrypted” form, so that the true password cannot easily be discovered by
inspection of the HKB file contents.)

In general, the format of an HKB file is specific to the version of the HUGIN
API that was used to create it. Thus, when upgrading the HUGIN API (which
is also used in the HUGIN GUI application, so upgrading that application
usually implies a HUGIN API upgrade), it may be necessary to save a do-
main in the NET format (see Section 12.9) using the old software before
upgrading to the new version of the software (because the new software
may not be able to load the old HKB files).5

HUGIN KB files are (as of HUGIN API version 6.2) automatically compressed
using the Zlib library (www.zlib.org). This implies that the developer
(i.e., the user of the HUGIN API) must explicitly link to the Zlib library, if the
application makes use of HKB files — see Section 1.2. If a Zlib-compressed
HKB file must be loaded by HUGIN API software prior to version 6.2, the
HKB file can be manually uncompressed using the gunzip application (www.
gzip.org).

x h status t h domain save as kb
(h domain t domain, h string t file name, h string t password)

Save domain as a HUGIN KB to a file named file name. If password is not
NULL, then the HKB file will be protected by the given password (i.e., the
file can only be loaded if this password is supplied to the h kb load domain
function).

x h domain t h kb load domain
(h string t file name, h string t password)

Load a domain from the HUGIN KB file named file name. A reference to the
loaded domain is returned. In case of errors, NULL is returned.

5The HKB formats for HUGIN API versions 3.x and 4.x were identical, but the HKB format
changed for version 5.0 and again for versions 5.1, 5.2, and 5.3. Versions 5.4, 6.0, and 6.1
used the same format as version 5.3. Versions 6.2 and 6.3 also use this format for HKB files
that are not password protected. For password protected HKB files, a new revision of the
format is used. HUGIN API 6.3 can load HKB files produced by version 5.0 or any later
version. But note that future versions of the HUGIN API probably won’t.

34

www.zlib.org
www.gzip.org
www.gzip.org

If the HKB file is password protected, then the password argument must
match the password used to create the HKB file (if not, the load operation
will fail with an “invalid password” error). If the HKB file is not protected,
the password argument is ignored.

If the domain stored in the HKB file is a compiled domain, the contents of
the junction tree tables will be recomputed (recall that the contents of those
tables are not stored in the HKB file), so that the domain is loaded with the
inference engine in its initial state (sum-equilibrium with no evidence incor-
porated). But note that evidence stored in the HKB file will be loaded, just
not propagated. If initializing the inference engine fails (typically because
some table or model was made invalid before the domain was saved, caus-
ing the loaded domain to not be compilable), then the domain is instead
loaded in uncompiled form.

The name of the file from which a domain was loaded or to which it was
saved is stored within the domain object. The file name used in the most re-
cent load or save operation can be retrieved using h domain get file name(148).

35

36

Chapter 3

Object-Oriented
Belief Networks and
Influence Diagrams

This chapter provides the tools for constructing object-oriented belief net-
work and influence diagram models.

An object-oriented model is described by a class. Like a domain, a class
has an associated set of nodes, connected by links. However, a class may
also contain special nodes representing instances of other classes. A class
instance represents a network. This network receives input through input
nodes and provides output through output nodes. Input nodes of a class are
“placeholders” to be filled-in when the class is instantiated. Output nodes
can be used as parents of other nodes within the class containing the class
instance.

Object-oriented models cannot be used directly for inference: An object-
oriented model must be converted to an equivalent “flat” model (repre-
sented as a domain — see Chapter 2) before inference can take place.

3.1 Classes and class collections

Classes are represented as C objects of type h class t.

An object-oriented model is comprised of a set of classes, some of which are
instantiated within one or more of the remaining classes. The type h class
collection t is introduced to represent this set of classes. The HUGIN API
requires that there be no references to classes outside of a class collection
(i.e., the class referred to by a class instance must belong to the same class
collection as the class that contains the class instance).

37

A class collection is edited as a unit: Modifying parts of the interface of a
class will cause all of its instances to be modified in the same way.

3.2 Creating classes and class collections

A class always belongs to a (unique) class collection. So, before a class can
be created, a class collection must be created.

x h class collection t h new class collection (void)

Create a new empty class collection.

x h class t h cc new class (h class collection t cc)

Create a new class. The new class will belong to class collection cc.

x h class t ∗h cc get members (h class collection t cc)

Retrieve the list of classes belonging to class collection cc. The list is a NULL-
terminated list.

x h class collection t h class get class collection (h class t class)

Retrieve the class collection to which class class belongs.

3.3 Deleting classes and class collections

x h status t h cc delete (h class collection t cc)

Delete class collection cc. This also deletes all classes belonging to cc.

x h status t h class delete (h class t class)

Delete class class and remove it from the class collection to which it belongs.
If class is instantiated, then this operation will fail. (The h class get in-
stances(41) function can be used to test whether class is instantiated.)

3.4 Naming classes

In order to generate textual descriptions of classes and class collections in
the form of NET files, it is necessary to name classes.

x h status t h class set name (h class t class, h string t name)

Set (or change) the name of class to name. The name must be a valid name
(i.e., a valid C identifier) and must be distinct from the names of the other
classes in the class collection to which class belongs.

38

x h string t h class get name (h class t class)

Retrieve the name of class. If class is unnamed, a new unique name will
automatically be generated and assigned to class.

x h class t h cc get class by name
(h class collection t cc, h string t name)

Retrieve the class with name name in class collection cc. If no such class
exists in cc, NULL is returned.

3.5 Creating basic nodes

Creating basic (i.e., non-instance) nodes in classes is similar to the way
nodes are created in domains (see Section 2.3).

x h node t h class new node
(h class t class, h node category t category,

h node kind t kind)

Create a new basic node of the indicated category and kind within class.
The node will have default values assigned to its attributes: The desired
attributes of the new node should be explicitly set using the relevant API
functions.

x h class t h node get home class (h node t node)

Retrieve the class to which node belongs. If node is NULL, or node does not
belong to a class (i.e., it belongs to a domain), NULL is returned.

Deletion of basic nodes is done using h node delete(21).

3.6 Naming nodes

Nodes belonging to classes can be named, just like nodes belonging to do-
mains. The functions to handle names of class nodes are the same as those
used for domain nodes (see Section 2.7) plus the following function.

x h node t h class get node by name (h class t class, h string t name)

Retrieve the node with name name in class. If no node with that name exists
in class, or if an error occurs (i.e., class or name is NULL), NULL is returned.

39

3.7 The interface of a class

A class has a set of input nodes and a set of output nodes. These nodes
represent the interface of the class and are used to link instances of the class
to other class instances and network fragments.
For the following functions, when a node appears as an argument, it must
belong to a class. If not, a usage error is generated.

x h status t h node add to inputs (h node t node)

Add node to the set of input nodes associated with the class to which node
belongs. The following restrictions must be satisfied: node must be a chance
or a decision node, node must not be an output node, node must not be an
output clone (see Section 3.8), and node must have no parents.
The last condition is also enforced by h node add parent(22) — it will not add
parents to input nodes.

x h node t ∗h class get inputs (h class t class)

Retrieve the list of input nodes associated with class.

x h status t h node remove from inputs (h node t node)

Remove node from the set of input nodes associated with the class to which
node belongs. (It is checked that node is an input node.) Input bindings
(see Section 3.9) involving node in the instances of the class to which node
belongs are deleted.

x h status t h node add to outputs (h node t node)

Add node to the set of output nodes associated with the class to which node
belongs. The following restrictions must be satisfied: node must be a chance
or a decision node, and node must not be an input node. Output clones (see
Section 3.8) corresponding to node are created for all instances of the class
to which node belongs.

x h node t ∗h class get outputs (h class t class)

Retrieve the list of output nodes associated with class.

x h status t h node remove from outputs (h node t node)

Remove node from the set of output nodes associated with the class to which
node belongs. (It is checked that node is an output node.) All output clones
corresponding to node are deleted (if any of these output clones are output
nodes themselves, their clones are deleted too, recursively).
This function illustrates that modifying one class may affect many other
classes. This can happen when a class is modified such that its interface,

40

or some attribute of a node in the interface, is changed. In that case, all
instances of the class are affected. It is most efficient to specify the interface
of a class before creating instances of it.

Deletion of an interface node (using h node delete(21)) implies invocation of
either h node remove from inputs or h node remove from outputs, depend-
ing on whether the node to be deleted is an input or an output node, re-
spectively.

3.8 Creating instances of classes

A class can be instantiated within other classes. Each such instance is rep-
resented by a so-called instance node. Instance nodes are of category h cat-
egory instance.

x h node t h class new instance (h class t C1, h class t C2)

Create an instance of class C2. An instance node representing this class
instance is added to class C1. The return value is this instance node.

Output clones (see below) corresponding to the output nodes of class C2 are
also created and added to class C1.

The classes C1 and C2 must belong to the same class collection. This ensures
that dependencies between distinct class collections cannot be created.

Note that instance nodes define a “part-of” hierarchy for classes: classes
containing instances of some class C are parents of C. This hierarchy must
form an acyclic directed graph. The h class new instance function checks
this condition. If the condition is violated, or memory is exhausted, the
function returns NULL.

The h node delete(21) function is used to delete instance nodes. Deleting
an instance node will also cause all output clones associated with the class
instance to be deleted (see below).

x h class t h node get instance class (h node t instance)

Retrieve the class of which the instance node instance is an instance. (That
is, the class passed as the second argument to h class new instance when
instance was created.)

x h node t ∗h class get instances (h class t class)

Retrieve a NULL-terminated list of all instances of class (the list contains an
instance node for each instance of class).

Note that the instance nodes do not belong to class.

41

Output clones

Whenever a class instance is created, “instances” of all output nodes of the
class are also created. These nodes are called output clones. Since several
instances of some class C can exist in the same class, we need a way to dis-
tinguish different copies of some output node Y of class C corresponding to
different instances of C — the output clones serve this purpose. For exam-
ple, when specifying output Y of class instance I as a parent of some node,
the output clone corresponding to the (I, Y) combination must be passed to
h node add parent(22). Output clones are retrieved using the h node get out-
put(43) function.

Many API operations are not allowed for output clones. The following re-
strictions apply:

• Output clones can be used as parents, but cannot have parents them-
selves.

• Output clones do not have tables or models.

• For discrete output clones, attributes relating to states (i.e., subtype,
number of states, state labels, and state values) can be retrieved, but
not set. These attributes are identical to those of the “real” output
node (known as the master node) and change automatically whenever
the corresponding attributes of the master are modified. For example,
when the number of states of an output node is changed, then all
tables in which one or more of its clones appear will automatically be
resized as described in Section 2.5.

• An output clone cannot be deleted directly. Instead, it is automatically
deleted when its master is deleted or removed from the class interface
(see h node remove from outputs(40)), or when the class instance to
which it is associated is deleted.

Output clones are created without names, but they can be named just like
other nodes.

An output clone belongs to the same class as the instance node with which
it is associated. Hence, it appears in the node list of that class (and will be
seen when iterating over the nodes of the class).

x h node t h node get master (h node t node)

Retrieve the output node from which node was cloned (node must be an
output clone).

Note that the master itself can be an output clone (since h node add to
outputs(40) permits output clones to be output nodes).

42

x h node t h node get instance (h node t node)

Retrieve the instance node associated with the output clone node.

x h node t h node get output (h node t instance, h node t output)

Retrieve the output clone that was created from output when instance was
created. (This implies that output is an output node of the class from which
instance was created, and that output is the master of the output clone re-
turned.)

x h status t h node substitute class (h node t instance, h class t new)

Change the class instance instance to be an instance of class new. Let old be
the original class of instance. Then the following conditions must hold:

• for each input node in old, there must exist an input node in new with
the same name, category, and kind;

• for each output node in old, there must exist a compatible output node
in new with the same name.

(Note that this implies that interface nodes must be named.) The notion of
compatibility referred to in the last condition is the same as that used by
h node switch parent(23) and for input bindings (see Section 3.9 below).
The input bindings for instance are updated to refer to input nodes of class
new instead of class old (using match-by-name).
Similarly, the output clones associated with instance are updated to refer to
output nodes of class new instead of class old (again using match-by-name).
This affects only the value returned by h node get master(42) — in all other
respects, the output clones are unaffected.
Extra output clones will be created, if class new has more output nodes than
class old.

3.9 Putting the pieces together

In order to make use of class instances, we need to specify inputs to them
and use their outputs. Using their outputs is simply a matter of specifying
the outputs (or, rather, the corresponding output clones) as parents of the
nodes that actually use these outputs. Inputs to class instances are specified
using the following function.

x h status t h node set input
(h node t instance, h node t input, h node t node)

This establishes an input binding: node is the node to be used as actual input
for the formal input node input of the class of which instance is an instance;

43

instance and node must belong to the same class, and input and node must
be of the same category and kind.

The h node set input function does not prevent the same node from being
bound to two or more input nodes of the same class instance. However, it
is an error if a node ends up being parent of some other node “twice” in the
runtime domain (Section 3.10). This happens if some node A is bound to
two distinct input nodes, X1 and X2, of some class instance I, and X1 and X2

have a common child in the class of which I is an instance. This will cause
h class create domain(44) to fail.

Note that for a given input binding to make sense, the formal and actual
input nodes must be compatible. The notion of compatibility used for this
purpose is the same as that used by the h node switch parent(23) and h node
substitute class(43) functions. This means that the nodes must be of the same
category and kind, and (if the nodes are discrete) have the same subtype,
the same number of states, the same list of state labels, and the same list of
state values (depending on the subtype). Only the category/kind restriction
is checked by h node set input. The other restrictions are checked by h
class create domain(44) (since subtype, state labels, and state values can be
changed at any time, whereas category and kind cannot).

x h node t h node get input (h node t instance, h node t input)

For the class instance represented by the instance node instance, retrieve
the actual input node bound to the formal input node input (which must be
an input node of the class of which instance is an instance). If an error is
detected, or no node is bound to the specified input node, NULL is returned.

x h status t h node unset input (h node t instance, h node t input)

Delete the input binding (if any) for input in class instance instance (input
must be an input node of the class of which instance is an instance).

3.10 Creating a runtime domain

Before inference can be performed, a class must be expanded to its corre-
sponding flat domain (known as the “runtime” domain).

x h domain t h class create domain (h class t class)

Create the runtime domain corresponding to class. The runtime domain
is not compiled — it must be explicitly compiled before it can be used for
inference.

Creating a runtime domain is a recursive process: First, domains corre-
sponding to the instance nodes within class are constructed (using h class

44

create domain recursively). These domains are then merged into a common
domain, and copies of all non-instance nodes of class are added to the do-
main. Finally, the copies of the formal input nodes of the subdomains are
identified with their corresponding actual input nodes, if any.

Note that the runtime domain contains only basic nodes (i.e., chance, deci-
sion, and utility nodes).

The attributes of the runtime domain are a copy of those of class.

Models and tables are copied to the runtime domain. In particular, if tables
are up-to-date with respect to their models in class, then this will also be the
case in the runtime domain. This can save a lot of time (especially if many
copies of a class are made), since it can be very expensive to generate a
table. Generating up-to-date tables is done using h class generate tables(69).

The nodes of the runtime domain do not have names. In order to associate
a node of the runtime domain with the node of the object-oriented model
from which it was created, a list of nodes (called the source list) is provided.
This node list traces a path from the root of the object-oriented model to a
leaf of the model. Assume the source list corresponding to a runtime node is
〈N1, ..., Nm〉. All nodes except the last must be instance nodes: N1 must be
a node within class, and Ni (i > 1) must be a node within the class of which
Ni−1 is an instance.

x h node t ∗h node get source (h node t node)

Return the source list for node; node must belong to a runtime domain cre-
ated by h class create domain from an object-oriented model. Each node in
the source list belongs to some class of this model.

Note that the contents of the source list will in general be invalidated when
some class of the object-oriented model is modified.

Example 3.1 Consider the object-oriented model shown in Figure 3.1. It has three
basic nodes, A, B, and C, and two instance nodes, I1 and I2, which are instances of
the same class. This class has two input nodes, X and Y, and one output node, Z.
Input X of class instance I1 is bound to A. Input Y of class instance I1 and input X

of class instance I2 are both bound to B. Input Y of class instance I2 is unbound.

The runtime domain corresponding to this object-oriented model is shown in Fig-
ure 3.2. Note that bound input nodes do not appear in the runtime domain: The
children of a bound input node instead become children of the node to which the
input node is bound. Unbound input nodes, on the other hand, do appear in the
runtime domain.

The node lists returned by h node get source(45) for each node of the runtime do-
main are as follows: A0: 〈A〉, B0: 〈B〉, C0: 〈C〉, W1: 〈I1,W〉, Z1: 〈I1, Z〉, Y2: 〈I2, Y〉,
W2: 〈I2,W〉, Z2: 〈I2, Z〉.

45

I1: I2:

A B

C

X Y

W

Z

X Y

W

Z

Figure 3.1: An object-oriented belief network model.

A0 B0

C0

W1

Z1

Y2

W2

Z2

Figure 3.2: A runtime domain corresponding to the object-oriented model
shown in Figure 3.1.

46

3.11 Node iterator

In order to iterate over the nodes of a class, the following function is needed.

x h node t h class get first node (h class t class)

Return a pointer to the first node of class, or NULL if class contains no nodes,
or class is NULL (this is considered an error).
This function should be used in conjunction with the h node get next(29)

function.

3.12 User data

Section 2.9 describes functions for associating user-defined data with do-
mains and nodes. Similar functions are also provided for classes.
The first two functions manage generic pointers to data structures that must
be maintained by the user application.

x h status t h class set user data (h class t class, void ∗data)

Store the pointer data within class.

x void ∗h class get user data (h class t class)

Retrieve the value stored within the user data slot of class. If no value has
been stored, the stored value is NULL, or class is NULL (this is an error), NULL

is returned.
The following functions manage key/value-type attributes.

x h status t h class set attribute
(h class t class, h string t key, h string t value)

Insert (or update, if key is already defined) the key/value-pair in the attribute
list for class (key must be a valid C language identifier). If value is NULL, the
attribute is removed.

x h string t h class get attribute (h class t class, h string t key)

Lookup the value associated with key in the attribute list for class. If key is
not present, or if an error occurs, NULL is returned.
This function is needed for iterating over the attributes of a class.

x h attribute t h class get first attribute (h class t class)

Retrieve the first attribute object for class. If the attribute list is empty (or
class is NULL), NULL is returned.
The remaining functions needed for iteration over attributes are described
in Section 2.9.

47

48

Chapter 4

Tables

Tables are used within HUGIN for representing the conditional probability
and utility potentials of individual nodes, the probability and utility poten-
tials on separators and cliques of junction trees, evidence potentials, etc.

The HUGIN API makes (some of) these tables accessible to the programmer
via the opaque pointer type h table t and associated functions.

The HUGIN API currently does not provide means for the programmer to
construct her own table objects, just the functions necessary to manipulate
the tables created by HUGIN.

4.1 What is a table?

A potential is a function from the state space of a set of variables into the set
of real numbers. A table is a computer representation of a potential.

Consider a potential defined over a set of nodes. In general, the state space
for the potential will have both a discrete part and a continuous part. Both
parts are indexed by the set I of all possible configurations of states of the
discrete nodes. The discrete data are comprised of numbers x(i) (i ∈ I).
If the potential is a probability potential, x(i) is a probability (i.e., a num-
ber between zero and one, inclusive). If the potential is a utility potential,
x(i) can be any real number.

Probability potentials with continuous nodes represent so-called CG poten-
tials (see [5, 14, 16]). They can either represent conditional or marginal
distributions. The CG potentials that HUGIN allows the user to manipulate
are all of the latter kind. For this kind of potential, we have, for each i ∈ I,
a number x(i) (a probability), a mean value vector µ(i), and a (symmetric)
covariance matrix Σ(i); µ(i) and Σ(i) are the mean value vector and the
covariance matrix for the conditional distribution of the continuous nodes
given the configuration i of the discrete nodes.

49

To be able to use a table object effectively, it is necessary to know some facts
about the representation of the table.

The set of configurations of the discrete nodes (i.e., the discrete state space I)
is organized as a multi-dimensional array in row-major format. Each dimen-
sion of this array corresponds to a discrete node, and the ordered list of
dimensions defines the format as follows.

Suppose that the list of discrete nodes is 〈N1, . . . , Nn〉, and suppose that
node Nk has sk states. A configuration of the states of these nodes is a list
〈i1, . . . , in〉, with 0 ≤ ik < sk (1≤k≤n).

The set of configurations is mapped into the index set {0, . . . , S − 1} where

S =

n∏
k=1

sk

(This quantity is also known as the size of the table.)

A specific configuration 〈i1, . . . , in〉 is mapped to the index value

n∑
k=1

akik

where
ak =

{
sk+1ak+1 if k < n

1 if k = n

(Note that this mapping is one-to-one.)

Many HUGIN API functions use the index of a configuration whenever the
states of a list of discrete nodes are needed. Examples of such functions are:
h node set alpha(28), h node get alpha(28), h table get mean(52), etc.

Example 4.1 Given three discrete nodes, A with 2 states (a0 and a1), B with
3 states (b0, b1, and b2), and C with 4 states (c0, c1, c2, and c3), here is a complete
list of all configurations of 〈A, B, C〉 and their associated indexes:

〈a0, b0, c0〉, index 0;
〈a0, b0, c1〉, index 1;
〈a0, b0, c2〉, index 2;
〈a0, b0, c3〉, index 3;
〈a0, b1, c0〉, index 4;
〈a0, b1, c1〉, index 5;
〈a0, b1, c2〉, index 6;
〈a0, b1, c3〉, index 7;
〈a0, b2, c0〉, index 8;
〈a0, b2, c1〉, index 9;
〈a0, b2, c2〉, index 10;
〈a0, b2, c3〉, index 11;

50

〈a1, b0, c0〉, index 12;
〈a1, b0, c1〉, index 13;
〈a1, b0, c2〉, index 14;
〈a1, b0, c3〉, index 15;
〈a1, b1, c0〉, index 16;
〈a1, b1, c1〉, index 17;
〈a1, b1, c2〉, index 18;
〈a1, b1, c3〉, index 19;
〈a1, b2, c0〉, index 20;
〈a1, b2, c1〉, index 21;
〈a1, b2, c2〉, index 22;
〈a1, b2, c3〉, index 23.

The HUGIN API introduces the opaque pointer type h table t to represent
table objects.

4.2 The nodes and the contents of a table

x h node t ∗h table get nodes (h table t table)

Retrieve the NULL-terminated list of nodes associated with table. If an error
is detected, NULL is returned.

The first part of this list is comprised of the discrete nodes of the potential
represented by table; the ordering of these nodes determines the layout of
the discrete state configurations as described in the previous section. The
second part of the list is comprised of the continuous nodes of the potential
represented by table.

The pointer returned by h table get nodes is a pointer to the list stored in the
table structure. Do not free it after use.

x h number t ∗h table get data (h table t table)

Retrieve a pointer to the array of table holding the actual discrete data (de-
noted by x(i) in Section 4.1). This array is a one-dimensional (row-major)
representation of the multi-dimensional array.

Since the pointer returned is a pointer to the actual array stored within the
table structure, it is possible to modify the contents of the table through this
pointer. Also: Do not free this pointer.

Please note that pointers to nodes and data arrays within tables may be
invalidated by other API functions. For example, if you retrieve a conditional
probability table for a node, and you modify the set of parents or the number

51

of states of any parent or the node itself, then any pointers to the nodes
and data arrays of the conditional probability table that your application is
holding are no longer valid, and you must retrieve the new arrays.
For tables with continuous nodes, you use h table get data to access the x(i)

component. To access the µ(i) and Σ(i) components, you must use the
following functions (we assume that table is a table returned by h domain
get marginal(93) or h node get distribution(94)):

x h double t h table get mean (h table t table, size t i, h node t node)

Return the mean value of the conditional distribution of the continuous node
node given the discrete state configuration i.

x h double t h table get covariance
(h table t table, size t i, h node t node1, h node t node2)

Return the covariance of the conditional distribution of the continuous nodes
node1 and node2 given the discrete state configuration i.

x h double t h table get variance
(h table t table, size t i, h node t node)

Return the variance of the conditional distribution of the continuous node
node given the discrete state configuration i.

4.3 Deleting tables

The HUGIN API also provides a function to release the storage resources
used by a table. The h table delete function can be used to deallocate tables
returned by h domain get marginal(93), h node get distribution(94), h node
get experience table(112), and h node get fading table(113). All other deletion
requests will be ignored (e.g., you can’t delete a table returned by h node
get table(26)).

x h status t h table delete (h table t table)

Release the memory resources used by the table table.

4.4 The size of a table

The size of an uncompressed table is equal to the size of the state space of
the discrete nodes in the table. Thus, if the table has n discrete nodes, and
the kth node has sk states, then the size of the table will be

n∏
k=1

sk

52

The HUGIN API uses the Standard C type size t to represent the size of a
table.

x size t h table get size (h table t table)

Return the size of table. If an error is detected, (size t) −1 (i.e., the value
“−1” cast to type size t) is returned.

4.5 Rearranging the contents of a table

Sometimes it may be convenient to change the layout of the contents of a
table. This can be done by permuting the node list of the table.

x h status t h table reorder nodes (h table t table, h node t ∗order)

Reorder the node list of table to be order (the contents of the data arrays are
reorganized according to the new node ordering); order must be a NULL-
terminated list containing a permutation of the node list of table. If table is
a conditional probability table for some node, then that node must have the
same position in order as in the node list of table.

The conditional probability, experience, and fading tables (see Chapter 10)
for a given node must have the parent nodes ordered the same way in their
node lists. This constraint is enforced by h table reorder nodes. So, reorder-
ing one of these tables will also reorder the other two tables (if they exist).

In the current implementation of the HUGIN API, reordering the nodes in a
conditional probability (or utility) table will cause the affected domain to be
uncompiled. (Except, if the node list of table is equal to order, then nothing
will be done.)

Example 4.2 The following code creates four chance nodes, two discrete (a and b)
and two continuous (x and y); a, b, and x are made parents of y. Then the number
of states of a and b and the conditional distributions of the nodes must be specified
(this is not shown).

h_domain_t d = h_new_domain ();
h_node_t a = h_domain_new_node (d, h_category_chance,

h_kind_discrete);
h_node_t b = h_domain_new_node (d, h_category_chance,

h_kind_discrete);
h_node_t x = h_domain_new_node (d, h_category_chance,

h_kind_continuous);
h_node_t y = h_domain_new_node (d, h_category_chance,

h_kind_continuous);

h_node_add_parent (y, a);
h_node_add_parent (y, b);

53

h_node_add_parent (y, x);

... /* set number of states,
specify conditional distributions, etc. */

Now suppose we want to ensure that a appears before b in the node list of the
conditional probability table of y. We make a list containing the desired order of y

and its parents, and then we call h table reorder nodes.

h_node_t list[5];
h_table_t t = h_node_get_table (y);

list[0] = a; list[1] = b;
list[2] = y; list[3] = x;
list[4] = NULL;

h_table_reorder_nodes (t, list);

Note that since y (the “child” node of the table) is continuous, it must be the first
node among the continuous nodes in the node list of the table. Had y been discrete,
it should have been the last node in the node list of the table (in this case, all nodes
would be discrete).

54

Chapter 5

Generating Tables

This chapter describes how to specify to HUGIN a compact description of a
conditional probability or a utility table. HUGIN will then use this descrip-
tion to generate (the contents of) the table when it is needed.

The compact table description mentioned above is called a model. A model
consists of a list of discrete nodes and a set of expressions (one expression for
each configuration of states of the nodes). The expressions are built using
standard statistical distributions (such as Normal, Binomial, Beta, Gamma,
etc.), arithmetic operators (such as addition, subtraction, etc.), standard
functions (such as logarithms, exponential, trigonometric, and hyperbolic
functions), logical operators (conjunction, disjunction, and conditional),
and relations (such as less-than or equals).

5.1 Subtyping of discrete nodes

In order to provide a rich language for specifying models, we introduce a
classification of the discrete chance and decision nodes into four groups:

• Labeled nodes. These are discrete nodes that have a label associated
with each state (and nothing else). Labels can be used in equality
comparisons and to express deterministic relationships.

• Boolean nodes. Such nodes represent the truth values, ‘false’ and ‘true’
(in that order).

• Numbered nodes. The states of such nodes represent numbers (not
necessarily integers).

• Interval nodes. The states of such nodes represent (disjoint) intervals
on the real line.

55

The last two groups are collectively referred to as numeric.

Recall that discrete nodes have a finite number of states. This implies that
numbered nodes can only represent a finite subset of, e.g., the nonnegative
integers (so special conventions are needed for discrete infinite distributions
such as the Poisson — see Section 5.7.2).

The above classification of discrete nodes is represented by the enumeration
type h node subtype t. The constants of this enumeration type are: h
subtype label, h subtype boolean, h subtype number, and h subtype interval.
In addition, the constant h subtype error is defined for denoting errors.

x h status t h node set subtype
(h node t node, h node subtype t subtype)

Set the subtype of node (a discrete chance or decision node) to subtype.

If subtype is h subtype boolean then node must have exactly two states. More-
over, when a node has subtype ‘boolean’, h node set number of states(25)

cannot change the state count of the node.

The default subtype (i.e., if it is not set explicitly using the above function)
of a node is h subtype label.

The state labels and the state values (see h node set state label(64) and h
node set state value(64)) are not affected by this function.

x h node subtype t h node get subtype (h node t node)

Return the subtype of node, which must be a discrete chance or decision
node. If an error occurs, h subtype error is returned.

5.2 Expressions

Expressions are classified (typed) by what they denote. We have four differ-
ent types: labeled, boolean, numeric, and distribution.

We define an opaque pointer type h expression t to represent the expres-
sions that constitute a model. Expressions can represent constants, vari-
ables, and composite expressions (i.e., expressions comprised of an operator
applied to a list of arguments). The HUGIN API defines the following set of
functions to construct expressions.

All these functions return NULL on error (e.g., out-of-memory).

x h expression t h node make expression (h node t node)

This function constructs an expression that represents a variable that can
take on values corresponding to the different states of node. The type of the

56

expression is either labeled, boolean, or numeric, depending on the subtype
of node.

x h expression t h label make expression (h string t label)

Construct an expression that represents a label constant. A copy is made of
label.

x h expression t h boolean make expression (h boolean t b)

Construct an expression that represents a boolean constant: ‘true’ if b is 1,
and ‘false’ if b is 0.

x h expression t h number make expression (h double t number)

Construct an expression representing the numeric constant number.

The expressions constructed using one of the above four functions are called
simple expressions, whereas the following function constructs composite ex-
pressions.

x h expression t h make composite expression
(h operator t operator, h expression t ∗arguments)

This function constructs a composite expression representing operator ap-
plied to arguments; arguments must be a NULL-terminated list of expressions.
The function allocates an internal array to hold the expressions, but it does
not copy the expressions themselves.

The h operator t type referred to above is an enumeration type listing all
possible operators, including statistical distributions.

The complete list is as follows:

• h operator add, h operator subtract, h operator multiply, h operator
divide, h operator power

These are binary operators that can be applied to numeric expressions.

• h operator negate

A unary operator for negating a numeric expression.

• h operator equals, h operator less than, h operator greater than, h op-
erator not equals, h operator less than or equals, h operator greater
than or equals

These are binary comparison operators for comparing labels, num-
bers, and boolean values (both operands must be of the same type).
Only the equality operators (i.e., h operator equals and h operator
not equals) can be applied to labels and boolean values.

57

• h operator Normal, h operator Beta, h operator Gamma, h operator Ex-
ponential, h operator Weibull, h operator Uniform

Continuous statistical distributions — see Section 5.7.1.

• h operator Binomial, h operator Poisson, h operator NegativeBinomial,
h operator Geometric, h operator Distribution, h operator NoisyOR

Discrete statistical distributions — see Section 5.7.2.

• h operator min, h operator max

Compute the minimum or maximum of a list of numbers (the list must
be non-empty).

• h operator log, h operator log2, h operator log10, h operator exp, h
operator sin, h operator cos, h operator tan, h operator sinh, h opera-
tor cosh, h operator tanh, h operator sqrt, h operator abs

Standard mathematical functions to compute the natural (i.e., base e)
logarithm, base 2 and base 10 logarithms, exponential, trigonometric
functions, hyperbolic functions, square root, and absolute value of a
number.

• h operator floor, h operator ceil

The “floor” and “ceiling” functions round real numbers to integers.

floor(x) (usually denoted bxc) is defined as the greatest integer less
than or equal to x.

ceil(x) (usually denoted dxe) is defined as the least integer greater than
or equal to x.

• h operator mod

The “modulo” function gives the remainder of a division. It is defined
as follows:

mod(x, y) ≡ x − ybx/yc, y 6= 0.

Note that x and y can be arbitrary real numbers (except that y must
be nonzero).

• h operator if

Conditional expression (with three arguments): first argument must
be a boolean, the second and third arguments must have the same
type. The type of the if-expression is the type of the last two argu-
ments.

• h operator and, h operator or, h operator not

Standard logical operators: ‘not’ takes exactly one boolean argument,
while ‘and’ and ‘or’ take a list (possibly empty) of boolean arguments.

58

Evaluation of an ‘and’ composite expression is done sequentially, and
evaluation terminates when an argument that evaluates to ‘false’ is
found. Similar for an ‘or’ expression (except that the evaluation termi-
nates when an argument evaluating to ‘true’ is found).

In addition, a number of ‘operators’ are introduced to denote simple expres-
sions and errors (for use by h expression get operator(59)):

• h operator label for expressions constructed using h label make expres-
sion;

• h operator number for expressions constructed using h number make
expression;

• h operator boolean for expressions constructed using h boolean make
expression;

• h operator node for expressions constructed using h node make expres-
sion;

• h operator error for illegal arguments to h expression get operator.

Analogous to the constructor functions, we also need functions to test how
a particular expression was constructed and to access the parts of an expres-
sion.

x h boolean t h expression is composite (h expression t e)

Test whether the expression e was constructed using h make composite ex-
pression.

x h operator t h expression get operator (h expression t e)

Return the operator that was used when the expression e was constructed
using h make composite expression, or, if e is a simple expression, one of the
special operators (see the above list).

x h expression t ∗h expression get operands (h expression t e)

Return the operand list that was used when the expression e was constructed
using h make composite expression. Note that the returned list is the real list
stored inside e, so don’t try to deallocate it after use.

x h node t h expression get node (h expression t e)

Return the node that was used when the expression e was constructed using
h node make expression.

x h double t h expression get number (h expression t e)

Return the number that was used when the expression e was constructed
using h number make expression. If an error occurs (e.g., e was not con-
structed using h number make expression), a negative number is returned.

59

However, since negative numbers are perfectly valid in this context, errors
must be checked for using h error code(11) and friends.

x h string t h expression get label (h expression t e)

Return the label that was used when the expression e was constructed using
h label make expression. Note that the real label inside e is returned, so
don’t try to deallocate it after use.

x h boolean t h expression get boolean (h expression t e)

Return the boolean value that was used when the expression e was con-
structed using h boolean make expression.

x h status t h expression delete (h expression t e)

Deallocate the expression e, including subexpressions (in case of composite
expressions).

This function will also be called automatically in a number of circumstances:
when a new expression is stored in a model (see h model set expression(63)),
when parents are removed, and when the number of states of a node is
changed.

Note: The HUGIN API will keep track of the expressions stored in mod-
els. This means that if you delete an expression with a subexpression that is
shared with some expression within some model, then that particular subex-
pression will not be deleted.

However, if you build two expressions with a shared subexpression (and
that subexpression is not also part of some expression owned by HUGIN),
then the shared subexpression will not be “protected” against deletion if you
delete one of the expressions. For such uses, the following function can be
used to explicitly create a copy of an expression.

x h expression t h expression clone (h expression t e)

Create a copy of e.

5.3 Syntax for expressions

In many situations, it is convenient to have a concrete syntax for presenting
expressions (e.g., in the HUGIN GUI application). The syntax is also used in
specifications written in the NET language (see Chapter 12).

〈Expression〉 → 〈Simple expression〉 〈Comparison〉 〈Simple expression〉
| 〈Simple expression〉

60

〈Simple expression〉→ 〈Simple expression〉 〈Plus or minus〉 〈Term〉
| 〈Plus or minus〉 〈Term〉
| 〈Term〉

〈Term〉 → 〈Term〉 〈Times or divide〉 〈Exp factor〉
| 〈Exp factor〉

〈Exp factor〉 → 〈Factor〉 ˆ 〈Exp factor〉
| 〈Factor〉

〈Factor〉 → 〈Unsigned number〉
| 〈Node name〉
| 〈String〉
| false
| true
| (〈Expression〉)
| 〈Operator name〉 (〈Expression sequence〉)

〈Expression sequence〉→ 〈Empty〉
| 〈Expression〉 [, 〈Expression〉]*

〈Comparison〉1 → == | = | != | <> | < | <= | > | >=

〈Plus or minus〉 → + | -

〈Times or divide〉 → * | /

〈Operator name〉 → Normal | Beta | Gamma
| Exponential | Weibull | Uniform
| Binomial | Poisson | NegativeBinomial
| Geometric | Distribution | NoisyOR
| min | max | log | log2 | log10 | exp
| sin | cos | tan | sinh | cosh | tanh
| sqrt | abs | floor | ceil | mod
| if | and | or | not

The operator names refer to the operators of the h operator t(57) type: pre-
fix the operator name with h operator to get the corresponding constant of
the h operator t type.

x h expression t h string parse expression
(h string t s, h model t model,

1Note that both C and Pascal notations for equality/inequality operators are accepted.

61

void (∗error handler) (h location t, h string t, void ∗),
void ∗data)

Parse the expression in string s and construct an equivalent h expression t
structure. Node names appearing in the expression must correspond to par-
ents of the owner of model. If an error is detected, the error handler func-
tion is called with the location (the character index) within s of the error, a
string that describes the error, and data. The storage used to hold the error
message string is reclaimed by h string parse expression, when error handler
returns (so if the error message will be needed later, a copy must be made).

The user-specified data allows the error handler to access non-local data
(and hence preserve state between calls) without having to use global vari-
ables.

The h location t type is an unsigned integer type (such as unsigned long).

If no error reports are desired (in this case, only the error indicator returned
by h error code(11) will be available), then the error handler argument may
be NULL.

Note: The error handler function may also be called in non-fatal situations
(e.g., warnings).

x h string t h expression to string (h expression t e)

Allocate a string and write into this string a representation of the expres-
sion e using the above described syntax.

Note that it is the responsibility of the user of the HUGIN API to deallocate
the returned string when it is no longer needed.

5.4 Creating and maintaining models

A model for a node table must be explicitly created before it can be used.
We introduce the opaque pointer type h model t to represent models.

x h model t h node new model
(h node t node, h node t ∗model nodes)

Create and return a model for node (which must be a utility or a discrete
chance node) using model nodes (a NULL-terminated list of nodes, compris-
ing a subset of the parents of node) to define the configurations of the model.
If node already has a model, it will be deleted before the new model is in-
stalled.

When a model exists for a node, the table data associated with the node will
be generated from the model. This happens automatically as part of com-
pilation, propagation, and reset-inference-engine operations, but it can also

62

be explicitly done by the user (see h node generate table(69)). It is possible
to modify the contents generated from the model, but note that the infer-
ence engine will regenerate the table when certain parameters are changed
(see Section 5.8 for precise details).

x h model t h node get model (h node t node)

Retrieve the model for the table of node. If no model exists, NULL is returned.

x h status t h model delete (h model t model)

Deallocate the storage used by model. After model has been deleted, the
table for which model was a model will again be the definitive source (i.e.,
the contents of the table will no longer be derived from a model).

x h node t ∗h model get nodes (h model t model)

Return the list of nodes of model.

x size t h model get size (h model t model)

Return the number of configurations of the nodes of model. If an error
occurs, (size t) −1 (i.e., the number ‘−1’ cast to the type size t) is returned.

x h status t h model set expression
(h model t model, size t index, h expression t e)

Store the expression e at position index in model. It is an error if model
is NULL, or index is out of range. If there is already an expression stored
at the indicated position, h expression delete(60) will be executed for this
expression (which will invalidate existing references to this expression).

If e is not a composite expression with the operator being one of the statisti-
cal distribution operators, then the value of node is a deterministic function
of the parents (for the configurations determined by index). In this case, the
type of e must match the subtype of node.

Otherwise (i.e., the type of e is distribution), the statistical distribution de-
noted by e must be appropriate for the subtype of node — see Section 5.7.

If model is a model for a utility table, then the type of e must be numeric.

In all cases, the subexpressions of e must not use node as a variable — only
parents may be used as variables.

x h expression t h model get expression
(h model t model, size t index)

Return the expression stored at position index within model. If model is NULL

or no expression has been stored at the indicated position, NULL is returned
(the first case is an error).

63

5.5 Labeled nodes

Labels assigned to states of discrete chance and decision nodes serve two
purposes: (1) to identify states of labeled nodes in the table generator, and
(2) to identify states in the HUGIN GUI application when the beliefs of the
states of discrete chance nodes (or the expected utilities of different decision
alternatives) are displayed.

x h status t h node set state label
(h node t node, size t s, h string t label)

Create a copy of label and assign it as the label of state s of node (which must
be a discrete chance or decision node). The label can be any string (i.e., it is
not restricted in the way that, e.g., node names are).

When node is used as a labeled node with the table generator facility, the
states must be assigned unique labels.

x h string t h node get state label (h node t node, size t s)

Return the label of state s of node (which must be a discrete chance or
decision node). If no label has been assigned to the state, the empty string
is returned. If an error occurs (e.g., node is NULL, or s is an invalid state),
NULL is returned.

Note that the string returned by h node get state label is not a copy. Thus,
the application should not attempt to free it after use.

5.6 Numeric nodes

Similar to the above functions for dealing with state labels, we need func-
tions for associating states with single numbers or intervals on the real line.
We introduce a common pair of functions for these purposes.

x h status t h node set state value
(h node t node, size t s, h double t value)

Associate value with state s of node (which must be a numeric node). It is
required that the state values form an increasing sequence (this is checked
when the table is generated for node).

For numbered nodes, value indicates the specific number to be associated
with the specified state.

For interval nodes, the values specified for state i and state i + 1 are the left
and right endpoints of the interval denoted by state i (the dividing point
between two neighboring intervals is taken to belong to the interval to the

64

right of the dividing point). To indicate the right endpoint of the rightmost
interval, specify s equal to the number of states of node.
To specify (semi)infinite intervals, the constant h infinity is defined. The
negative of this constant may be specified for the left endpoint of the first
interval, and the positive of this constant may be specified for the right
endpoint of the last interval.

x h double t h node get state value (h node t node, size t s)

Return the value associated with state s for the numeric node node.

5.7 Statistical distributions

This section defines the distributions that can be specified using the model
feature of HUGIN.

5.7.1 Continuous distributions

Continuous distributions are relevant for interval nodes only.

Normal A random variable X has a normal (or Gaussian) distribution with
mean µ and variance σ2 if its probability density function is of the
form

pX(x) =
1√

2πσ2
e− 1

2
(x−µ)2/σ2

σ2 > 0 − ∞ < x < ∞
This distribution is denoted Normal(µ, σ2).

Gamma A random variable X has a gamma distribution if its probability
density function is of the form

pX(x) =
(x/b)a−1e−x/b

bΓ(a)
a > 0 b > 0 x > 0

a is called the shape parameter, and b is called the scale parameter.
This distribution is denoted Gamma(a, b).

Beta A random variable X has a beta distribution if its probability density
function is of the form

pX(x) =
1

B(α, β)

(x − a)α−1(b − x)β−1

(b − a)α+β−1
α > 0 β > 0 a ≤ x ≤ b

This distribution is denoted Beta(α, β, a, b). The standard form of the
beta distribution is obtained by letting a = 0 and b = 1. This variant
is denoted by Beta(α, β) and has the density

pX(x) =
1

B(α, β)
xα−1(1 − x)β−1 α > 0 β > 0 0 ≤ x ≤ 1

65

Weibull A random variable X has a Weibull distribution if its probability
density function is of the form

pX(x) =
a

b

(
x

b

)a−1

e−(x/b)a
a > 0 b > 0 x ≥ 0

a is called the shape parameter, and b is called the scale parameter.
This distribution is denoted Weibull(a, b).

Exponential A random variable X has an exponential distribution if its
probability density function is of the form

pX(x) = e−x/b/b b > 0 x ≥ 0

This distribution is denoted Exponential(b).

Note: This is a special case of the gamma and Weibull distributions
(corresponding to letting the shape parameter a = 1).

Uniform A random variable X has a uniform distribution if its probability
density function is of the form

pX(x) =
1

b − a
a < b a ≤ x ≤ b

This distribution is denoted Uniform(a, b).

When one of the above distributions is specified for an interval node, the in-
tervals must include the domain specified for X in the definitions above. All
the densities described above are assumed to be zero outside their intended
domain (e.g., the density for a gamma distributed random variable is zero
for negative x).
On the other hand, it is a good idea not to make the intervals larger than
necessary. For example, if you have a node A with a beta distribution, and
A has a child node B with a binomial distribution where A is the prob-
ability parameter, then the intervals for A should cover the interval [0, 1]

and nothing more; otherwise, you would get problems when computing the
probabilities for B (since the probability parameter would be out-of-range).

5.7.2 Discrete distributions

The following discrete distributions apply to numbered and interval nodes.

Binomial A random variable X has a binomial distribution with parame-
ters n (a nonnegative integer) and p (a probability) if

P(X = k) =

(
n

k

)
pk(1 − p)n−k k = 0, 1, . . . , n

This distribution is denoted Binomial(n, p).

66

Poisson A random variable X has a Poisson distribution with parameter λ

(a positive real number) if

P(X = k) =
e−λλk

k!
λ > 0 k = 0, 1, 2, . . .

This distribution is denoted Poisson(λ).

Negative Binomial A random variable X has a negative binomial distribu-
tion with parameters r (a positive real number) and p (a probability)
if

P(X = k) =

(
k + r − 1

k

)
pr(1 − p)k k = 0, 1, 2, . . .

This distribution is denoted NegativeBinomial(r, p).

Geometric A random variable X that counts the number of failures in a
sequence of Bernoulli trials before the first success has a geometric
distribution. Let p denote the probability of success, and let q = 1−p.
Then

P(X = k) = pqk k = 0, 1, 2, . . .

This distribution is denoted Geometric(p).

Note: The geometric distribution is a special case of the negative bi-
nomial distribution (corresponding to r = 1).

When one of the above distributions is specified for a numbered node, the
state values for that node must form the sequence 0, 1, . . . , m for some m.
If the distribution is a binomial distribution, all possible outcomes must be
included (i.e., m ≥ n). The other distributions have an infinite number of
possible outcomes, so by convention the probability P(X≥m) is associated
with the last state.

If any of the above distributions is specified for an interval node, the in-
tervals must include all possible outcomes. Recall that the intervals of an
interval node are taken to be of the form [a, b) (except for the rightmost in-
terval and for infinite endpoints), so, for example, the interval [0, 2) contains
the integers 0 and 1.

The “Distribution” operator specifies a user-defined distribution. It applies
to all discrete nodes.

Distribution If a discrete node A has n states, then Distribution(e1, . . . , en)

means that expression ei will be evaluated and the result assigned as
the probability of the ith state (the probabilities need not be normal-
ized). The expressions must be of numeric type and must evaluate to
nonnegative values (and at least one of them must be positive).

The Noisy-OR distribution applies to boolean nodes.

67

Noisy-OR Let b1, . . . , bn (n≥ 1) be boolean values, and let q1, . . . , qn

(0≤qi ≤ 1) be probability values. A random (boolean) variable X has
a Noisy-OR distribution if

P(X =false) =
∏

i:bi=true

qi

This distribution is denoted NoisyOR(b1, q1, . . . , bn, qn).

The Noisy-OR distribution can be used to model an event that may be
caused by any member of a set of conditions, and the likelihood of
causing the event increases if more conditions are satisfied.

The assumptions underlying the Noisy-OR distribution are:

• If all the causing conditions b1, . . . , bn are false, then X is
false.

• If some condition bi is satisfied then X is true, unless some in-
hibitor prevents it. The probability of the inhibitor for bi being
active is denoted by qi. If bi is the only satisfied condition, it
follows that P(X =true) = 1 − qi.

• The mechanism that inhibits one satisfied condition bi from caus-
ing X to be true is independent of the mechanism that inhibits
another satisfied condition bj (i 6= j) from causing X to be true.

• The causing conditions combine disjunctively, meaning that if a
number of conditions are satisfied then X is true, unless all the
corresponding inhibitors are active.

See [10, Section 2.3.2] and [20, Section 4.3.2] for further details.

Note: The boolean arguments of the NoisyOR operator can be arbi-
trary expressions — not just simple variables. For example, to intro-
duce a condition that is always satisfied, specify true as the corre-
sponding boolean expression.

5.8 Generating tables

Normally, the user doesn’t need to worry about generating tables from their
corresponding models. This is automatically taken care of by the compi-
lation, propagation, and reset-inference-engine operations (by calling the
functions described below).

68

However, it may sometimes be desirable to generate a single table from its
model (for example, when deciding how to split a continuous range into
subintervals). This is done using the following function.

x h status t h node generate table (h node t node)

Generate the table of node from its model (a missing model will trigger a
usage error). The table is only generated if the inference engine thinks it
is necessary. The following conditions will cause the table to be generated:
The model is new or one of its expressions is new (relative to the most
recent generation of this table), the number of samples per interval (see
h model set number of samples per interval(70) below) for the model of node
has changed, or a state label (if node is a labeled node), a state value, the
number of states, or the subtype of node or one of its parents has changed
since the most recent generation of this table. Removal of a parent of node
can also cause the table to be generated (this happens if the parent is used
in the model). Adding a parent, however, will not cause the table to be
generated (because the contents of the table would not change).

If the operation fails, then the contents of the table will be unspecified. If
a log-file has been specified (see h domain set log file(80)), then information
about the computations (including reasons for failures) is written to the
log-file.

Experience and fading tables (see Chapter 10) are not affected by h node
generate table.

x h status t h domain generate tables (h domain t domain)

Generate tables for all nodes of domain. This is done by calling h node
generate table for all nodes having a model, so the description given above
also applies here.

The operation is aborted if table generation fails for some node. This implies
that some tables may have been successfully generated, some may not have
been generated at all, and one table has been only partially generated.

The following function is identical to the above function, except that it op-
erates on classes instead of domains.

x h status t h class generate tables (h class t class)

Generate tables for all (basic) nodes of class. See the description given for
h domain generate tables above for further details.

As mentioned above, information about the computations performed when
generating a table is written to the log-file. For classes, a log-file is specified
using the following function.

69

x h status t h class set log file (h class t class, FILE ∗log file)

Set the file to be used for logging by subsequent HUGIN API operations that
apply to class. (Currently, only table generation information is written to
log-files for classes.)

If log file is NULL, no log will be produced. If log file is not NULL, it must
be a stdio text file, opened for writing (or appending). Writing is done
sequentially (i.e., no seeking is done).

See also Section 6.4.

5.9 How the computations are done

The most complex cases are nodes with interval parents. Assume for sim-
plicity that we have a node with one interval parent (more than one interval
parent is a trivial generalization of the simple case).

For a given interval of the parent (i.e., for a specific parent state configura-
tion), we compute many probability distributions for the child, each distri-
bution being obtained by instantiating the parent to a value in the interval
under consideration.2 The average of these distributions is used as the con-
ditional probability distribution for the child given the parent is in the inter-
val state considered. (For this scheme to work well, the intervals should be
chosen such that the discretised distributions corresponding to the chosen
points in the parent interval are not “too different” from each other.)

By default, 25 values are taken within each bounded interval of an interval
parent: The interval is divided into 25 subintervals, and the midpoints of
these subintervals are then used in the computations. A large number of
values gives high accuracy, and a small number of values results in fast
computations. The number of values used can be changed by the following
function.

x h status t h model set number of samples per interval
(h model t model, size t count)

Specify that count values should be sampled from each bounded interval of
an interval parent when generating a table from model.

x h count t h model get number of samples per interval
(h model t model)

Retrieve the count indicating the number of samples that would be used if a
table were to be generated from model now.

2For semi-infinite intervals, only one value is used. This value is chosen to be close to the
finite endpoint. Intervals that are infinite in both directions are discouraged — the behavior
is unspecified.

70

5.9.1 Deterministic relationships

If the type of the expression for the parent state configuration under consid-
eration is not distribution, then we have a deterministic relationship.

The expression must then evaluate to something that matches one of the
states of the child node. For labeled, boolean, and numbered nodes, the
value must match exactly one of the state values or labels. For interval
nodes, the value must belong to one of the intervals represented by the
states of the child node.

If one or more of the parents are of interval subtype, then a number of
samples (25 by default) within each (bounded) interval will be generated.
Each of these samples will result in a “degenerate” distribution (i.e., all
probability mass will be assigned to a single state) for the child node. The
final distribution assigned to the child node is the average over all generated
distributions. This amounts to counting the number of times a given child
state appears when applying the deterministic relationship to the generated
samples.

If all samples within a given parent state interval map to the same child
state, then the resulting child distribution is independent of the number of
samples generated. It is recommended that the intervals be chosen such
that this is the case.

If this is not feasible, then the number of samples generated should be large
in order to compensate for the sampling errors. Typically, some of the child
states will have a frequency count one higher (or lower) than the “ideal”
count.

Example 5.1 Let X be an interval node having [0, 1) as one of its states (intervals).
Let Y be a child of X having [0, 1), [1, 2), and [2, 3) as some of its states. Assume
that Y is specified through the deterministic relation Y = 3X. If 25 samples for X

are taken within the interval [0, 1), then 8, 9, and 8 of the computed values will
fall in the intervals [0, 1), [1, 2), and [2, 3) of Y, respectively. Ideally, the frequency
counts should be the same, resulting in a uniform distribution over the three inter-
val states.

71

72

Chapter 6

Compiling Domains

Before a belief network or an influence diagram can be used for inference,
it must be compiled.
This chapter describes functions to compile domains, control triangulations,
and to perform other related tasks, such as approximation and compression.

6.1 What is compilation?

The compilation process can be outlined as follows:

• First, for influence diagrams, links into decision nodes are removed.
(These links encode a temporal ordering of observations and deci-
sions. The links are used to impose restrictions on the triangulation
step — see explanation below.)

• Then, the network is converted into its moral graph: the parents of
each node are “married” (i.e., links are added between them), and the
directions of the links are dropped.

• Next, the utility nodes are removed.

• Then, the graph is triangulated. (This is described in detail below.)

• The cliques (maximal complete sets) of the triangulated graph are
identified, and the collection of cliques is organized as a tree (with
the cliques forming the nodes of the tree). Such a tree is called a junc-
tion tree. If the original network is disconnected, there will be a tree
for each connected component.

• Finally, potentials are associated with the cliques and the links (the
separators) of each junction tree. These potentials are initialized from
the conditional probability tables (and the utility tables in the case of
influence diagrams), using a sum-propagation (see Section 9.1).

73

All steps, except the triangulation step, are quite straightforward. The tri-
angulation problem is known to be NP-hard for all reasonable criteria of
optimality, so (especially for large networks) finding the optimal solution
is not always feasible. The HUGIN API provides several methods for find-
ing triangulations: four heuristic methods based on local cost measures,
and a combined exact/heuristic method capable of minimizing the storage
requirements (i.e., the sum of state space sizes) of the cliques of the trian-
gulated graph, if sufficient computational resources are available.

As an alternative, the user may supply her own triangulation in the form of
an elimination sequence.

An elimination sequence is an ordered list containing each node of the graph
exactly once. An elimination sequence 〈v1, . . . , vn〉 generates a triangulated
graph from an undirected graph as follows: Complete the set of neighbors
of v1 in the graph (i.e., for each pair of unconnected neighbors, add a fill-
in edge between them). Then eliminate v1 from the graph (i.e., delete v1

and edges incident to v1). Repeat this process for all nodes of the graph in
the indicated order. The input graph with the set of generated fill-in edges
included is a triangulated graph.

The elimination sequence can be chosen arbitrarily for ordinary belief net-
works, where all nodes are of the same category and kind. However, this is
not the case for influence diagrams and belief networks with both discrete
and continuous nodes.

Influence diagrams have to be “evaluated” in a certain order (see [9]) (i.e.,
the sum- and max-marginalizations must respect some partial order). As
indicated in Section 2.4, an influence diagram specifies a decision problem
with the following characteristics: There is a predetermined (and linear)
order of the decisions; between two decisions, a group (possibly empty) of
chance variables is observed. Both the order of decisions and the time of
observation for each chance variable are part of the network specification
and are thus given in advance.

Let the decisions be D1, . . . , Dn (to be made in that order). Let Ck (0< k < n)
be the set of chance variables to be observed between making decisions Dk

and Dk+1; C0 is the set of chance variables observed before the first decision,
and Cn is the set of variables never observed (or observed too late to have
any influence on the decision making). We have the following temporal
order on the variables:

C0 ≺ D1 ≺ C1 ≺ · · · ≺ Dn ≺ Cn

The restrictions on a valid elimination order for an influence diagram can
now be formulated as follows: First, the nodes of Cn must be eliminated
(in any order), then Dn is eliminated, . . . , and, finally, the nodes of C0 are
eliminated.

74

In order to ensure correct inference, the theory for CG belief networks (see
[5, 14, 16]) requires the continuous nodes to be eliminated before the dis-
crete nodes. So, if ∆ denotes the set of discrete nodes and Γ denotes the set
of continuous nodes, we define the ordering relation as follows:

∆ ≺ Γ

(In this case, the ordering relation is not a temporal ordering.)
Consider a partitioning of the set of nodes into two groups, A and B, such
that A ≺ B. For CG belief networks, there is only one such partitioning. For
influence diagrams, there are 2n possible partitionings.
Let x, y ∈ A. It is well-known that, for any elimination sequence obeying
the ≺ ordering relation, the following must hold for the corresponding tri-
angulated graph: If between x and y there exists a path lying entirely in B

(except for the end-points), then x and y are connected. If x and y are not
connected in the moral graph, we say that x and y are connected by a neces-
sary fill-in edge. Conversely, it can be shown that a triangulated graph with
this property has an elimination sequence obeying the ≺ ordering relation.
Let G be the moral graph extended with all necessary fill-in edges (by con-
sidering all possible partitionings of the nodes). The neighbors in G of a
connected component of G[B] form a complete separator of G (unless there
is exactly one connected component having all nodes of A as neighbors).
A maximal subgraph that does not have a complete separator is called a
prime component [19]. We note that a triangulation formed by the union
of triangulations of the prime components of G has the property described
above.
We can now further specify the triangulation step. The input to this step is
the moral graph (without information links and utility nodes).

• Add all necessary fill-in links.

• Find the prime components of the graph.

• Triangulate the prime components. The union of these triangulations
constitutes the triangulation of the input graph.

• Generate an elimination sequence for the triangulation.

See [5, 9, 10, 12, 14] for further details on the compilation process.

6.2 Compilation

x h status t h domain compile (h domain t domain)

Compile domain, using the default triangulation method (unless domain is
already triangulated — see Section 6.3); domain must contain at least one
chance or decision node.

75

It is considered an error, if domain is already compiled.

Note that the compilation process can use large amounts of memory (and
time), depending on the size and structure of the network, and the choice of
triangulation method. You should make sure that sufficient (virtual) mem-
ory is available and be prepared to handle out-of-memory conditions.

Also note that, as a side-effect of the compilation process, the values of the
conditional probability tables are normalized.

x h boolean t h domain is compiled (h domain t domain)

Test whether domain is compiled.

6.3 Triangulation

The choice of triangulation method in the compilation process can have a
huge impact on the size of the compiled domain, especially if the network
is large. If the default triangulation method used by h domain compile(75)

does not give a good result, another option is available: The network may
be triangulated in advance (before calling h domain compile). The HUGIN
API provides a choice between five built-in triangulation methods, or, alter-
natively, the user may provide a triangulation in the form of an elimination
sequence.

The HUGIN API defines the enumeration type h triangulation method t.
This type contains the following five constants, denoting the built-in tri-
angulation methods: h tm clique size, h tm clique weight, h tm fill in size,
h tm fill in weight, and h tm total weight. The first four of these methods
are inherently heuristic in nature, whereas the last method is a combined
exact/heuristic method capable of producing an optimal triangulation, if
sufficient computational resources (primarily storage) are available.

The four heuristic methods follow a common scheme: Nodes are eliminated
sequentially (with no “look-ahead”) from the prime component being trian-
gulated. If the current graph has a node with all its (uneliminated) neigh-
bors forming a complete set, that node is eliminated next (this is optimal
with respect to minimizing the size of the largest clique of the final triangu-
lated graph). If no such node exists, a node with a best “score” according to
the selected heuristic is chosen.

Let C(v) denote the set comprised of v and its (uneliminated) neighbors.
The heuristics, implemented in HUGIN, define a score based on C(v) for
each node v (and with “best” defined as “minimum”). The scores defined by
the heuristics are:

h tm clique size The score is equal to the cardinality of C(v).

76

h tm clique weight The score is equal to the product of the number of
states of the discrete nodes in C(v) multiplied by a + bm(m + 3)/2,
where m is the number of continuous nodes in C(v), and a and b are
the sizeof of the types h number t and h double t, respectively. (This
formula computes the storage requirements of a table holding C(v).)

h tm fill in size The score is equal to the number of fill-in edges needed to
complete C(v).

h tm fill in weight The score is equal to the sum of the weights of the fill-
in edges needed to complete C(v), where the weight of an edge is
defined as the product of the number of states of the nodes connected
by the edge (in this context, continuous nodes are taken to be nodes
with 1.5 states).

(The h tm fill in weight heuristic is the method used by h domain compile(75),
if the domain being compiled has not been triangulated in advance.)
The heuristic triangulation methods are very fast, but sometimes the gen-
erated triangulations are quite bad. As an alternative, the HUGIN API pro-
vides the h tm total weight triangulation method. This method can produce
an optimal triangulation, if sufficient computational resources are available.
The method considers a triangulation to be optimal, if it is minimal (i.e., no
proper subgraph of the triangulated graph is triangulated) and the sum of
clique weights (as defined by the h tm clique weight heuristic) is minimum.
For some large networks, use of the h tm total weight triangulation method
has improved time and space complexity of inference by an order of magni-
tude (sometimes even more), compared to the heuristic methods described
above.
The h tm total weight triangulation algorithm can be outlined as follows:
First, all minimal separators of the prime component being triangulated are
identified (using an algorithm by Berry et al [2]). From this set of mini-
mal separators, an initial triangulation is found using greedy selection of
separators until the component is triangulated. The cost of this triangula-
tion is then used as an upper bound on the cost of optimal triangulations,
and all separators that are too expensive relative to this upper bound are
discarded. Then the prime component is split using each of the remaining
separators. The pieces resulting from such a split are called fragments (cf.
Shoikhet and Geiger [23]; another term commonly used is 1-block). Every
(minimal) triangulation of a fragment can be decomposed into a clique and
corresponding triangulated subfragments. Using this fact, optimal triangu-
lations are found for all fragments. (The clique generation process of this
search makes use of a characterization of cliques in minimal triangulations
given by Bouchitté and Todinca [3].) Finally, an optimal triangulation of
the prime component is identified (by considering all possible splits of the
component using minimal separators).

77

Some prime components have more minimal separators than the memory of
a typical computer can hold. In order to handle such components, an upper
bound on the number of separators can be specified: If the search for min-
imal separators determines that more than the specified maximum number
of separators exist, then the component is split using one of the separators
already found.1 The fragments obtained are then recursively triangulated.

Experience suggests that 100 000 is a good number to use as an upper bound
on the number of minimal separators.

x h status t h domain set max number of separators
(h domain t domain, size t count)

Specify count as the maximum number of minimal separators to generate
when using the h tm total weight method for triangulating domain. If count
is zero, then the bound is set to “unlimited,” which is also the default value.

x h count t h domain get max number of separators
(h domain t domain)

Retrieve the current setting for domain of the maximum number of separa-
tors to generate for the h tm total weight triangulation method. If an error
occurs, a negative number is returned.

x h status t h domain triangulate
(h domain t domain, h triangulation method t tm)

Perform triangulation of domain using triangulation method tm. It is con-
sidered an error, if domain is already triangulated.

As mentioned above, it is also possible to supply a triangulation explicitly
through an elimination sequence. This is convenient if a better triangulation
is available from other sources.

x h status t h domain triangulate with order
(h domain t domain, h node t ∗order)

Triangulate domain using the NULL-terminated list order of nodes as elim-
ination sequence (order must contain each chance and each decision node
of domain exactly once, and it must respect the restrictions described in
Section 6.1).

It is considered an error, if domain is already triangulated.

1The separator is selected using a heuristic method that considers the cost of the separator
and the size of the largest fragment generated, when the component is split using the sepa-
rator. The heuristic method used for this selection may change in a future version of the
HUGIN API.

78

x h node t ∗h domain get elimination order (h domain t domain)

Return a NULL-terminated list of nodes in the order used to triangulate do-
main. If an error is detected (e.g., domain has not been triangulated), NULL

is returned.

The list holding the elimination order is stored within the domain structure
and should thus not be freed by the application.

As indicated above, it can be a lot of work to find good triangulations. There-
fore, it is convenient to store the corresponding elimination orders in sepa-
rate files for later use. The following function helps in managing such files:
It parses a text file holding a list of node names (separated by spaces, tabs,
newlines, or comments — see Section 12.7).

x h node t ∗h domain parse nodes
(h domain t domain, h string t file name,

void (∗error handler) (h location t, h string t, void ∗),
void ∗data)

This function parses the list of node names stored in the file with name
file name. The node names must identify nodes in the given domain; it is
an error, if some node cannot be found. If no error is detected, a NULL-
terminated dynamically allocated array holding the nodes is returned. If an
error is detected, NULL is returned.

Note: Only the user application has a reference to the array, so the user
application is responsible for deallocating the array when it is done using it.

The error handler and data arguments are used for error handling. This is
similar to the error handling done by the other parse functions. See Sec-
tion 12.8 for further information.

The h domain parse nodes function can be used to parse any file containing
a node list (not just node lists representing elimination orders for triangula-
tions). Therefore, for completeness, a similar parse function is provided for
classes:

x h node t ∗h class parse nodes
(h class t class, h string t file name,

void (∗error handler) (h location t, h string t, void ∗),
void ∗data)

6.4 Getting a compilation log

It is possible to get a log of the actions taken by the compilation process (the
elimination order chosen, the fill-in edges created, the cliques, the junction

79

trees, etc.). Such a log is useful for debugging purposes (e.g., to find out
why the compiled version of the domain became so big).

x h status t h domain set log file (h domain t domain, FILE ∗log file)

Set the file to be used for logging by subsequent compilation and triangula-
tion operations.
If log file is NULL, no log will be produced. If log file is not NULL, it must
be a stdio text file, opened for writing (or appending). Writing is done
sequentially (i.e., no seeking is done).
Note that if a log is wanted, and (some of) the nodes (that are mentioned
in the log) have not been assigned names, then names will automatically be
assigned (through calls to the h node get name(28) function).

Example 6.1 The following code fragment illustrates a typical compilation pro-
cess.

h_domain_t d;
FILE *log;
...
log = fopen ("mydomain.log", "w");
h_domain_set_log_file (d, log);
h_domain_triangulate (d, h_tm_clique_weight);
h_domain_compile (d);
h_domain_set_log_file (d, NULL);
fclose (log);

A file (log) is opened for writing and assigned as log file to domain d. Next, tri-
angulation, using the h tm clique weight heuristic, is performed. Then the domain
is compiled. When the compilation process has completed, the log file is closed.
Note that further writing to the log file (by HUGIN API functions) are prevented by
setting the log file of domain d to NULL.

In addition to the compilation and triangulation functions, the h node gen-
erate table(69) and h domain learn structure(124) functions also use the log
file to report errors, warnings, and other information. HUGIN API functions
that use h node generate table internally (e.g., the propagation operations
call this function when tables need to be regenerated from their models)
will also write to the log file (if it is non-NULL).

6.5 Uncompilation

x h status t h domain uncompile (h domain t domain)

Remove the data structures of domain produced by the h domain compile(75),
h domain triangulate(78), and h domain triangulate with order(78) functions.
If domain is not compiled or triangulated, nothing is done.

80

Note that any opaque references to objects within the compiled structure
(e.g., clique and junction tree objects) are invalidated by an “uncompile”
operation.

Also note that many of the editing functions described in Chapter 2 automat-
ically perform an “uncompile” operation whenever something is changed
about domain that invalidates the compiled structure. When this happens,
the domain must be recompiled (using h domain compile(75)) before it can
be used for inference.

6.6 Compression

Most of the memory consumed by a compiled domain is used to store the
belief tables for the cliques and separators in the junction tree(s). Many of
the entries in the belief tables might be zero, reflecting the fact that these
state combinations in the model are impossible. Zeros in the junction tree
tables come from logical relations within the model; logical relations can
be caused by deterministic nodes, approximation, or propagation of explicit
evidence. To conserve memory, the data elements with a value of zero can
be removed, thereby making the tables smaller. This process is called com-
pression.

x h double t h domain compress (h domain t domain)

Remove the zero entries from the clique and separator tables of the junction
trees of domain.

Compression can only be applied to (compiled) ordinary belief networks.
[Continuous nodes are allowed, but approximation only applies to configu-
rations of states of the discrete nodes.]

If domain has a memory backup (see h domain save to memory(106)), it will
be deleted as part of the compression operation.

The compression function returns a measure of the compression achieved.
This measure should be less than 1, indicating that the compressed domain
requires less memory than the uncompressed version. If the measure is
larger than 1, the compressed domain will actually use more memory than
the uncompressed version. This can happen if only a few elements of the
junction tree tables are zero, so that the space savings achieved for the tables
are dominated by the extra space required to support the more complex
table operations needed to do inference in compressed domains.

If an error occurs, h domain compress returns a negative number.

If a domain has been compressed, and more zeros have been introduced
by new evidence or approximation (Section 6.7), then the domain can be
compressed further to take advantage of the new zero entries.

81

Note that some operations, such as extracting marginal tables, cannot be
done with a compressed domain. Those operations will fail with the error
code h error compressed.

Note also that compression is only possible after compilation is completed.
This means that enough memory to store the uncompressed compiled do-
main must be available. Compression is maintained in saved domains (when
HUGIN KB files are used), making it possible to use machines with large
amounts of (virtual) memory to compile a domain and then loading the
compiled domain on machines with less memory.

The zero elements in the junction tree tables do not contribute anything to
the beliefs computed by the HUGIN inference engine. Thus, their removal
doesn’t change the results of inference. The only effect of compression is to
save memory and to speed up inference.

x h boolean t h domain is compressed (h domain t domain)

Test whether domain is compressed.

6.7 Approximation

The discrete part of a clique potential consists of a joint probability distribu-
tion over the set of state configurations of the discrete nodes of the clique.

The approximation technique — implemented in the current version of the
HUGIN API — is based on the assumption that very small probabilities in
this probability distribution reflect (combinations of) events that will hardly
ever happen in practice. Approximation is the process of setting all such
“near-zero” probabilities to zero. The primary purpose of this process is to
minimize storage consumption through compression.

It should be emphasized that this approximation technique should only be
used when one is not interested in the probabilities of unlikely states as the
relative error — although small in absolute terms — for such probabilities
can be huge. Approximation should be used only if all one is interested in is
to identify the most probable state(s) for each node given evidence.

x h double t h domain approximate
(h domain t domain, h double t ε)

The effect of this function is as follows: For each clique in domain, a value δ

is computed such that the sum of all elements less than δ in the (discrete
part of the) clique table is less than ε. These elements are then set to 0.
In effect, ε specifies the maximum probability mass to remove from each
clique.

82

Approximation can only be applied to (compiled) ordinary belief networks.
[Continuous nodes are allowed, but approximation only applies to configu-
rations of states of the discrete nodes.]

The type of equilibrium on the junction trees of domain must be ‘sum’, and
if evidence has been incorporated into the belief potentials, it must have
been done in ‘normal’ mode (Section 9.1). Also, domain must not contain
unpropagated evidence. Both of these conditions hold right after a (success-
ful) compilation, which is when an approximation is usually performed.

The approximation function returns the probability mass remaining in the
entire domain, letting you know how much precision you have “lost.” Note
that this is not the same as 1 − ε, as the ε value is relative to each clique.
Typically, the total amount of probability mass removed will be somewhat
larger than ε.

If h domain approximate fails, it returns a negative value.

The annihilation of small probabilities within the clique potentials can be
thought of as entering a special kind of evidence. As part of the approxi-
mation process, this evidence is propagated throughout the junction trees,
thereby reaching an equilibrium state on all junction trees. The joint proba-
bility of the evidence is the value returned by h domain approximate.

An approximation operation should be followed by a compression opera-
tion. If not, the approximation will be lost when the inference engine is
reset (which can, e.g., happen as part of a propagation operation when ev-
idence has been retracted and/or some conditional probability tables have
changed).

Example 6.2 Example 6.1 can be extended with approximation and compression
as follows.

h_domain_t d;
FILE *log;
...
log = fopen ("mydomain.log", "w");
h_domain_set_log_file (d, log);
h_domain_triangulate (d, h_tm_clique_weight);
h_domain_compile (d);
h_domain_set_log_file (d, NULL);
fclose (log);
h_domain_approximate (d, 1E-8);
h_domain_compress (d);
h_domain_save_as_kb (d, "mydomain.hkb", NULL);

Probability mass of ‘weight’ up to 10−8 is removed from each clique of the com-
piled domain using approximation. Then the zero elements are removed from the
clique potentials using compression. Finally, we save the domain as an HKB file
(this is necessary in order to use the compressed domain on another machine with
insufficient memory to create the uncompressed version of the domain).

83

It is difficult to give a hard-and-fast rule for choosing a good value for ε

(i.e., one that achieves a high amount of compression and doesn’t introduce
unacceptable errors). In general, the ratio between the error introduced by
the approximation process and the joint probability of the evidence obtained
when using the approximated domain should not become too large. If it
does, the evidence should be processed by the unapproximated version. A
“threshold” value for this ratio should be determined through empirical tests
for the given domain.

See [8] for an empirical analysis of the approximation method.

x h double t h domain get approximation constant
(h domain t domain)

Return the approximation constant of the most recent (explicit or implicit)
approximation operation. If an error occurs, a negative number is returned.

An implicit approximation takes place when you change some conditional
probability tables of a compressed domain, and then perform a propagation
operation. Since some (discrete) state configurations have been removed
from a compressed domain, the probability mass of the remaining config-
urations will typically be less than 1; h domain get approximation constant
will give that probability mass.

84

Chapter 7

Cliques and Junction Trees

Recall that the compilation process created a secondary structure of the be-
lief network or influence diagram. This structure, the junction tree, is used
for inference. Actually, since the network may be disconnected, there can
be more than one junction tree. In general, we will get a forest of junction
trees — except for an influence diagram, which is compiled into a single
junction tree (in order to ensure correct inference).

The cliques of the triangulated graph form the nodes of the junction trees.
The connections (called separators) between the cliques (i.e., the edges
of the junction trees) are the “communication channels” used by Collect-
Evidence and DistributeEvidence (see Chapter 9). Associated with each clique
and separator is a function from the state space of the clique/separator to
the set of (nonnegative) real numbers; this is called the (probability) po-
tential. If the input to the compilation process contains utilities, there will
be an additional potential associated with the cliques and the separators: a
utility potential which is similar to the probability potential (except that the
numbers may be negative).

The HUGIN API provides functions to access the junction forest and to tra-
verse the trees of the forest.

7.1 Types

We introduce the opaque pointer types h clique t and h junction tree t. As
the names indicate, they represent clique and junction tree objects, respec-
tively.

85

7.2 Junction trees

The HUGIN API provides a pair of functions to access the junction trees of a
compiled domain.

x h junction tree t h domain get first junction tree
(h domain t domain)

Return the first junction tree on the list of junction trees of domain. If an
error is detected (e.g., domain is not compiled), a NULL pointer is returned.

x h junction tree t h jt get next (h junction tree t jt)

Return the successor of junction tree jt; if there is no successor, NULL is
returned. If an error is detected (i.e., if jt is NULL), NULL is returned.
Another way to access junction trees is provided by the h clique get junction
tree and h node get junction tree functions.

x h junction tree t h clique get junction tree (h clique t clique)

Return the junction tree to which clique belongs. If an error is detected,
NULL is returned.

x h junction tree t h node get junction tree (h node t node)

Return the junction tree to which node belongs. If an error is detected, NULL

is returned.
As mentioned in Section 6.1, utility nodes are not present in the junction
trees. However, since influence diagram domains only have one junction
tree, h node get junction tree will return the unique junction tree of the do-
main for a utility node.
We also provide a function to access the collection of cliques comprising a
given junction tree.

x h clique t ∗h jt get cliques (h junction tree t jt)

Return a NULL-terminated list of the cliques that form the set of vertices of
junction tree jt. If an error is detected, a NULL pointer is returned.
The storage holding the list of cliques returned by h jt get cliques is owned
by the junction tree object, and should therefore not be freed by the appli-
cation.

x h clique t h jt get root (h junction tree t jt)

Return the “root” of junction tree jt. If the junction tree is undirected (which
it is unless there are decision nodes or continuous nodes involved), this is
just an arbitrarily selected clique. If the junction tree is directed, a strong
root (see [5, 9, 14, 16]) is returned (there may be more than one of those).
If an error is detected, NULL is returned.

86

7.3 Cliques

Each clique corresponds to a maximal complete set of the triangulated graph
produced by the compilation process. The members of such a set can be
retrieved from the corresponding clique object by the following function.

x h node t ∗h clique get members (h clique t clique)

Return a NULL-terminated list of the nodes comprising the members of clique.
If an error is detected, NULL is returned.
The storage holding the list of nodes is the actual member list stored within
clique, and should thus not be freed by the application.

x h clique t ∗h clique get neighbors (h clique t clique)

Return a NULL-terminated list of cliques containing the neighbors of clique
in the junction tree to which clique belongs. If an error is detected, NULL is
returned.
The storage used for holding the clique list returned by h clique get neigh-
bors is owned by clique, and should therefore not be freed by the application.

7.4 Traversal of junction trees

The h jt get root(86) and h clique get neighbors(87) functions can be used to
traverse a junction tree in a recursive fashion.

Example 7.1 The following code outlines the structure of the DistributeEvidence
function used by the propagation algorithm (see [12] for further details).

void distribute_evidence (h_clique_t self, h_clique_t parent)
{

h_clique_t *neighbors = h_clique_get_neighbors (self);
h_clique_t *n;

if (parent != 0)
/* absorb from parent */ ;

for (n = neighbors; *n != 0; n++)
if (*n != parent)

distribute_evidence (*n, self);
}
...
{

h_junction_tree_t jt;
...
distribute_evidence (h_jt_get_root (jt), 0);
...

}

87

The parent argument of distribute evidence indicates the origin of the invocation;
this is used to avoid calling the caller.

88

Chapter 8

Evidence and Beliefs

The first step of the inference process is to enter (“register”) the evidence
to the inference engine. This step does not depend on the compilation
step having been performed (i.e., evidence can be entered before or after
compilation has been done). Moreover, an “uncompile” operation (see Sec-
tion 6.5) will not remove any already entered evidence (this is worth noting
because many HUGIN API functions perform implicit “uncompile” opera-
tions).

Typically, an item of evidence has the form of a statement that a variable is
in a certain state; such evidence is entered to the HUGIN inference engine
by the h node select state(90) function for discrete nodes and by the h node
enter value(91) function for continuous nodes. However, for discrete nodes,
more general items of evidence, called “likelihoods,” can be specified: such
evidence is entered using the h node enter finding(91) function.

This chapter explains how to enter evidence to a domain, how to retrieve
beliefs from a domain, and how evidence can be saved as a text file for later
use. Chapter 9 explains how to propagate evidence in order to compute
updated beliefs.

8.1 Evidence

8.1.1 Discrete evidence

Associated with each discrete variable in a HUGIN domain model is a func-
tion that assigns a nonnegative real number to each state of the variable.
We sometimes refer to such a function as an evidence potential or a finding
vector.

If the finding vector for a node contains exactly one element with value 1,
and the value of all other elements is 0, we say that the node is instantiated.

89

The function h node select state(90) is used to instantiate a node to a specific
state.

If two or more elements of a finding vector are 1 while the rest are 0, this
represents a case where the states correponding to the 0-elements have been
found to be impossible while the states correponding to the 1-elements have
been found to be possible (with equal degree). Initially, before any evidence
has been entered, all finding vectors consist of 1s only; such evidence is
termed vacuous.
If some of the nonzero elements of a finding vector is different from 1, we
call it a likelihood. Likelihoods can be used to indicate different “degrees of
possibility” for different states.

Each finding vector should always have at least one positive element (recall
that 0-elements represent impossible states). Otherwise, the propagation
function will fail with an impossible-evidence error code.

8.1.2 Continuous evidence

Evidence for continuous nodes always take the form of a statement that a
node is known to have a specific value. Such evidence is entered using the
h node enter value(91) function.

8.2 Entering evidence

When the state of a discrete variable has been observed, this fact should be
entered into HUGIN by the following function.

x h status t h node select state (h node t node, size t state)

Select state state of node node (which must be a discrete chance or decision
node). This is equivalent to specifying the finding value 1 for state state and
0 for all other states (see also h node enter finding below).

The enumeration of the states of a node follows traditional C conventions;
i.e., the first state has index 0, the second state has index 1, etc. So, if node
has n states, then state should be a nonnegative integer smaller than n.

Example 8.1 The following code

h_domain_t d = h_kb_load_domain ("mydomain.hkb", NULL);
h_node_t n = h_domain_get_node_by_name (d, "input");

h_node_select_state (n, 0);
...

loads a domain and enters the observation that node input is in state 0.

90

If the evidence (e.g., likelihood evidence) is not a simple instantiation, then
the function h node enter finding should be called, once for each state of the
node, giving the finding value for the state.

Please note that selecting a state of a decision node corresponds to the act of
making a decision. Thus, evidence entered to a decision node must always
constitute an instantiation of that node.

x h status t h node enter finding
(h node t node, size t state, h number t value)

Specify the indicated finding value for state state of node (which must be
a discrete chance or decision node); value must be nonnegative, and state
must specify a valid state of node.

To specify evidence for a continuous node, the following function must be
used.

x h status t h node enter value (h node t node, h double t value)

Specify that the continuous node node has the value value.

Note that inference is not automatically performed when evidence is entered
(not even when the domain is compiled). To get the updated beliefs, you
must explicitly call a propagation function (see Section 9.2).

8.2.1 About likelihood evidence

“Evidence” that can be inferred (as beliefs) from other evidence by HUGIN
within the given domain model should not be entered as likelihood evi-
dence. Only evidence that cannot be directly presented to HUGIN should be
represented as a likelihood.

If you have several independent observations to be presented as likelihoods
to HUGIN for the same node, you have to multiply them yourself; each call
to h node enter finding overrides the previous finding value stored for the
indicated state. The h node get entered finding(95) function can be conve-
niently used for the accumulation of a set of likelihoods.

8.3 Retracting evidence

If an already entered observation is found to be invalid, it can be retracted
by the following function.

x h status t h node retract findings (h node t node)

Retract all findings for node. [If node is discrete, this is equivalent to setting
the finding value to 1 for all states of node.]

91

x h status t h domain retract findings (h domain t domain)

Retract findings for all nodes of domain. This is useful when, e.g., a new set
of observations should be entered; see also h domain initialize(106).

In addition to h node retract findings, h domain retract findings, and h do-
main initialize (and deletion of domains and nodes, of course), the h node
set number of states(25) function deletes evidence when the number of states
of a (discrete) node is changed.

Example 8.2 The code

...
d = h_kb_load_domain ("mydomain.hkb", NULL);
n = h_domain_get_node_by_name (d, "input");
h_node_select_state (n, 0);
...
h_node_retract_findings (n);

enters the observation that the discrete node input is in state 0; later, that obser-
vation is retracted, returning the node input to its initial status.

8.4 Retrieving beliefs

When the domain has been compiled (see Chapter 6) and the evidence prop-
agated (see Chapter 9), the calculated beliefs can be retrieved using the
functions described in this section.

x h number t h node get belief (h node t node, size t state)

The belief in state state for the discrete chance node node is returned unless
an error is detected (e.g., state is an invalid state, or node is not a discrete
chance node); in that case, a negative number is returned.

Note that if evidence has been entered since the most recent propagation,
the beliefs returned by this function may not be up-to-date.

The beliefs in the states of a node may form a probability distribution for
the node. However, other possibilities exist, determined by the propagation
method used; see Chapter 9 for details.

Example 8.3 A sample use of a domain could be

h_domain_t d;
h_node_t n;
int i, k;
...
n = h_domain_get_node_by_name (d, "input");
h_node_select_state (node, 0);
h_domain_propagate (d, h_equilibrium_sum, h_mode_normal);

92

n = h_domain_get_node_by_name (d, "output");
k = h_node_get_number_of_states (n);
for (i = 0; i < k; i++)

printf ("P(output=%d|input=0) = %g\n", i,
h_node_get_belief (n, i));

....

This code enters the observation that node input is in state 0; this observation
is then propagated to the remaining nodes, using h domain propagate(101); finally,
the revised beliefs (the conditional probabilities given the observation) for node
output are displayed.

For continuous nodes, the beliefs computed take the form of the mean and
variance of the distribution of the node given the evidence.

x h double t h node get mean (h node t node)

Return the mean of the marginal distribution of the continuous node node.

x h double t h node get variance (h node t node)

Return the variance of the marginal distribution of the continuous node
node.

Note that the marginal distribution of node is not necessarily a Gaussian
distribution. In general, it will be a mixture of several Gaussians. See the
h node get distribution(94) function for how to access the individual compo-
nents of the mixture.

Sometimes, the joint distribution over a set of nodes is desired:

x h table t h domain get marginal
(h domain t domain, h node t ∗nodes)

This function computes the marginal table for the NULL-terminated list nodes1

of distinct chance nodes with respect to the (imaginary) joint potential, de-
termined by the current potentials on the junction tree(s) of domain. If the
nodes list contains continuous nodes, they must be last in the list. This op-
eration is not allowed on compressed domains. If an error occurs, a NULL

pointer is returned.

The fact that the marginal is computed based on the current junction tree
potentials implies that the “equilibrium” and “evidence incorporation mode”
(see Section 9.1) for the marginal will be as specified in the propagation that
produced the current junction tree potentials.

If the nodes list contains continuous nodes, the marginal will in general
be a so-called weak marginal (see [5, 14, 16]). This means that only the

1In the current implementation, all nodes in the list nodes must belong to the same junc-
tion tree.

93

means and the (co)variances are computed, not the full distribution. In
other words, the marginal is not necessarily a multi-variate normal distri-
bution with the indicated means and (co)variances (in general, it is a mix-
ture of such distributions). Also note that if the discrete probability is zero,
then the mean and (co)variances are essentially random numbers (HUGIN
doesn’t bother computing zero components of a distribution).

The table returned by h domain get marginal will be owned by the applica-
tion; the application should deallocate it using h table delete(52) after use.

See Chapter 4 for information on how to manipulate h table t objects.

x h table t h node get distribution (h node t node)

This function computes the distribution for the continuous node node. No
value must have been propagated for node. If an error occurs, a NULL pointer
is returned.

The distribution for a CG node is in general a mixture of several Gaussian
distributions. What h node get distribution really computes is a joint distri-
bution for node and a set of discrete nodes. The set of discrete nodes is cho-
sen such that the computed marginal is a strong marginal (see [5, 14, 16]),
but the set is not necessarily minimal.

As is the case for the h domain get marginal function, the means and vari-
ances corresponding to zero probability components are arbitrary numbers.

The table returned by h node get distribution will be owned by the applica-
tion; the application should deallocate it using h table delete(52) after use.

Example 8.4 The following code prints out the components that form the (mix-
ture) distribution for a continuous node. Each component is a (one-dimensional)
Gaussian distribution.

h_node_t n;
...
printf ("Distribution for %s:\n", h_node_get_name (n));
{

h_table_t t = h_node_get_distribution (n);
size_t k, s = h_table_get_size (t);
h_number_t *p = h_table_get_data (t);

for (k = 0; k < s; k++)
if (p[k] > (h_number_t) 0)

printf ("%g * Normal (%g, %g)\n",
(double) p[k],
(double) h_table_get_mean (t, k, n),

(double) h_table_get_variance (t, k, n));

(void) h_table_delete (t);
}

94

Note that we ignore the zero components of the distribution. (The table functions
used are described in Chapter 4.)

8.5 Retrieving expected utilities

In influence diagrams, we will want to retrieve the expected utility associ-
ated with the alternatives of a decision variable.

x h number t h node get expected utility (h node t node, size t state)

The expected utility associated with action state for decision node node is
returned.
If an error is detected, a negative value is returned, but this is not of any use
for error detection, since any real value is a valid utility. Thus, errors must
be checked for using the h error code(11) function.
The h node get expected utility function can only be used when the underly-
ing domain is compiled. Also, in order for the returned value to be mean-
ingful, a number of constraints must be satisfied. See Section 9.1.3 for more
information.

8.6 Examining evidence

The HUGIN API provides functions to access the evidence currently regis-
tered at the nodes of a domain. Functions to determine the type of evidence
(non-vacuous or likelihood) are also provided.
The node argument of the functions described in this section must be a
chance or a decision node. The functions having “propagated” in their names
require the underlying domain to be compiled; the functions having “en-
tered” in their names do not.

x h number t h node get entered finding (h node t node, size t state)

Retrieve the finding value currently registered at the discrete node node for
state state. If an error is detected, a negative value is returned.

x h number t h node get propagated finding
(h node t node, size t state)

Retrieve the finding value incorporated within the current junction tree po-
tentials for state state of the discrete node node. If an error is detected, a
negative value is returned.

x h double t h node get entered value (h node t node)

Retrieve the entered value for the continuous node node. If no value has
been entered, a usage error code is set and a negative number is returned.

95

However, since a negative number is a valid value for a continuous node,
checking for errors must be done using h error code(11) and friends.

x h double t h node get propagated value (h node t node)

Retrieve the value that has been propagated for the continuous node node.
If no value has been propagated, a usage error code is set and a negative
number is returned. However, since a negative number is a valid value for
a continuous node, checking for errors must be done using h error code(11)

and friends.

x h boolean t h node evidence is entered (h node t node)

Is the evidence potential, currently registered at node node (which must be
a chance or a decision node), non-vacuous?

x h boolean t h node likelihood is entered (h node t node)

Is the evidence potential, currently registered at node node (which must be
a chance or a decision node), a likelihood?

x h boolean t h node evidence is propagated (h node t node)

Is the evidence potential for node node (which must be a chance or a de-
cision node), incorporated within the current junction tree potentials, non-
vacuous?

x h boolean t h node likelihood is propagated (h node t node)

Is the evidence potential for node node (which must be a chance or a deci-
sion node), incorporated within the current junction tree potentials, a like-
lihood?

8.7 Case files

When evidence has been entered to a set of nodes, it can be saved to a file.
Such a file is known as a case file. The HUGIN API provides functions for
reading and writing case files.

A case file is a text file. The format (i.e., syntax) of a case file can be de-
scribed by the following grammar.

〈Case file〉 → 〈Node finding〉*

〈Node finding〉 → 〈Node name〉:〈Value〉

〈Value〉 → 〈State index〉 | 〈Likelihood〉
| 〈Label〉 | 〈Real number〉 | true | false

96

〈State index〉 → #〈Integer〉

〈Likelihood〉 → (〈Nonnegative real number〉*)

where:

• 〈State index〉 is a valid specification for any discrete (i.e., non-CG)
node. The index is interpreted as if specified as the last argument to
h node select state(90) for the named node.

• 〈Likelihood〉 is also a valid specification for all discrete nodes. A non-
negative real number must be specified for each state of the named
node (and at least one of the numbers must be positive).

• 〈Real number〉 is a valid specification for CG, numbered, and interval
nodes. For numbered and interval nodes, the acceptable values are
defined by the state values of the named node.

• 〈Label〉 is a valid specification for labeled nodes. The label (a double-
quoted string) must match a unique state label of the named node.

• true and false are valid specifications for boolean nodes.

Comments can be included in the file. Comments are specified using the %
character and extends to the end of the line. Comments are ignored by the
case file parser.

Example 8.5 The following case file demonstrates the different ways to specify
evidence: A, B, and C are labeled nodes with states yes and no; D is a boolean
node; E is a numbered node; F is an interval node; and G is a CG node.

A: "yes"
B: #1 % equivalent to "no"
C: (.3 1.2) % likelihood
D: true
E: 2
F: 3.5
G: -1.4

x h status t h domain save case
(h domain t domain, h string t file name)

Create a case file named file name. (Note: If a file named file name already
exists and is not write-protected, it is overwritten.) The case file will contain
the evidence currently entered in domain. The contents is text conforming
to the above described format.

97

Note that if (some of) the nodes with evidence have not been assigned
names, then names will automatically be assigned (through calls to the
h node get name(28) function).

x h status t h domain parse case
(h domain t domain, h string t file name,

void (∗error handler) (h location t, h string t, void ∗),
void ∗data)

This function parses the case stored in the file with name file name. The
evidence stored in the case is entered into domain. All existing evidence in
domain is retracted before entering the new evidence.

The error handler and data arguments are used for error handling. This is
similar to the error handling done by the other parse functions. See Sec-
tion 12.8 for further information.

In case of errors, no evidence will be entered.

98

Chapter 9

Inference

After evidence has been entered into a domain, we want to get the revised
beliefs for some or all nodes of the domain. This is done by incorporating
the specified evidence into the junction tree potentials and performing a
two-pass propagation operation on the junction tree(s). The two passes are
known as CollectEvidence and DistributeEvidence, respectively. The Collect-
Evidence operation proceeds inwards from the leaves of the junction tree to
a root clique, which has been selected in advance; the DistributeEvidence
operation proceeds outwards from the root to the leaves.
This scheme for incorporation and propagation of evidence has been de-
scribed in many places. See, for example, [5, 6, 7, 10, 12, 13, 14].
The HUGIN API defines the functions h domain propagate(101) and h jt prop-
agate(102) that provide this evidence propagation scheme.

9.1 Propagation methods

The collect/distribute propagation scheme can be used to compute many
different kinds of information.

9.1.1 Summation and maximization

One can think of a propagation as the computation of certain marginals of
the full joint probability distribution over all variables. As is well-known, the
distribution of an individual variable can be found by summing/integrating
out all other variables of this joint probability distribution.
However, we might also be interested in the probability, for each state of
a given variable, of the most probable configuration of all other variables.
Again, we can compute these probabilities from the joint probability distri-
bution over all variables. But this time, we “max out” the other variables
(i.e., we take the maximum value over the set of relevant configurations).

99

It turns out that both kinds of marginals can be computed by the collect/dis-
tribute propagation method by a simple parametrization of marginalization
method.
When a propagation has been successfully completed, we have a situation
where the potentials on the cliques and separators of the junction tree are
consistent, meaning that the marginal on a set S of variables can be com-
puted from the potential of any clique or separator containing S. We also
say that we have established equilibrium on the junction tree; the equilibria,
discussed above, are called sum-equilibrium and max-equilibrium, respec-
tively.
The HUGIN API introduces an enumeration type to represent the equilib-
rium. This type is called h equilibrium t. The values of this type are de-
noted by h equilibrium sum and h equilibrium max.

9.1.2 Evidence incorporation mode

The traditional way to incorporate (discrete) evidence into a junction tree is
to first multiply each evidence potential onto the potential of some clique;
when this has been done, the actual propagation is performed. This mode
of evidence incorporation is called the normal mode.
An alternative way to incorporate evidence is to multiply the evidence po-
tentials onto the clique potentials during the propagation. If this is done in
the correct places, the equilibrium achieved will have the following property.
Assuming a sum-propagation, the resulting potential on a set V of variables
(clique, separator, or a single variable) will be the marginal probability for V

given evidence on all variables except the variables in V itself. Since this is
similar to the retraction of evidence (and accompanying propagation) for
each variable, this mode is known as the fast-retraction mode of evidence
incorporation.
A fast-retraction propagation can be useful to identify suspicious findings.
If the observation made on a variable has a very small probability in the
probability distribution obtained by incorporation of evidence on the other
variables, then quite likely something is wrong with the observation. (An-
other way to identify suspicious findings is to the use the notion of conflict;
see Section 9.3).
If each item of evidence is a single-state observation for a single variable,
then the equilibrium achieved with a normal mode propagation will give
no useful information about the observed variables. In such cases, it would
be tempting to always choose a fast-retraction propagation. However, one
should be aware of the following facts: (1) a fast-retraction propagation
may fail due to logical relations in the domain model; (2) fast-retraction
propagations are not available for compressed domains, domains with con-
tinuous variables, or influence diagrams.

100

The fast-retraction propagation is described in [4, 7].
The HUGIN API also introduces an enumeration type to represent the ev-
idence incorporation mode. This type is called h evidence mode t. The
values of this type are denoted by h mode normal and h mode fast retrac-
tion.

9.1.3 Inference in influence diagrams

There are two purposes for doing inference in influence diagrams: (1) to
compute revised beliefs for chance nodes given evidence, as usual, and
(2) to compute the expected utilities of different decision alternatives.
The computation of revised beliefs in influence diagrams is done in the
same way as for ordinary belief networks, except that uninstantiated de-
cision nodes are treated as chance nodes with a uniform distribution. This
works as expected, even when the temporal ordering of observations and
decisions in the influence diagram specification is not respected.
The computation of expected utilities requires, however, that the temporal
ordering of observations and decisions is respected. This means (using the
terminology of Section 6.1) that for the expected utilities of the alternatives
of decision Di to make sense, the chance variables of C0, . . . , Ci−1, and the
decisions D1, . . . , Di−1 must be instantiated. Note that the evidence on
these variables cannot be arbitrary, it has to consist of instantiations only.

9.2 Propagation

x h status t h domain propagate
(h domain t domain, h equilibrium t equilibrium,

h evidence mode t evidence mode)

Establish the specified equilibrium using the evidence mode indicated for
incorporation of evidence on all junction trees of domain. Moreover, revised
beliefs will be computed for all nodes.
If domain contains decisions, utilities, or continuous nodes, equilibrium must
be h equilibrium sum and evidence mode must be h mode normal.
The h domain propagate function first checks whether some models (see
Chapter 5) have changed. If this is the case, the corresponding tables
are regenerated (using h node generate table(69)). Next, if some utility or
conditional probability tables have changed, or if evidence has previously
been propagated and some of this evidence has been retracted, the initial a
priori distribution will be established (in the latter case, having a memory
backup of the junction tree tables will speed up this operation — see h do-
main save to memory(106)); then all evidence entered will be propagated.

101

Otherwise, an incremental propagation is performed from the current dis-
tribution, trying to avoid as much unnecessary work as possible.

If an error is detected during the propagation, the initial (a priori) distribu-
tion will be established. Since this could fail, the application should check
the state of the inference engine using the functions in Section 9.6. The
evidence entered will never be changed by any propagation function.

If the propagation fails, the error code (in addition to the general error
conditions such as ‘usage’ and ‘out-of-memory’) can be:

h error fast retraction A fast-retraction propagation has failed due to log-
ical relations within the domain model.

h error inconsistency or underflow Some probability potential has degen-
erated into a zero-potential (i.e., with all values equal to zero). This
is almost always due to evidence that is considered ‘impossible’ (i.e.,
its probability is zero) by the domain model. (In theory, it can also
be caused by underflow in the propagation process, but this ‘never’
happens in practice.)

h error overflow Overflow has occurred in the propagation process (caused
by operations the purpose of which was to avoid underflow). This is a
very unlikely error.

Example 9.1 The code extract

h_domain_t d = h_kb_load_domain ("mydomain.hkb", NULL);
enter_data (d);
if (h_domain_propagate

(d, h_equilibrium_sum, h_mode_normal) != 0)
/* handle error */ ;

use_results (d);

first loads a domain and enters a number of findings (in the application-defined
function enter data), then updates the domain to reflect the data entered (using h
domain propagate), and finally uses the results (in the application-defined function
use results).

It is also possible to perform inference on individual junction trees:

x h status t h jt propagate
(h junction tree t jt, h equilibrium t equilibrium,

h evidence mode t evidence mode)

The meaning of the arguments and return value is similar to the meaning of
the arguments and return value of the h domain propagate(101) function.

102

9.3 Conflict of evidence

An alternative to a fast-retraction propagation to identify suspicious findings
is to use the concept of conflict.
Given n items of evidence, e1, . . . , en, we define the conflict measure for
this set of findings as

P(e1) × · · · × P(en)

P(e1, . . . , en)

It turns out that this can be computed within the propagation process with
virtually no overhead.

More details can be found in [11]. Note that in the paper, the definition of
conflict includes the logarithm of the above ratio.

The current implementation of the HUGIN API does not support calculation
of conflicts when CG evidence has been propagated.

You get the above defined conflict value by using the following function.

x h double t h domain get conflict (h domain t domain)

Return the conflict value for domain computed during the most recent prop-
agation; if no propagation has been performed, 1 is returned. In case of
errors, a negative number is returned.

The conflict value for a domain is the product of the conflict values for the
individual junction trees of the domain. The following function returns the
conflict for a single junction tree.

x h double t h jt get conflict (h junction tree t jt)

Return the conflict value for junction tree jt computed during the most re-
cent propagation; if no propagation has been performed, 1 is returned. In
case of errors, a negative number is returned.

In order to get the conflict value determined by the initial (a priori) prob-
ability distribution, you must call the following function before performing
the propagation.

x h status t h domain reset inference engine (h domain t domain)

Establish the initial state of the inference engine: sum-equilibrium with no
evidence incorporated. Any propagated findings will thus be removed from
the junction tree potentials, but entered findings will still be “registered”
(i.e., they will be incorporated in the next propagation).

Example 9.2 The following code outlines the proper way of computing conflicts.

h_domain_t d;
...

103

/* enter evidence */
h_domain_reset_inference_engine (d);
h_domain_propagate (d, h_equilibrium_sum, h_mode_normal);
printf ("Conflict of evidence: %g\n",

h_domain_get_conflict (d));

This code first enters evidence into the domain, then ensures that the inference en-
gine is in the initial state. Next, a propagation is performed. After the propagation,
the overall conflict value is retrieved and printed.

9.4 The normalization constant

When the collection phase of a sum-propagation operation has been com-
pleted, the normalization constant µ for the root clique is equal to the prob-
ability of the evidence propagated:

µ = P(E)

(where E denotes the evidence.)
For a max-propagation, the normalization constant is the probability of the
most probable configuration with the evidence incorporated:

µ = P(most probable configuration|E)P(E)

This information is quite useful in many applications, so we provide func-
tions to access this constant and its logarithm:

x h double t h domain get normalization constant
(h domain t domain)

x h double t h domain get log normalization constant
(h domain t domain)

If no propagation has been performed, the normalization constant will be 1.
If an error occurs, h domain get normalization constant will return a nega-
tive number, and h domain get log normalization constant will return a pos-
itive number.
If each item of evidence is propagated individually, the conditional proba-
bility for some item of evidence given the previously propagated items is
equal to the ratio of the normalization constants taken before and after the
propagation of the item of evidence in question. In other words, the h do-
main get normalization constant function always returns the joint probabil-
ity of all evidence propagated.
If many findings are propagated, the normalization factor can become very
small. If care is not taken, the probabilities stored in the clique and sepa-
rator tables can vanish (become zero). HUGIN makes sure that this does

104

not happen for ‘possible’ evidence (i.e., evidence with a positive probabil-
ity). This implies that the normalization constant will always be positive.
However, due to the finite precision of floating-point numbers, this number
may underflow to zero (i.e., the normalization constant is smaller than the
smallest positive floating-point number representable within the h double t
type). In this case, h domain get log normalization constant can be used
(this function will return the correct value for all successful propagations).

[Note that if the propagation terminates with an error code (e.g., indicating
‘impossible-evidence’), the inference engine will be reset to its initial state.
In this state, no evidence is incorporated; thus, h domain get normalization
constant will return 1.]

If approximation is used, the normalization constant should be compared to
the error introduced by the approximation process — see h domain get ap-
proximation constant(84). If the probability of the evidence is larger than
the approximation error, you’re quite safe; if it is smaller, you should con-
sider propagation within the original (unapproximated) model to get more
accurate answers. See also Section 6.7.

If likelihood evidence has been propagated, we also have to be careful. As
an example, consider a binary variable: The likelihoods 〈1

2 , 1〉 and 〈1, 2〉 pro-
duce the same beliefs, but the normalization constant produced will not be
the same. To be able to interpret the normalization constant as a “proba-
bility,” we need to have a well-defined scale for all evidence potentials; one
way to accomplish this is to ensure that the maximum value for all evidence
potentials is 1 (but note that for two items of likelihood evidence, E1 and E2,
for the same node, the equality P(E1,E2) = P(E1 |E2)P(E2) does not neces-
sarily hold, even with this convention). Note that HUGIN does not attempt
to enforce such a convention.

If CG evidence has been propagated, the normalization constant will be pro-
portional to the density at the observed values of the continuous nodes (the
proportionality constant will be the conditional probability of the discrete
evidence given the CG evidence). The density depends directly on the scale
chosen for the continuous variables: Assume that the scale of some continu-
ous variable is changed from centimeter [cm] to millimeter [mm]; this will
cause the density values for that variable to be reduced by a factor of ten. So
you will probably only use the normalization constant to compare different
sets of findings; the absolute value won’t mean much by itself.

9.5 Initializing the domain

When evidence has been changed or retracted, the inference engine needs
to revert to the initial (a priori) distribution. This can either be done by
recomputing the junction tree tables from the user-specified tables (the con-

105

ditional probability and utility potentials) or by reloading from a memory
copy of the junction tree tables. If sufficient memory is available, this option
will speed up inference for the cases where the initial distribution is needed.

x h status t h domain save to memory (h domain t domain)

Create a copy in memory of the belief and junction tree tables of the com-
piled domain domain. (This will approximately double the memory con-
sumption of domain.)

The h domain save to memory operation can only be performed, if the cur-
rent equilibrium is ‘sum’, the current evidence incorporation mode is ‘nor-
mal’ (see Section 9.1), and no CG evidence has been incorporated. The
current version of the HUGIN API allows saving to memory when discrete
evidence have been incorporated, but this is highly discouraged as the evi-
dence is not saved together with the memory backup. Future versions of the
HUGIN API may elect to disallow incorporated evidence for this function.

Once a memory backup has been created, it will be kept up-to-date when,
e.g., some of the conditional probability or utility tables change. When a
memory backup is updated, it will be done without any evidence incorpo-
rated.

The memory backup will be deleted as part of the “uncompilation” (see Sec-
tion 6.5) and compression (see Section 6.6) operations. Thus, it is necessary
to recreate the memory backup after a recompilation or a compression op-
eration.

The h domain save to memory function is typically called right after a com-
pilation or right after a (compiled) domain has been loaded.

x h status t h domain initialize (h domain t domain)

Establish the initial values for all tables of the compiled domain domain. (If
an up-to-date memory backup exists, this is accomplished by simply load-
ing the tables from the backup. Otherwise, the initial values are computed
from the conditional probability and utility potentials, which may have to
be regenerated from their models.)

Using this function will erase all evidence previously entered.

A h domain initialize operation is equivalent to a h domain retract findings(92)

operation followed by either a h domain reset inference engine(103) opera-
tion or a sum-propagation.

Example 9.3 The code extract

h_domain_t d = h_kb_load_domain ("mydomain.hkb", NULL);
int done = 0;

while (!done)

106

{
h_domain_initialize (d);
done = perform_experiment (d);

}
...

loads a domain and then repeatedly performs some experiment on the domain, us-
ing the application-defined function perform experiment, until the experiment sat-
isfies some requirement. The domain is initialized before each experiment starts so
that each experiment is carried out with the domain in its initial state.

9.6 Querying the state of the inference engine

The HUGIN API provides several functions that enables the API user to de-
termine the exact state of the inference engine. The following queries can
be answered:

• Which type of equilibrium is the junction tree(s) currently in?

• Which evidence incorporation mode was used to obtain the equilib-
rium?

• Has evidence been propagated?

• Has any likelihood evidence been propagated?

• Is there any unpropagated evidence?

x h boolean t h domain equilibrium is
(h domain t domain, h equilibrium t equilibrium)

Test if the equilibrium of all junction trees of domain is equilibrium.

x h boolean t h jt equilibrium is
(h junction tree t jt, h equilibrium t equilibrium)

Test if the equilibrium of junction tree jt is equilibrium.

x h boolean t h domain evidence mode is
(h domain t domain, h evidence mode t mode)

Test if the equilibrium of all junction trees of domain could have been ob-
tained through a propagation using mode as the evidence incorporation
mode.

107

Note that without evidence, there is no difference between the equilibria
produced via ‘normal’ or ‘fast-retraction’ propagations.

x h boolean t h jt evidence mode is
(h junction tree t jt, h evidence mode t mode)

Test if the equilibrium of junction tree jt could have been obtained through
a propagation using mode as the evidence incorporation mode.

x h boolean t h domain evidence is propagated (h domain t domain)

Test if evidence has been propagated for domain.

x h boolean t h jt evidence is propagated (h junction tree t jt)

Test if evidence has been propagated for junction tree jt.

x h boolean t h domain likelihood is propagated
(h domain t domain)

Test if likelihood evidence has been propagated for domain.

x h boolean t h jt likelihood is propagated (h junction tree t jt)

Test if likelihood evidence has been propagated for junction tree jt.

x h boolean t h domain cg evidence is propagated
(h domain t domain)

Test if CG evidence has been propagated for domain.

x h boolean t h jt cg evidence is propagated (h junction tree t jt)

Test if CG evidence has been propagated for junction tree jt.

x h boolean t h domain evidence to propagate (h domain t domain)

Test if there is any node with changed evidence compared to the most recent
propagation (if any). If there was no previous propagation, this is equivalent
to testing if there is any node in domain with evidence.

x h boolean t h jt evidence to propagate (h junction tree t jt)

Test if there is any node in the junction tree jt with new evidence as com-
pared to the evidence propagated.

x h boolean t h node evidence to propagate (h node t node)

Is the entered and propagated evidence for node (which must be a chance
or a decision node) different?

108

x h boolean t h domain tables to propagate (h domain t domain)

Are there any nodes in domain having a (conditional probability or utility)
table that has changed since the most recent compilation or propagation
operation?

x h boolean t h jt tables to propagate (h junction tree t jt)

Similar to h domain tables to propagate, but specific to the junction tree jt.

9.7 Simulation

Given evidence, we may be interested in generating (sampling) configura-
tions (i.e., vectors of values over the set of variables in the network) with
respect to the conditional distribution for the evidence.

x h status t h domain simulate (h domain t domain)

If domain is compiled, sample a configuration with respect to the current
distribution on the junction tree(s). This distribution must be in sum-equi-
librium with evidence incorporated in ‘normal’ mode. Only propagated evi-
dence is taken into account; models and tables that have changed since the
most recent propagation operation, and unpropagated evidence are ignored.
If domain is an influence diagram, then all decisions must be instantiated
(and propagated).

If domain is not compiled, sample a configuration using the conditional
probability distributions of the (chance) nodes in the network of domain.
This network must be an acyclic directed graph (i.e., it cannot have any cy-
cles or undirected edges). All chance nodes must have valid conditional
probability distributions, and the set of nodes with evidence must form
an ancestral set of instantiated nodes (i.e., no likelihood evidence, and if
a chance node is instantiated, so are all of its parents). If domain is an influ-
ence diagram, then all decisions must be instantiated. Conditional probabil-
ity tables that are not up-to-date with respect to their models (see Chapter 5)
are not regenerated.

The sampled configuration is obtained using the following functions.

x h index t h node get sampled state (h node t node)

Retrieve the state index of the discrete chance or decision node node within
the configuration generated by the most recent call to h domain simulate.1

On error, a negative number is returned.

1This function used to be called h node get selection. For backwards compatibility, the old
function name is also provided.

109

x h double t h node get sampled value (h node t node)

Retrieve the value of the continuous node node within the configuration
generated by the most recent call to h domain simulate. If an error occurs,
a negative number is returned. But since negative numbers are legitimate
outcomes for continuous variables, errors must be checked for using h error
code(11) and related functions.

The configurations generated by h domain simulate are not really random.
They are generated using a pseudorandom number generator producing a
sequence of numbers that although it appears random is actually completely
deterministic. To change the starting point for the generator, use the follow-
ing function.

x h status t h domain seed random
(h domain t domain, unsigned long seed)

Seed the pseudorandom number generator used by h domain simulate with
seed.

110

Chapter 10

Sequential Updating of
Conditional Probability Tables

This chapter describes the facilities for using data to sequentially update the
conditional probability tables for a domain when the graphical structure and
an initial specification of the conditional probability distributions have been
given in advance.

Sequential updating makes it possible to update and improve these condi-
tional probability distributions as observations are made. This is especially
important if the model is incomplete, the modeled domain is drifting over
time, or the model quite simply does not reflect the modeled domain prop-
erly.

The sequential learning method implemented (also referred to as adapta-
tion) was developed by Spiegelhalter and Lauritzen [24]. See also Cowell et
al [5] and Olesen et al [18].

Spiegelhalter and Lauritzen introduced the notion of experience. The expe-
rience is the quantitative memory which can be based both on quantitative
expert judgment and past cases. Dissemination of experience refers to the
process of calculating prior conditional distributions for the variables in the
belief network. Retrieval of experience refers to the process of calculating
updated distributions for the parameters that determine the conditional dis-
tributions for the variables in the belief network.

10.1 Experience counts and fading factors

The adaptation algorithm will update the conditional probability distribu-
tions of a belief network in the light of inserted and propagated evidence.
Adaptation can be applied to discrete chance variables only.

111

The experience for a given node is represented as a set of experience counts
α0, . . . , αn−1, where n is the number of configurations of the parents of the
node and αi > 0 for all i; αi corresponds to the number of times the parents
have been observed to be in the ith configuration. However, note that the
“counts” don’t have to be integers — they can be arbitrary (positive) real
numbers (non-integer counts can arise because of incomplete case data).

The experience counts are stored in a table:

x h table t h node get experience table (h node t node)

This function returns the experience table of node (which must be a discrete
chance node). If node doesn’t have an experience table, then one will be
created. The order of the nodes in the experience table is the same as the
order of the parents of node in the conditional probability table of node.

When an experience table is created, it is filled with zeros. Since zero is an
invalid experience count, positive values must be stored in the table before
adaptation can take place. If a database of cases is available, then the EM
algorithm can be used to get initial experience counts (see Section 11.5).

The adaptation algorithm will only adapt conditional distributions corre-
sponding to parent configurations having a positive experience count. All
other configurations (including all configurations for nodes with no experi-
ence table) are ignored. This convention can be used to turn on/off adapta-
tion at the level of individual parent configurations: Setting an experience
count to a positive number will turn on adaptation for the associated parent
configuration; setting the experience count to zero or a negative number
will turn it off.

Note that the table returned by h node get experience table is the table stored
within node (and not a copy of that table). This implies that the experience
counts for node can be modified using functions that provide access to the
internal data structures of tables (see Chapter 4).

Experience tables can be deleted using the h table delete(52) function. Note
that this will turn off adaptation for the node associated with the experience
table.

x h table t h node has experience table (h node t node)

This function tests whether node has an experience table.

The adaptation algorithm also provides an optional fading feature. This
feature reduces the influence of past (and possibly outdated) experience in
order to let the domain model adapt to changing environments. This is
done by discounting the experience count αi by a fading factor λi, which is
a positive real number less than but typically close to 1. The true fading
amount is made proportional to the probability of the parent configuration
in question. To be precise: If the probability of the ith parent configuration

112

given the propagated evidence is pi, then αi is multiplied by (1 − pi) + piλi

before adaptation takes place. Note that experience counts corresponding
to parent configurations that are inconsistent with the propagated evidence
(i.e., configurations with pi = 0) remain unchanged.

The fading factor λi can be set to 1: this implies that cases are accumulated
(that is, no fading takes place). Setting λi to a value greater than 1 or less
than or equal to 0 will disable adaptation for the ith parent configuration
(just as setting αi to an invalid value will).

The fading factors are also stored in a table:

x h table t h node get fading table (h node t node)

This function returns the fading table of node (which must be a discrete
chance node). If node doesn’t have a fading table, then one will be created.
The order of the nodes in the fading table is the same as the order of the par-
ents of node in the conditional probability table of node (which is identical
to the order of nodes in the experience table).

When a fading table is created, all entries are initially set to 1. This has the
same affect as if no fading table were present. To get fading, values between
0 and 1 must be stored in the table.

The table returned by h node get fading table is the table stored within node
(and not a copy of that table). This implies that the fading factors for node
can be modified using functions that provide access to the internal data
structures of tables (see Chapter 4).

Like experience tables, fading tables can also be deleted using the h table
delete(52) function. Note that fading tables are not automatically deleted
when the corresponding experience tables are deleted. The fading tables
must be explicitly deleted.

x h table t h node has fading table (h node t node)

This function tests whether node has a fading table.

Example 10.1 The following code loads the Asia domain [17], enables adapta-
tion for all nodes except E (we delete the experience table of E, if it has one): If
some node (besides E) doesn’t have an experience table, we create one and set all
entries of the table to 10.

h_domain_t d = h_kb_load_domain ("Asia.hkb", NULL);
h_node_t E = h_domain_get_node_by_name (d, "E");
h_node_t n = h_domain_get_first_node (d);

for (; n != 0; n = h_node_get_next (n))
if (n != E && !h_node_has_experience_table (n))
{

h_table_t t = h_node_get_experience_table (n);

113

h_number_t *data = h_table_get_data (t);
size_t k = h_table_get_size (t);

for (; k > 0; k--, data++)
*data = 10.0;

}

if (h_node_has_experience_table (E))
h_table_delete (h_node_get_experience_table (E));

10.2 Updating tables

When experience tables (and optionally fading tables) have been created
and their contents specified, then the model is ready for adaptation.

An adaptation step consists of entering evidence, propagating it, and, finally,
updating (adapting) the conditional probability and experience tables. The
last substep is performed using the following function.

x h status t h domain adapt (h domain t domain)

This function updates (adapts), for all nodes of domain, the experience
count (retrieval of experience) and the conditional probability distribution
(dissemination of experience) for all parent configurations having a valid
experience count and a valid fading factor.

This adaptation is based on the currently propagated evidence (hence do-
main must be compiled). The evidence must have been propagated with
equilibrium equal to ‘sum’ and evidence-incorporation-mode equal to ‘nor-
mal’ (see Section 9.1). Moreover, the current junction tree potentials must
have been derived from the current conditional probability distributions
(the h domain tables to propagate(109) function tests this condition). Note
that the latter condition implies that the h domain adapt function cannot
be (successfully) called before the updated distributions have been incorpo-
rated into the junction tree potentials (by either a propagation or a reset-
inference-engine operation).

Example 10.2 The following code

h_domain_t d = h_kb_load_domain ("Asia.hkb", NULL);
h_node_t n = h_domain_get_node_by_name (d, "S");

h_node_select_state (n, 0);

h_domain_propagate (d, h_equilibrium_sum, h_mode_normal);

114

h_domain_adapt (d);
...

loads the Asia domain [17], enters the observation that node S is in state 0 (“yes”),
propagates the evidence, and updates the experience and conditional probability
tables of the domain (using h domain adapt). We assume that suitable experience
(and possibly fading) tables have already been specified.

If the experience count for some parent configuration is (or can be expected
to be) very large (104 or more) or the fading factor is very close to 1 (1−10−4

or closer), then it is recommended that a double-precision version of the
HUGIN API is used.

115

116

Chapter 11

Learning Network Structure
and Conditional Probability
Tables

Chapter 10 describes the facilities for adapting the conditional probability
distributions of a domain as new observations are made. This is known as
sequential learning.

However, the sequential learning method requires that a complete belief
network model including an initial assessment of the conditional probabili-
ties is given. This chapter describes the HUGIN API facilities for using data
(a set of cases) to learn the network structure as well as the conditional
probability distributions of a belief network model. This is known as batch
learning. Batch learning requires that all data is available when the learn-
ing process starts, whereas sequential learning allows the knowledge to be
updated incrementally.

The method for learning the network structure is the PC algorithm, devel-
oped by Spirtes and Glymour [25]. A similar algorithm (the IC algorithm)
was independently developed by Verma and Pearl [21].

The method for learning the conditional probability distributions (a method
based on the EM algorithm) was developed by Lauritzen [15]. See also
Cowell et al [5].

11.1 Data

An assignment of values to some or all of the nodes of a domain is called
a case. If values have been assigned to all nodes, the case is said to be
complete; otherwise, it is said to be incomplete. The data used by the learning
procedure is comprised of a set of cases.

117

Note that the mechanism for entering cases described in this section is in-
tended for case sets that fit in main memory. The learning algorithms cur-
rently provided by the HUGIN API assume that the data is stored in main
memory. Also note that case data is not saved as part of the HUGIN KB file
produced by h domain save as kb(34).

The cases are numbered sequentially from 0 to N − 1, where N is the total
number of cases. The first case gets the number 0, the second case gets the
number 1, etc.

x h status t h domain set number of cases
(h domain t domain, size t count)

This function adjusts the storage capacity for cases of domain to count. Let
the current capacity be m. The contents of the cases numbered 0 up to
min(count,m) − 1 are unchanged. If count > m, then the contents of the
cases numbered m to count − 1 are set to ‘unknown’. If count < m, then the
cases numbered count to m − 1 are deleted. In particular, setting count to 0

deletes all cases.

The following function is provided for convenience (e.g., for use when read-
ing a file of cases where the number of cases is not known in advance).

x h index t h domain new case (h domain t domain)

Allocate storage within domain to hold a new case. If successful, the func-
tion returns the index of the new case. If an error occurs, a negative number
is returned.

x h count t h domain get number of cases (h domain t domain)

Returns the number of cases currently allocated for domain.

x h status t h node set case state
(h node t node, size t case index, size t state index)

Specify the state value of the discrete chance or decision node node asso-
ciated with case case index to be state index; state index must be an inte-
ger identifying a state of node (similar to the last argument of the func-
tion h node select state(90)). If the number of states of node is subsequently
decreased (such that state index becomes invalid), then the learning algo-
rithms will treat the data as unknown/missing.

x h index t h node get case state (h node t node, size t case index)

Retrieve the state value of the discrete chance or decision node node associ-
ated with case case index. If an error occurs or no state value (or an invalid
state value) has been specified, a negative number is returned.

118

Although the EM learning algorithm currently implemented in the HUGIN
API cannot learn conditional distributions for continuous nodes, such nodes
can contribute to the beliefs of the discrete (chance) nodes. Hence, the
HUGIN API also provides functions for entering and retrieving values for
continuous nodes.

x h status t h node set case value
(h node t node, size t case index, h double t value)

Set the value associated with the continuous node node in case case index to
value.

x h double t h node get case value (h node t node, size t case index)

Retrieve the value of the continuous node node associated with case case
index. If an error occurs, a negative number is returned, but this cannot be
used for error detection, since any real value is a valid value. Instead, the
h error code(11) function must be used.

The next two functions apply to both discrete and continuous nodes.

x h status t h node unset case (h node t node, size t case index)

Specify that the value of node in case case index is ‘unknown’.

Note that this function should rarely be needed, since the state values for all
nodes of a newly created case are ‘unknown’, and also the value of a newly
created node will be ‘unknown’ in all cases.

x h boolean t h node case is set (h node t node, size t case index)

Test whether the value of node in case case index is currently set.

In large data sets, some cases may appear more than once. Instead of enter-
ing the case each time it appears, a count may be associated with the case.
This count must be nonnegative (a zero case-count means that the case will
be ignored by the learning algorithms), but it doesn’t have to be an integer.

x h status t h domain set case count
(h domain t domain, size t case index, h number t case count)

Set the case-count for the case with index case index in domain to case count.

x h number t h domain get case count
(h domain t domain, size t case index)

Retrieve the case-count associated case case index in domain.

If no case-count has been associated with a case, the count defaults to 1.

The case-counts have no influence on the value returned by h domain get
number of cases(118).

119

11.2 Data files

When a set of cases has been entered as described in the previous section,
it can be saved to a file. Such a file is known as a data file. The HUGIN API
provides functions for reading and writing data files.

A data file is a text file. The format (i.e., syntax) of a data file can be
described by the following grammar.

〈Data file〉 → 〈Header〉〈Case〉*

〈Header〉 → #〈Separator〉〈Node list〉 | 〈Node list〉

〈Separator〉 → , | 〈Empty〉

〈Node list〉 → 〈Node name〉 | 〈Node list〉〈Separator〉〈Node name〉

〈Case〉 → 〈Case count〉〈Separator〉〈Data list〉 | 〈Data list〉

〈Case count〉 → 〈Nonnegative real number〉

〈Data list〉 → 〈Data〉 | 〈Data list〉〈Separator〉〈Data〉

〈Data〉 → 〈Value〉 | * | ? | 〈Empty〉

where:

• 〈Header〉 must occupy a single line in the file. Likewise, each 〈Case〉
must occupy a single line.

• If # is the first element of 〈Header〉, then each 〈Case〉 must include a
〈Case count〉.

• Each 〈Case〉 must contain 〈Data〉 for each node specified in the 〈Header〉.
The ith 〈Data〉 (if it is a 〈Value〉) in the 〈Data list〉 must be valid (as
explained in Section 8.7) for the ith node in the 〈Node list〉 of the
〈Header〉.

• If 〈Data〉 is *, ?, or 〈Empty〉, then the data is taken as ‘missing’.

• If 〈Separator〉 is 〈Empty〉, then none of the separated items is allowed
to be 〈Empty〉.

• 〈Value〉 is as defined in Section 8.7, with the exception that 〈Likelihood〉
is not allowed.

Comments can be included in the file. Comments are specified using the %
character and extends to the end of the line. Comments behave like newline
characters. Empty lines (after removal of blanks, tabs, and comments) are
ignored by the data file parser (i.e., they do not represent “empty” cases).

Example 11.1 Here is a small set of cases for the Asia domain [17].

120

A S D X

1 "yes" "no" "no" "no"
1 "no" "yes" "yes" "no"
1 "no" "yes" "yes" "yes"
1 "no" "no" "yes" "yes"
2 "yes" "yes" * "no"
1 "yes" "no" "no" *
1 "yes" "yes" "yes" "yes"
1 "no" "no" "no" *

The first line lists the nodes, and the remaining lines each describe a case. The first
case corresponds to a non-smoking patient, that has been to Asia recently, does
not have shortness of breath, and the X-ray doesn’t show anything. The last case
corresponds to a non-smoking patient, that has not (recently) been to Asia, does
not have shortness of breath, and the X-ray is not available. Similarly for the other
cases.
Note the extra (optional) initial column of numbers: These numbers are case
counts. The number 2 for the fifth case indicates that this case has been observed
twice; the other cases have only been observed once. The presence of case counts
is indicated by the # character in the header line.

Note the distinction between case files (Section 8.7) and data files: A case
file contains exactly one case, it may contain likelihood data, and reading a
case file means loading the case data as evidence. A data file, on the other
hand, can contain arbitrarily many cases, but likelihood data is not allowed,
and reading a data file (using h domain parse cases described below) loads
the case data using the facilities described in Section 11.1.

x h status t h domain parse cases
(h domain t domain, h string t file name,

void (∗error handler) (h location t, h string t, void ∗),
void ∗data)

This function parses the cases stored in the file with name file name. The
cases will be stored in domain using the facilities described in Section 11.1.
Existing cases in domain are not modified.
The error handler and data arguments are used for error handling. This is
similar to the error handling done by the other parse functions. See Sec-
tion 12.8 for further information.
If an error occurs, no cases will be added to domain.
The h domain save cases function saves case data stored in a domain.

x h status t h domain save cases
(h domain t domain, h string t file name, h node t ∗nodes,

h index t ∗cases, h boolean t include case counts,
h string t separator, h string t missing data)

121

Save (some of) the case data stored in domain as a data file named file name.
(Note: If a file named file name already exists and is not write-protected, it
is overwritten.) The format and contents of the file are controlled by several
arguments:

nodes is a non-empty NULL-terminated list of (distinct) nodes. Moreover,
all nodes must be chance or decision nodes belonging to domain. The
list specifies which nodes (and their order) that are saved.

Note: If (some of) the nodes do not have names, they will be assigned
names (through calls to the h node get name(28) function).

cases is a list of case indexes (which must all be valid), terminated by −1.
The list specifies which cases (and their order in the file) that must
be included. Duplicates are allowed (the case will be output for each
occurrence of its index in the list).

When a case is output, the associated case count is output unmodified:
If the case has case count n, then it is also n in the generated file (not
n/2 or something like that).

NULL can be passed for cases. This will cause all cases to be output (in
the same order as stored in domain).

include case counts is a boolean controlling the presence of case counts in
the generated file:

• If it is true, case counts will be included (even if they are all 1).
• If it is false, they are not included. This is only allowed if all

the selected cases have integer-valued case counts — because, in-
stead of writing the case count to the file, the case is repeated
as many times as specified by the case count. Note: If the case
count is zero, the case will be omitted from the file.

separator is a string that is output between node names in the header and
between data items (and after the case count) in a case. If the gen-
erated file is to be read by h domain parse cases, then separator must
be non-empty, must contain at most one comma, and the remaining
characters must be blanks or tabs.1

missing data is a string that is output if no data is specified for a given
node in a given case. If the generated file is to be read by h domain
parse cases, then the following restrictions apply: missing data must
contain at most one of the * or ? characters; if missing data does not
contain one of these characters, then separator must contain a comma;
the remaining characters must be blanks or tabs.1

1If the data file is to be read by other applications, it can be useful to use a different
separator and/or a different missing data indicator. Therefore, these restrictions are not
enforced.

122

Example 11.2 Let Asia.dat be a data file with contents as shown in Exam-
ple 11.1. The following code loads the Asia domain [17], parses the Asia.dat
data file, and generates a new data file (New.dat) containing a subset of the data.
[See Example 12.23 for an appropriate definition of the error handler used by the
parse function.]

h_domain_t d = h_kb_load_domain ("Asia.hkb", NULL);
h_index_t cases[5] = { 0, 2, 4, 6, -1 };
h_node_t nodes[4];

nodes[0] = h_domain_get_node_by_name (d, "S");
nodes[1] = h_domain_get_node_by_name (d, "D");
nodes[2] = h_domain_get_node_by_name (d, "X");
nodes[3] = NULL;

h_domain_parse_cases
(d, "Asia.dat", error_handler, "Asia.dat");

h_domain_save_cases
(d, "New.dat", nodes, cases, 0, ",\t", "");

When this code is executed, a new data file (New.dat) is generated. It has the
following contents:

S, D, X

"no", "no", "no"
"yes", "yes", "yes"
"yes", , "no"
"yes", , "no"
"yes", "yes", "yes"

Note that the case with index 4 (the fifth case) from the input data file is repeated
twice in the output data file. This is because that case has case count 2 in the input
data.

11.3 Learning network structure

The algorithm used by HUGIN for learning the network structure is the PC
algorithm [25]. The current implementation is limited to domains of dis-
crete chance nodes. Domain knowledge (i.e., knowledge of which edges to
include or exclude, directions of the edges, or both) is taken into account.
Such knowledge is specified as a set of edge constraints (see Section 11.4).
An outline of the algorithm is as follows:

• The set of cases is entered using the functions described in Section 11.1.

• Statistical tests for conditional independence of pairs of nodes (X, Y)

given sets of other nodes SXY (with the size of SXY varying from 0 to 3)
are performed.

123

• An undirected graph (called the skeleton) is constructed: X and Y are
connected with an edge if and only if (1) the edge is required by the
edge constraints, or (2) the edge is permitted by the edge constraints
and no conditional independence relation for (X, Y) given a set SXY

was found in the previous step.

• Edges for which directions are specified by the edge constraints are
directed according to the constraints (unless the constraints impose
directed cycles).

• Colliders (also known as v-structures) (i.e., edges directed at a com-
mon node) and derived directions are identified. Edges are directed
such that no directed cycles are created.

• The previous step results in a partially directed graph. The remaining
edges are arbitrarily directed (one at a time, each edge directed is
followed by a step identifying derived directions).

x h status t h domain learn structure (h domain t domain)

This function creates directed links (found by the PC algorithm) between the
nodes of domain, which is assumed to contain only discrete chance nodes
and no edges. Data must have been entered (using the functions described
in Section 11.1), and the number of states for each node must have been set
appropriately. The learned network respects the edge constraints specified
(see Section 11.4) — unless the edge constraints impose directed cyles.

The PC algorithm only determines the structure of the network. It does
not calculate the conditional probability tables. This can be done using the
h domain learn tables(126) function (see Section 11.5).

If a log-file has been specified (using h domain set log file(80)), then a log
of the actions taken by the PC algorithm is produced. Such a log is use-
ful for debugging and validation purposes (e.g., to determine which edge
directions were determined from data and which were selected at random).

The dependency tests calculate a test statistic which is asymptotically χ2-
distributed assuming (conditional) independence. If the test statistic is
large, we reject the independence hypothesis; otherwise, we accept. The
probability of rejecting a true independence hypothesis is set using the fol-
lowing function.

x h status t h domain set significance level
(h domain t domain, h double t probability)

Set the significance level (i.e., the probability of rejecting a true indepen-
dence hypothesis) to probability (a value between 0 and 1) for domain. The
default value is 0.05.

124

In general, increasing the significance level will result in more edges, where-
as reducing it will result in fewer edges. With fewer edges, the number of
arbitrarily directed edges will decrease.

Reducing the significance level will also reduce the running time of h do-
main learn structure.

x h double t h domain get significance level (h domain t domain)

Retrieve the current significance level for domain.

11.4 Domain knowledge

Background knowledge about the domain can be used to constrain the set of
networks that can be learned. Such knowledge can be used by the learning
algorithm to resolve ambiguities (e.g., deciding the direction of an edge).

Domain knowledge can be knowledge of the direction of an edge, the pres-
ence or absence of an edge, or both.

The enumeration type h edge constraint t is introduced to represent the
set of possible items of knowledge about a particular edge a − b. The possi-
bilities are:

• h constraint none indicates that no constraints are imposed on the
learning process. Unless any of the below constraints has been speci-
fied, h constraint none is assumed.

• h constraint edge required indicates that an edge must be present, but
the direction of the edge is unspecified.

• h constraint edge forbidden indicates that no edge is permitted.

• h constraint forward edge required indicates that an edge is required,
and that it must be directed from a to b.

• h constraint backward edge required indicates that an edge is required,
and that it must be directed from b to a.

• h constraint forward edge forbidden indicates that, if an edge is pres-
ent, it must be directed from b to a.

• h constraint backward edge forbidden indicates that, if an edge is pres-
ent, it must be directed from a to b.

125

Moreover, the constant h constraint error is used to denote error returns
from the h node get edge constraint function below.

x h status t h node set edge constraint
(h node t a, h node t b, h edge constraint t constraint)

Specify constraint as the learning constraint for the edge a − b. Note that
this also specifies a symmetric constraint for the edge b − a (e.g., specifying
h constraint forward edge required for a − b also entails specifying h con-
straint backward edge required for b − a).

x h edge constraint t h node get edge constraint
(h node t a, h node t b)

Retrieve the learning constraint specified for the edge a − b. If an error
occurs, h constraint error is returned.

11.5 Learning conditional probability tables

Before learning of conditional probability tables can take place, the data set
and the set of nodes for which conditional probability distributions should
be learned must be specified. This set of nodes is specified as the nodes
having experience tables. Experience tables are created by the h node get
experience table(112) function, and they are deleted by the h table delete(52)

function.

x h status t h domain learn tables (h domain t domain)

Learn the conditional probability table for each node of domain that has
an experience table. The input to the learning procedure is the case data
specified using the functions described in Section 11.1. (This set of cases
must be non-empty.) If domain is an influence diagram model, then its
decision nodes must be instantiated in all cases.
The learning algorithm will need to do inference, so domain must be com-
piled before h domain learn tables is called. If the computer has sufficient
main memory, inference can be speeded up by saving the junction tree ta-
bles to memory (using h domain save to memory(106)) prior to the call of
h domain learn tables.
If successful, h domain learn tables will update the conditional probability
table and the experience table for each node of domain that has an expe-
rience table. Moreover, the inference engine will be reset using the new
conditional probability tables (see h domain reset inference engine(103)). In
the current implementation, a retract-evidence operation is implicitly per-
formed as the final step of h domain learn tables.2

2This might be changed in a future version to keep the evidence entered before the call
to h domain learn tables.

126

If an error occurs, the state of the conditional probability tables and the
inference engine is unspecified.

The method used is the EM algorithm. If the contents of the experience ta-
bles are all zeros, then h domain learn tables will compute the best (“maxi-
mum likelihood”) conditional probability tables, assuming that any table is
valid (i.e., there are no restrictions on the form of the tables). If the con-
tents are not all zeros, then the product of the experience table (treating
negative numbers as zeros) and the conditional probability table is used to
form counts (“prior counts”) that will be added to those derived from the
data set. This is known as “penalized EM.”

The starting point for the EM algorithm is the conditional probability tables
specified prior to calling h domain learn tables (assuming that the domain
has been compiled with these tables, or h node touch table(27) has been
called for the relevant nodes). If no tables have been specified, uniform
distributions are assumed. Sometimes, it is desirable to enforce zeros in the
joint probability distribution. This is done by specifying zeros in the con-
ditional probability tables for the configurations that should be impossible
(i.e., have zero probability). However, note that presence of cases in the
data set which are impossible according to the initial joint distribution will
cause the learning operation to fail.

Example 11.3 The following code loads the Asia domain [17] and makes sure
that all nodes except E have an experience table. All entries of these experience
tables are then set to 0 (because we want to compute maximum likelihood estimates
of the conditional probability tables). Note that newly created experience tables are
already filled with zeros.

h_domain_t d = h_kb_load_domain ("Asia.hkb", NULL);
h_node_t E = h_domain_get_node_by_name (d, "E");
h_node_t n = h_domain_get_first_node (d);

for (; n != NULL; n = h_node_get_next (n))
if (n != E)
{

h_boolean_t b = h_node_has_experience_table (n);
h_table_t t = h_node_get_experience_table (n);

if (b)
{

h_number_t *data = h_table_get_data (t);
size_t k = h_table_get_size (t);

for (; k > 0; k--, data++)
*data = 0.0;

}
}

127

if (h_node_has_experience_table (E))
h_table_delete (h_node_get_experience_table (E));

Now we read and enter into the domain a file of cases (data file). This is done
using the h domain parse cases(121) function (see Example 12.23 for an appropri-
ate definition of error handler). After having ensured that the domain is compiled,
we call h domain learn tables in order to learn conditional probability tables for all
nodes except E. [We assume that the correct conditional probability table has al-
ready been specified for E, and that the other conditional probability tables contain
nonzero values.]

h_domain_parse_cases
(d, data_file, error_handler, data_file);

if (!h_domain_is_compiled (d))
h_domain_compile (d);

h_domain_learn_tables (d);

The h domain learn tables operation will also update the experience tables with
the counts derived from the file of cases. These experience counts can then form
the basis for the sequential learning feature. (But note that if some parent state
configurations are absent from the data set, then the corresponding experience
counts will be zero.)

The EM algorithm performs a number of iterations. For each iteration, the
logarithm of the probability of the case data given the current joint proba-
bility distribution is computed. This quantity is known as the log-likelihood,
and the EM algorithm attempts to maximize this quantity.

The EM algorithm terminates when the relative difference between the log-
likelihood for two successive iterations is sufficiently small. This criterion is
controlled by the following function.

x h status t h domain set log likelihood tolerance
(h domain t domain, h double t tolerance)

Specify that the EM algorithm used by h domain learn tables should termi-
nate when the relative difference between the log-likelihood for two succes-
sive iterations becomes less than tolerance (which must be a positive num-
ber). The initial value of tolerance is 10−4.

x h double t h domain get log likelihood tolerance
(h domain t domain)

Retrieve the current setting of the log-likelihood tolerance for domain. If an
error occurs, a negative number is returned.

128

It is also possible to specify directly the maximum number of iterations per-
formed.

x h status t h domain set max number of em iterations
(h domain t domain, size t count)

Specify that the EM algorithm used by h domain learn tables should ter-
minate when count number of iterations have been performed (if count is
positive). If count is zero, no limit on the number of iterations is imposed
(this is also the initial setting).

x h count t h domain get max number of em iterations
(h domain t domain)

Retrieve the current setting for domain of the maximum number of iterations
for the EM algorithm used by h domain learn tables. If an error occurs, a
negative number is returned.

The EM algorithm terminates when at least one of the conditions described
above becomes true.

Learning CPTs in classes

If we have a runtime domain constructed from some class in an object-
oriented model using h class create domain(44), then several nodes in the
runtime domain will typically be copies of the same class node (i.e., the last
element of their source lists will be a common class node — in the following,
we shall refer to that class node as the source node). Such nodes should be
assigned the same conditional probability table by the EM algorithm.

The following function can (only) be used when domain is a runtime do-
main constructed from some class in an object-oriented model (i.e., domain
must be a domain returned from h class create domain(44) — it must not be
a domain loaded from a file or a domain constructed in some other way).

x h status t h domain learn class tables (h domain t domain)

For each node of domain such that both the node and its source node have
experience tables, the conditional probability and experience tables of both
nodes are learned/updated, and the tables of the domain node will be iden-
tical to those of its source node.

Learning takes place in the object-oriented model (i.e., the conditional prob-
ability and experience tables of nodes in the object-oriented model are mod-
ified), but the inference part (“the expectation step,” or “E-step” for short)
of the EM algorithm takes place in the runtime domain. The results of the
E-step are combined to produce new conditional probability tables for the
nodes in the object-oriented model. These tables are then copied back to

129

the runtime domain so that they will be used in the next E-step. As the final
step of the EM algorithm, the conditional probability and experience tables
are copied from the object-oriented model to the runtime domain.

The initial contents of the experience tables of nodes in the object-oriented
model form the basis for the computation of “prior counts.” (See explana-
tion concerning “prior counts” above.)

The contents of the updated experience tables reflect the fact that many
runtime nodes contribute to the learning of the same source node (i.e., the
experience counts will be higher than the number of cases in the data set).

Otherwise, everything specified for the h domain learn tables function above
also apply to the h domain learn class tables function.

Note that h domain learn class tables will update tables of nodes in the run-
time domain as well as tables of nodes in the classes comprising the object-
oriented model. In fact, the set of updated tables in the classes is typically
the desired outcome of calling the function.

The general procedure for learning class tables is as follows:

(1) Make sure that experience tables have been created for the set of
nodes in the object-oriented model for which EM learning is desired.

(2) Create a runtime domain. (If the source node corresponding to a run-
time node has an experience table, then an experience table will auto-
matically be created for the runtime node.)

(3) Enter case data into the runtime domain.

(4) Compile the runtime domain.

(5) Call h domain learn class tables on the runtime domain.

130

Chapter 12

The NET Language

When a belief network or influence diagram model has been constructed
using the HUGIN API functions described in Chapter 2 and Chapter 3, it can
be saved to disk for later use.

A non-object-oriented model (i.e., a domain) can be stored in a file using
a portable (but undocumented) binary format — known as the HUGIN KB
format (see Section 2.10).

As an alternative to a binary format, a textual format can be used. As op-
posed to a binary description, a textual description has the advantage that it
can be read, modified, and even created from scratch by means of a standard
text editor.

The HUGIN system uses a special-purpose language — called the NET lan-
guage — for textual descriptions of belief networks and influence diagram
models, object-oriented as well as non-object-oriented. The HUGIN API pro-
vides functions to parse (Section 12.8) and generate (Section 12.9) text files
containing such descriptions.

When new features are added to the HUGIN system, the NET language is
similarly extended. However, NET files generated by older versions of the
software can always be read by newer versions of the software. Also, the
NET language is extended in such a way that unless newer features are
being used in a NET file, then the file can also be read by an older version
of the HUGIN API (provided it is version 2 or newer1).

1The first revision of the NET language (used by versions 1. x of the HUGIN API) had a
fixed format (i.e., the semantics of the different elements were determined by their position
within the description). This format could not (easily) be extended to support new features,
so a completely different format had to be developed.

131

12.1 Overview of the NET language

A domain or class description in the NET language is conceptually comprised
of the following parts:

• Information pertaining to the domain or class as a whole.

• Specification of basic nodes (category, kind, states, label, etc).

• Specification of the relationships between the nodes (i.e., the network
structure, the probability and the utility potentials, and the temporal
ordering of decisions in influence diagrams).

• [Classes only] Specification of class instances, including bindings of
interface nodes.

The last three parts can be overlapping, except that nodes must be defined
before they can be used in specifications of structure or quantitative data.
A description of a domain in the NET language has the following form:

〈domain definition〉 → 〈domain header〉 〈domain element〉*

〈domain header〉 → net { 〈attribute〉* }
〈domain element〉 → 〈basic node〉 | 〈potential〉
〈attribute〉 → 〈attribute name〉 = 〈attribute value〉 ;

A description of a class in the NET language has the following form:

〈class definition〉 → class 〈class name〉 { 〈class element〉* }
〈class element〉 → 〈domain element〉 | 〈attribute〉 | 〈class instance〉

A NET file may contain several class definitions. The only restriction is that
classes must be defined before they are instantiated.
The following sections describe the syntax and semantics of the remain-
ing elements of the grammar: 〈basic node〉 (Section 12.2), 〈class instance〉
(Section 12.3), and 〈potential〉 (Section 12.4 and Section 12.5),

12.2 Basic nodes

In ordinary belief networks, a node represents a random variable (either
discrete or continuous). In influence diagrams, a node can also represent
a decision, controlled by the decision maker, or a utility function, which is
used to assign preferences to different configurations of variables. Finally,
in object-oriented models, nodes are also used to represent class instances.
The first three types of nodes are called basic nodes, and this section explains
how to specify those in a NET description. Class instances are described in
Section 12.3.

132

Example 12.1 The following node description is taken from the “Chest Clinic” ex-
ample given in [17].

node T
{

states = ("yes" "no");
label = "Has tuberculosis?";
position = (25 275);

}

This describes a binary random variable named T , with states labeled "yes" and
"no". The description also gives the label and position, which are used by the
HUGIN GUI application.

A node description is introduced by one of the keywords: [〈prefix〉] node,
decision, or utility where the optional 〈prefix〉 on node is either discrete
or continuous (omitting the 〈prefix〉 causes discrete to be used as default).
The keywords are followed by a name that must be unique within the model.
The example shows three of the attribute names currently defined in the
NET language for nodes: states, label, position, subtype, and state values. All
of these attributes are optional; if any attribute is absent, a default value is
supplied instead.

• states specifies the states of the node (here, the alternatives of a de-
cision node are also referred to as states); the states are indicated by
a list of strings. The list must be non-empty. The strings in the list
comprise the labels of the individual states. If the node is used as a
labeled node with the table generator facility, then the labels must be
unique; otherwise, the labels need not be unique (and can even be
empty strings). The length of the list defines the number of states of
the node, which is the only quantity needed by the HUGIN inference
engine.

The default value is a list of length one, containing an empty string
(i.e., the node will have one state).

The states attribute is not allowed for utility and continuous nodes.

• label is a string that is used by the HUGIN GUI application when dis-
playing the nodes. The label is not used by the inference engine. The
default value is the empty string.

• position is a list of integers (the list must have length two). It indicates
the position within the graphical display of the network by the HUGIN
GUI application. The position is not used by the inference engine. The
default position is at (0, 0).

• subtype indicates the subtype of a discrete (chance or decision) node.
The value must be one of the following name tokens: label, boolean,
number, or interval. See Section 5.1 for more information.

133

The default value is label.

• state values is a list of numbers, the state values of the node. These val-
ues are used by the table generator facility (Chapter 5). This attribute
must only appear for nodes of subtypes number or interval (and must
appear after the subtype and states attributes). If the subtype is num-
ber, the list must have the same length as the states list; if the subtype
is interval, the list must have one more element than the states list.

The list of numbers must form an increasing sequence.

If the subtype is interval, the first element can be ‘–infinity’, and the
last element can be ‘infinity’.

Apart from these attributes, you can specify your own attributes for nodes.
These can be used for a specific application needing some extra information
about the nodes.

Example 12.2 Here, the T node has been given the application specific attribute
MY APPL my attr.

node T
{

states = ("yes" "no");
label = "Has tuberculosis?";
position = (25 275);
MY_APPL_my_attr = "1000";

}

The values of such application specific attributes must be text strings (see
Section 12.7 for a precise definition of text strings).

It is regarded as good style to start application specific attribute names with
a common prefix in order to avoid name clashes with attributes defined by
HUGIN or other applications (in Example 12.2 the MY APPL prefix is used).

When a NET description has been parsed, the values of application specific
attributes can be accessed using the h node get attribute(32) and h node set
attribute(32) functions.

Example 12.3 In the HUGIN GUI application, some extra attributes are used to
save descriptions of both nodes and their states. These are the attributes prefixed
with HR .

node T
{

states = ("yes" "no");
label = "Has tuberculosis?";
position = (25 275);
HR_State_0 = "Yes, the patient has tuberculosis.";

134

HR_State_1 = "No, the patient does not have\
tuberculosis.";

HR_Desc = "Represents whether the patient has\
tuberculosis or not.";
}

12.3 Class instances

In object-oriented models, a node can represent a class instance. Such a
node is introduced using the instance keyword:

instance 〈instance name〉 : 〈class name〉
([〈input bindings〉] [; 〈output bindings〉]) { 〈node attributes〉 }

This defines an instance of the class with name 〈class name〉. Currently,
〈node attributes〉 for a class instance can only be a label, position, or a user-
defined attribute.
The 〈input bindings〉 specify how formal input nodes of the class instance
are associated with actual input nodes. The syntax is as follows:

〈input bindings〉 → 〈input binding〉 , 〈input bindings〉
〈input binding〉 → 〈formal input name〉 = 〈actual input name〉

The 〈formal input name〉 must refer to a node listed in the inputs attribute
(see Section 12.6) of the class with name 〈class name〉. The node referred
to by the 〈actual input name〉 must be defined somewhere in the class con-
taining the class instance.
The 〈input bindings〉 need not specify bindings for all the formal input nodes
of the class (but at most one binding can be specified for each input node).
The 〈output bindings〉 are used to give names to output clones. The syntax
is similar to that of the input bindings:

〈output bindings〉 → 〈output binding〉 , 〈output bindings〉
〈output binding〉 → 〈actual output name〉 = 〈formal output name〉

The 〈actual output name〉 is the name assigned to the output clone that cor-
responds to the output node with name 〈formal output name〉 for this par-
ticular class instance. An 〈actual output name〉 may appear in the outputs at-
tribute (see Section 12.6) of a class definition and as a parent in 〈potential〉
specifications.

Example 12.4 The following fragment of a NET specification defines an instance I1

of class C.

instance I1 : C (X=X1, Y=Y1; Z1=Z) {...}

135

Class C must have (at least) two input nodes: X and Y. For instance I1, X corre-
sponds to node X1, and Y corresponds to node Y1. Class C must also have (at least)
one output node: Z. The output clone corresponding to Z for instance I1 is given
the name Z1.

A NET file may contain several class definitions, but the classes must be
ordered such that instantiations of a class follow its definition. Often, a
NET file will be self-contained (i.e., no class instances refer to classes not
defined in the file), but it is also possible to store the classes in individual
files. When a NET file is parsed, classes will be “looked up” whenever they
are instantiated. If the class is already loaded, the loaded class will be used.
If no such class is known, it must be created (for example, by calling the
parser recursively). See Section 12.8 for further details.

12.4 The structure of the model

The structure (i.e., the edges of the underlying graph) is specified indirectly.
We have two kinds of edges: directed and undirected edges.

Example 12.5 This is a typical specification of directed edges:

potential (A | B C) { }

This specifies that node A has two parents: B and C. That is, there is a directed
edge from B to A, and there is a directed edge from C to A.

The model may also contain undirected edges. Such a model is called a
chain graph model.

Example 12.6

potential (A B | C D) { }

This specifies that there is an undirected edge between A and B. Moreover, it
specifies that both A and B have C and D as parents.

If there are no parents, the vertical bar may be omitted.
A maximal set of nodes, connected by undirected edges, is called a chain
graph component. Only discrete chance nodes must be connected by undi-
rected edges.
Not all graphs are permitted. The following restrictions are imposed on the
structure of the network.
The graph must not contain any cycles, unless all edges of the cycle are
undirected.

Example 12.7 The following specification is not allowed, because of the cycle A →
B → C → A.

136

potential (B | A) { }
potential (C | B) { }
potential (A | C) { }

However, the following specification is legal.

potential (B | A) { }
potential (C | B) { }
potential (C | A) { }

Example 12.8 The following specification is not allowed either, since there is a
cycle A → B → C ∼ A, and not all edges of the cycle are undirected.

potential (B | A) { }
potential (C | B) { }
potential (A C) { }

However, the following specification is legal.

potential (A | B) { }
potential (C | B) { }
potential (A C) { }

Continuous chance nodes are not allowed in influence diagrams, i.e., there
cannot be continuous nodes in a net also containing utility or decision
nodes.
Utility nodes must not have any children in the graph. This implies that
utility nodes must only appear to the left of the vertical bar (never to the
right).
Undirected edges can only appear between discrete chance nodes.
Continuous nodes can only have continuous nodes as children.
If a decision node appears to the left of the vertical bar, it must appear alone.
In this case, so-called informational links are specified; such links specify
which variables are known when the decision is to be made. There must be
a total ordering of all decisions in the influence diagram, and this ordering
must follow from the network structure, i.e., there must be a directed path
containing all decisions.

Example 12.9 Assume we want to specify an influence diagram with two deci-
sions, D1 and D2, and with three discrete chance variables, A, B, and C. First, A is
observed; then, decision D1 is made; then, B is observed; finally, decision D2 is
made. This sequence of events can be specified as follows:

potential (D1 | A) { }
potential (D2 | D1 B) { }

Finally, no node must be referenced in a potential-specification before it has
been declared by a node-, decision-, or a utility-specification.

137

12.5 Potentials

We also need to specify the quantitative part of the model. This part con-
sists of conditional probability functions for random variables and utility
functions for utility variables. We distinguish between discrete probability,
continuous probability, and utility potentials.

In addition, there are two different ways to specify discrete probability and
utility potentials: (1) by listing the numbers making up the potentials, and
(2) by using the table generation facility described in Chapter 5.

12.5.1 Direct specification of the numbers

Direct specification of the quantitative part of the relationship between a
group of nodes and their parents is done using the data attribute of the
potential-specification.

Example 12.10 The following description is taken from the “Chest Clinic” exam-
ple [17] and specifies the conditional probability table of the discrete variable T .

potential (T | A)
{

data = ((0.05 0.95) % A=yes
(0.01 0.99)); % A=no

}

This specifies that the probability of tuberculosis given a trip to Asia is 5%, whereas
it is only 1% if the subject has not been to Asia.

The data attribute may also be specified as an unstructured list of numbers:

potential (T | A)
{

data = (0.05 0.95 % A=yes
0.01 0.99); % A=no

}

As the example shows, the numerical data is specified through the data
attribute of a potential-specification. This data has the form of a list of real
numbers. The structure of the list must either correspond to that of a multi-
dimensional table with node list comprised of the parent nodes followed by
the child nodes, or it must be a flat list with no structure at all. The ‘layout’
of the data list is row-major (see Section 4.1).

Example 12.11

potential (D E F | A B C) { }

138

The data attribute of this potential-specification corresponds to a multi-dimensional
table with dimension list 〈A, B, C,D, E, F〉.

The data attribute of a utility potential has only the dimensions of the nodes
on the right side of the vertical bar.

Example 12.12 The following description is taken from the “Oil Wildcatter” ex-
ample and shows a utility potential. DrillProfit is a utility node, while Oil is
a discrete chance node with three states, and Drill is a decision node with two
states.

potential (DrillProfit | Drill Oil)
{

data = ((-70 % Drill=yes Oil=dry
50 % Drill=yes Oil=wet
200) % Drill=yes Oil=soaking

(0 % Drill=no Oil=dry
0 % Drill=no Oil=wet
0)); % Drill=no Oil=soaking

}

The data attribute of this potential-specification corresponds to a multi-dimensional
table with dimension list 〈Oil,Drill〉.

The table in the data attribute of a continuous probability potential has the
dimensions of the discrete chance nodes to the right of the vertical bar. All
the discrete chance nodes must be listed first on the right side of the vertical
bar, followed by the continuous nodes. However, the items in the multi-
dimensional table are no longer values but instead continuous distribution
functions; only normal (i.e., Gaussian) distributions can be used. A normal
distribution is specified by its mean and variance. In the following example,
a continuous probability potential is described.

Example 12.13 Suppose A is a continuous node with parents B and C which are
both discrete. Also, both B and C have two states: B has states b1 and b2 while C

has states c1 and c2.

potential (A | B C)
{

data = ((normal (0, 1) % B=b1 C=c1
normal (-1, 1)) % B=b1 C=c2

(normal (1, 1) % B=b2 C=c1
normal (2.5, 1.5))); % B=b2 C=c2

}

The data attribute of this potential-specification is a table with the dimension list
〈B, C〉. Each entry contains a probability distribution for the continuous node A.

All entries in the above example contain a specification of a normal distribu-
tion. A normal distribution is specified with the keyword normal followed

139

by a list of two parameters. The first parameter is the mean and the second
is the variance of the normal distribution.

Example 12.14 Let A be a continuous node with one discrete parent B (with states
b1 and b2) and one continuous parent C.

potential (A | B C)
{

data = (normal (1 + C, 1) % B=b1
normal (1 + 1.5 * C, 2.5)); % B=b2

}

The data attribute of this potential-specification is a table with the dimension
list 〈B〉 (B is the only discrete parent which is then listed first on the right side
of the vertical bar). Each entry again contains a continuous distribution function
for A. The influence of C on A now comes from the use of C in an expression
specifying the mean parameter of the normal distributions.

Only the mean parameter of a normal distribution can be specified as an
expression. The variance parameter must be a numeric constant. The ex-
pression for the mean parameter must be a linear function of the continuous
parents: each term of the expression must be (1) a numeric constant, (2) the
name of a continuous parent, or (3) a numeric constant followed by ‘*’ fol-
lowed by the name of a continuous parent.
Since a decision node has no function assigned, it cannot have a data at-
tribute. Thus, the decision potential specification does not really specify a
potential but is rather a trick for specification of informational links.
If the body of a potential-specification is empty, a list of ones is supplied
for discrete probability potentials, whereas a list of zeros is supplied for
utility potentials. For a continuous probability potential, a list of normal
distributions with both mean and variance set to zero is supplied.
The values of the data attribute of discrete probability potentials must only
contain nonnegative numbers. In the specification of a normal distribution
for a continuous probability potential, only nonnegative numbers are al-
lowed for the variance parameter. There is no such restriction on the values
of utility potentials or the mean parameter of a normal distribution.

12.5.2 Using the table generation facility

For potentials involving no CG variables, a different method for specifying
the quantitative part of the relationship for a single node and its parents is
provided.

Example 12.15 Let A denote the number of ones in a throw with B (possibly bi-
ased) dice where the probability of getting a one in a throw with one die is C. The
specification of the conditional probability potential for A given B and C can be
done using the table generation facility described in Chapter 5 as follows:

140

potential (A | B C)
{

model_nodes = ();
samples_per_interval = 50;
model_data = (Binomial (B, C));

}

First, we list the model nodes attribute: This defines the set of configurations for the
model data attribute. In this case, the list is empty, meaning that there is just one
configuration. The expression for that configuration is the binomial distribution
expression shown in the model data attribute.
C will typically be an interval node (i.e., its states represent intervals). However,
when computing the binomial distribution, a specific value for C is needed. This
is handled by choosing 50 distinct values within the given interval and computing
the distributions corresponding to those values. The average of these distributions
is then taken as the conditional distribution for A given the value of B and the
interval (i.e., state) of C. The number 50 is specified by the samples per interval
attribute. See Section 5.9 for further details.

Example 12.16 In the “Chest Clinic” example [17], the node E is specified as a
logical OR of its parents, T and L. Assuming that all three nodes are of labeled
subtype with states yes and no (in that order), the potential for E can be specified
as follows:

potential (E | T L)
{

model_nodes = (T L);
model_data = ("yes", "yes", "yes", "no");

}

An equivalent specification can be given in terms of the OR operator:

potential (E | T L)
{

model_nodes = ();
model_data

= (if (or (T="yes", L="yes"), "yes", "no"));
}

If all three nodes are given a boolean subtype, the specification can be simplified to
the following:

potential (E | T L)
{

model_nodes = ();
model_data = (or (T, L));

}

In general, the model nodes attribute is a list containing a subset of the par-
ents listed to the right of the vertical bar in the potential specification. The
ordering of the nodes in the model nodes list defines the interpretation of the

141

model data attribute: The model data attribute is a comma-separated list of
expressions, one for each configuration of the nodes in the model nodes list.
As usual, the layout of these configurations is row-major.

A non-empty model nodes list is a convenient way to specify a model with
distinct expressions for distinct parent state configurations. An alternative
is nested if-expressions.

The complete syntax for expressions is defined in Section 5.3.

The model nodes attribute must appear before the samples per interval and
model data attributes.

If both a specification using the model attributes and a specification using
the data attribute are provided, then the specification in the data attribute
is supposed to be correct (regardless of whether it was generated from the
model or not). The functions that generate NET files (Section 12.9) will out-
put both, if nothing related to table generation from the model has changed
since the most recent table generation operation (see the description of
h node generate table(69) for precise details). Since generating a table from
its model can be a very expensive operation, having a (redundant) speci-
fication in the data attribute can be considered a “cache” for h node gener-
ate table.

12.5.3 Adaptation information

Information for use by the adaptation feature (see Chapter 10) can be speci-
fied through the experience and fading attributes of a potential-specification.
These attributes have the same syntax as the data attribute.

Since the adaptation feature only applies to discrete chance nodes, only
the conditional probability potential for such nodes may use the experience
and fading attributes (not chain graph potentials or potentials for utility or
continuous chance nodes).

Experience counts are positive numbers, and fading factors are positive
numbers less than or equal to 1 (but typically close to 1). Adaptation is
turned on for a specific configuration of parent states when both the cor-
responding experience count and fading factor are valid . If no experience
count has been explicitly provided, then 0 is assumed (i.e., no adaptation in
this case), and if no fading factor has been explicitly provided, 1 is assumed.
See Chapter 10 for further details.

Example 12.17 The following shows a specification of experience and fading in-
formation for the node D (‘Dyspnoea’) from the “Chest Clinic” example in [17].
This node has two parents, E and B. We specify an experience count and a fading
factor for each configuration of states of 〈E, B〉.

potential (D | E B)

142

{
data = (((0.9 0.1) % E=yes B=yes

(0.7 0.3)) % E=yes B=no
((0.8 0.2) % E=no B=yes
(0.1 0.9))); % E=no B=no

experience = ((10 % E=yes B=yes
12) % E=yes B=no

(0 % E=no B=yes
14)); % E=no B=no

fading = ((1.0 % E=yes B=yes
0.9) % E=yes B=no

(1.0 % E=no B=yes
1.0)); % E=no B=no

}

Note that the experience count for E = no/B = yes parent state configuration is 0.
This value will cause adaptation to be turned off for that particular parent con-
figuration. Also, note that only the E = yes/B = no parent state configuration will
have its experience count faded during adaptation (since the other parent state
configurations have fading factors equal to 1).

12.6 Global information

Information pertaining to the belief network or influence diagram model as
a whole is specified as attributes within the 〈domain header〉 (for domains)
or within the 〈class definition〉 (for classes).

Example 12.18 The HUGIN GUI application uses several parameters when dis-
playing networks.

net
{

node_size = (100 40);
}

This specifies that nodes should be displayed with width 100 and height 40.

Currently, only the node size attribute is recognized as a special global at-
tribute. However, as with nodes, extra attributes can be specified. These
extra attributes must take strings as values. The attributes are accessed
using the HUGIN API functions h domain get attribute(32), h domain set at-
tribute(32), h class get attribute(47), and h class set attribute(47).

Example 12.19

net
{

node_size = (100 40);
MY_APPL_my_attr = "1000";

}

143

This specification has an application specific attribute named MY APPL my attr.

Example 12.20 The newest version of the HUGIN GUI tool uses a series of appli-
cation specific attributes. Some of them are shown here:

net
{

node_size = (80 40);
HR_Grid_X = "10";
HR_Grid_Y = "10";
HR_Grid_GridSnap = "1";
HR_Grid_GridShow = "0";
HR_Font_Name = "Arial";
HR_Font_Size = "-12";
HR_Font_Weight = "400";
HR_Font_Italic = "0";
HR_Propagate_Auto = "0";

}

HUGIN GUI uses the prefix HR on all of its application specific attributes (a prede-
cessor of the HUGIN GUI tool was named HUGIN Runtime).

Global attributes are used in a 〈class definition〉 to specify the interface of
the class. The inputs and outputs attributes are used to specify the input
nodes and the output nodes of the class, respectively. The values of these
attributes are node lists (with the same syntax as that of the model nodes
attribute). The nodes mentioned in those attributes must be defined within
the class.

Example 12.21 The following class description defines a class C with two inputs,
X and Y, and one output, Z.

class C
{

inputs = (X Y);
outputs = (Z);

node X
...

node Y
...

node Z
...

...
}

144

12.7 Lexical matters

A name has the same structure as an identifier in the C programming lan-
guage. This means that a name is a non-empty sequence of letters and digits,
beginning with a letter. In this context, the underscore character () is con-
sidered a letter. The case of letters is significant. The sequence of letters and
digits forming a name extends as far as possible; it is terminated by the first
non-letter/digit character (for example, braces or whitespace).

A string is a sequence of characters not containing a quote character (") or
a newline character; its start and ending are indicated by quote characters.

A number is comprised of an optional sign, followed by a sequence of digits,
possibly containing a decimal point character, and an optional exponent
field containing an E or e followed by a possibly signed integer.

Comments can be placed in a NET description anywhere (except within a
name, a number, or other multi-character lexical elements). It is considered
equivalent to whitespace. A comment is introduced by a percent character
(%) and extends to the end of the line.

12.8 Parsing NET files

The HUGIN API provides different functions for parsing models specified
in the NET language, depending on whether the specified model is object-
oriented or not.

The following function parses non-object-oriented specifications (i.e., NET
files starting with the net keyword) and creates a corresponding h domain t
object.

x h domain t h net parse domain
(h string t file name,

void (∗error handler) (h location t, h string t, void ∗),
void ∗data)

Parse the NET specification in the file with name file name. If an error is
detected (or a warning is issued), the error handler function is called with
a line number (indicating the location of the error within the file), a string
that describes the error, and data. The storage used to hold the string is
reclaimed by h net parse domain, when error handler returns (so if the er-
ror/warning message will be needed later, a copy must be made).

The user-specified data allows the error handler to access non-local data
(and hence preserve state between calls) without having to use global vari-
ables.

The h location t type is an unsigned integer type (such as unsigned long).

145

If no error reports are desired (in this case, only the error indicator returned
by h error code(11) will be available), then the error handler argument may
be NULL. (In this case, warnings will be completely ignored.)

If the NET specification is successfully parsed, an opaque reference to the
created domain structure is returned; otherwise, NULL is returned. The do-
main is not compiled; use a compilation function to get a compiled version.

Example 12.22 The error handler function could be written as follows.

void my_error_handler
(h_location_t line_no, h_string_t message, void *data)

{
fprintf (stderr, "Error at line %d: %s\n",

line_no, message);
}

This error handler simply writes all messages to stderr. See Example 12.23 for a
different error handler.

The following function must be used when parsing NET files containing class
descriptions (i.e., NET files starting with the class keyword).

x h status t h net parse classes
(h string t file name, h class collection t cc,

void (∗get class) (h string t, h class collection t, void ∗),
void (∗error handler) (h location t, h string t, void ∗),
void ∗data)

This function parses the contents of the file with name file name. This file
must contain a sequence of class definitions. The parsed classes are stored
in class collection cc.
In order to create the instance nodes (which represent instances of other
classes), it may be necessary to load these other classes: If an instance of a
class not present in cc is specified in the NET file, get class is called with the
name of the class, the class collection cc, and the user-specified data. The
get class function is supposed to load the named class into class collection cc
(if it doesn’t, then parsing is terminated). If the named class contains in-
stances of other classes not present in cc, these classes should be loaded (or
constructed) as well. The get class function should not perform any other
kind of actions. For example, it should not delete or rename any of the
existing classes in cc — such actions may cause the HUGIN API to crash.

If the specified NET file is self-contained (i.e., no instance declaration refers
to a class not specified in the file), then the get class argument can be NULL.

Note that instance nodes are created when the corresponding instance def-
inition is seen in the NET file. At that point, the instantiated class must
have been loaded (or get class will be called). For this reason, if the NET file

146

contains several class definitions, classes must be defined before they are
instantiated.

If an error is detected, the error handler function is called with a line num-
ber, indicating the location within the source file currently being parsed,
and a string that describes the error. The storage used to hold this string is
reclaimed by h net parse classes, when error handler returns (so if the error
message will be needed later, a copy must be made).

If parsing fails, then h net parse classes will try to preserve the initial con-
tents of cc by deleting the new (and possibly incomplete) classes before it
returns. If get class has modified any of the classes initially in cc, then this
may not be possible. Also, if the changes are sufficiently vicious, then re-
moving the new classes might not even be possible. However, if get class
only does things it is supposed to do, there will be no problems.

As described above, the get class function must insert a class with the spec-
ified name into the given class collection. This can be done by whatever
means are convenient, such as calling the parser recursively, or through ex-
plicit construction of the class.

Example 12.23 Suppose we have classes stored in separate files in a common di-
rectory, and that the name of each file is the name of the class stored in the file with
.net appended. Then the get class function could be written as follows:

void get_class
(h_string_t name, h_class_collection_t cc, void *data)

{
h_string_t file_name = malloc (strlen (name) + 5);

if (file_name == NULL)
return;

(void) strcat (strcpy (file_name, name), ".net");

(void) h_net_parse_classes
(file_name, cc, get_class, error_handler,
file_name);

free (file_name);
}

void error_handler
(h_location_t line_no, h_string_t err_msg, void *data)

{
fprintf (stderr, "Error in file %s at line %lu: %s\n",

(h_string_t) data, (unsigned long) line_no,
err_msg);

}

147

Note that we pass the file name as the data argument to h net parse classes. This
means that the error handler receives the name of the file as its third argument.
If more data is needed by either get class or the error handler, then the data ar-
gument can be specified as a pointer to a structure containing the needed data
items.

12.9 Saving class collections, classes, and domains
as NET files

The following functions can be used to create NET files.

x h status t h cc save as net
(h class collection t cc, h string t file name)

x h status t h class save as net (h class t class, h string t file name)

x h status t h domain save as net
(h domain t domain, h string t file name)

Save the class collection, class, or domain as a text file with name file name.
The format of the file is as required by the NET language.

Saving a class collection as a NET file is convenient when you must send the
object-oriented model via email, since the resulting NET description must
necessarily be self-contained.

Note that if a NET file is parsed and then saved again, any comments in
the original file will be lost. Also note that if (some of) the nodes have not
been assigned names, then names will automatically be assigned (through
calls to the h node get name(28) function). Likewise, if a class has not been
named, the “save-as-NET” operation will assign a name (by calling h class
get name(39)).

x h string t h class get file name (h class t class)

Return the file name used for the most recent (successful) save-operation
applied to class. If no such operation has been performed, or class is NULL,
NULL is returned.

x h string t h domain get file name (h domain t domain)

Return the file name used for the most recent (successful) save-operation
applied to domain. If no such operation has been performed, or domain is
NULL, NULL is returned.

Note that domains may be saved both as a NET and as a HUGIN KB (Sec-
tion 2.10) file.

148

Chapter 13

Display Information

The HUGIN API was developed partly to satisfy the needs of the HUGIN
GUI application. This application can present an arbitrary belief network or
influence diagram model. To do this, it was necessary to associate a certain
amount of “graphical” information with each node of the network. The
functions to support this are hereby provided for the benefit of the general
API user.

Please note that not all items of graphical information have a special inter-
face (such as the one provided for the label of a node — see Section 13.1
below). Many more items of graphical information have been added using
the attribute interface described in Section 2.9.2. To find the names of these
extra attributes, take a look at the NET files generated by the HUGIN GUI
application.

13.1 The label of a node

In addition to the name (the syntax of which is restricted), a node can be
assigned an arbitrary string, called the label.

x h status t h node set label (h node t node, h string t label)

Make a copy of label and assign it as the label of node. There are no restric-
tions on the contents of the label.

Note that a copy of label is stored inside the node structure, not label itself.

x h string t h node get label (h node t node)

Returns the label of node. If no label has been associated with node, the
empty string is returned. On error, NULL is returned.

Note that the string returned is the one stored in the node structure. Do not
free it yourself.

149

13.2 The position of a node

In order to display a network graphically, the HUGIN GUI application asso-
ciates with each node a position in a two-dimensional coordinate system.

The coordinates used by HUGIN are integral values; their type is h coordi-
nate t.

x h status t h node set position
(h node t node, h coordinate t x, h coordinate t y)

Set the position of node to (x, y).

x h status t h node get position
(h node t node, h coordinate t ∗x, h coordinate t ∗y)

Retrieve the position (x- and y-coordinates) of node. On error, the values
of x and y are indeterminate.

13.3 The size of a node

As part of the specification of a belief network/influence diagram, the di-
mensions (width and height) of a node in a graphical representation of the
network can be given. These parameters apply to all nodes of a domain or
a class and are needed in applications that display the layout of the net-
work in a graphical manner. An application can modify and inspect these
parameters using the functions described below.

x h status t h domain set node size
(h domain t domain, size t width, size t height)

Set the width and height dimensions of nodes of domain to width and height,
respectively.

x h status t h domain get node size
(h domain t domain, size t ∗width, size t ∗height)

Retrieve the dimensions of nodes of domain. If an error occurs, the values
of variables pointed to by width and height will be indeterminate.

Example 13.1 In an application using a graphical display of a network, a node
could be drawn using the following function.

void draw_node (h_node_t n)
{

size_t w, h;
h_coordinate_t x, y;

150

h_domain_get_node_size (h_node_get_domain (n), &w, &h);
h_node_get_position (n, &x, &y);

draw_rectangle (x, y, w, h);
}

Here, draw rectangle is an application-defined function, or maybe a function de-
fined in a graphics library, e.g., XDrawRect if you are using the X Window System.

In a similar way, the width and height dimensions of nodes belonging to
classes in object-oriented models can be accessed.

x h status t h class set node size
(h class t class, size t width, size t height)

Set the width and height dimensions of nodes of class to width and height,
respectively.

x h status t h class get node size
(h class t class, size t ∗width, size t ∗height)

Retrieve the dimensions of nodes of class. If an error occurs, the values of
variables pointed to by width and height will be indeterminate.

151

152

Appendix A

Belief networks with
Conditional Gaussian variables

Beginning with Version 3, the HUGIN API can handle networks with both
discrete and continuous random variables. The continuous random vari-
ables must have a Gaussian (also known as a normal) distribution condi-
tional on the values of the parents.
The distribution for a continuous variable Y with discrete parents I and con-
tinuous parents Z is a (one-dimensional) Gaussian distribution conditional
on the values of the parents:

P(Y |I = i, Z = z) = N(α(i) + β(i)Tz, γ(i))

Note that the mean depends linearly on the continuous parent variables
and that the variance does not depend on the continuous parent variables.
However, both the linear function and the variance are allowed to depend on
the discrete parent variables. These restrictions ensure that exact inference
is possible.
Discrete variables cannot have continuous parents.

Example A.1 Figure A.1 shows a belief network model for a waste incinerator:

“The emissions [of dust and heavy metals] from a waste incinerator
differ because of compositional differences in incoming waste [W].
Another important factor is the waste burning regimen [B], which
can be monitored by measuring the concentration of CO2 in the emis-
sions [C]. The filter efficiency [E] depends on the technical state [F]
of the electrofilter and on the amount and composition of waste [W].
The emission of heavy metals [Mo] depends on both the concentration
of metals [Mi] in the incoming waste and the emission of dust partic-
ulates [D] in general. The emission of dust [D] is monitored through
measuring the penetrability of light [L].” [14]

153

L

C

B

D

E

F

Mo

Mi

W

Figure A.1: The structural aspects of the waste incinerator model described
in Example A.1: B, F, and W are discrete variables, while the remaining
variables are continuous.

The result of inference within a belief network model containing Condi-
tional Gaussian variables is the beliefs (i.e., marginal distributions) of the
individual variables given evidence. For a discrete variable this (as usual)
amounts to a probability distribution over the states of the variable. For a
Conditional Gaussian variable two measures are provided:

(1) the mean and variance of the distribution;

(2) since the distribution is in general not a simple Gaussian distribution,
but a mixture (i.e., a weighted sum) of Gaussians, a list of the pa-
rameters (weight, mean, and variance) for each of the Gaussians is
available.

The algorithms necessary for computing these results are described in [16].

Example A.2 From the network shown in Figure A.1 (and given that the discrete
variables B, F, and W are all binary), we see that

• the distribution for C can be comprised of up to two Gaussians (one if B is
instantiated);

• initially (i.e., with no evidence incorporated), the distribution for E is com-
prised of up to four Gaussians;

• if L is instantiated (and none of B, F, or W is instantiated), then the distribu-
tion for E is comprised of up to eight Gaussians.

154

Bibliography

[1] S. K. Andersen, K. G. Olesen, F. V. Jensen, and F. Jensen. HUGIN —
a shell for building Bayesian belief universes for expert systems. In
Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, pages 1080–1085, Detroit, Michigan, Aug. 20–25, 1989.
Reprinted in [22].

[2] A. Berry, J.-P. Bordat, and O. Cogis. Generating all the minimal sep-
arators of a graph. International Journal of Foundations of Computer
Science, 11(3):397–403, Sept. 2000.

[3] V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: Grouping
the minimal separators. SIAM Journal on Computing, 31(1):212–232,
July 2001.

[4] R. G. Cowell and A. P. Dawid. Fast retraction of evidence in a proba-
bilistic expert system. Statistics and Computing, 2:37–40, 1992.

[5] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter.
Probabilistic Networks and Expert Systems. Statistics for Engineering
and Information Science. Springer-Verlag, New York, 1999.

[6] A. P. Dawid. Applications of a general propagation algorithm for prob-
abilistic expert systems. Statistics and Computing, 2:25–36, 1992.

[7] F. Jensen. Implementation aspects of various propagation algorithms
in HUGIN. Research Report R-94-2014, Department of Mathematics
and Computer Science, Aalborg University, Denmark, Mar. 1994.

[8] F. Jensen and S. K. Andersen. Approximations in Bayesian belief uni-
verses for knowledge-based systems. In Proceedings of the Sixth Con-
ference on Uncertainty in Artificial Intelligence, pages 162–169, Cam-
bridge, Massachusetts, July 27–29, 1990.

[9] F. Jensen, F. V. Jensen, and S. L. Dittmer. From influence diagrams to
junction trees. In R. L. de Mantaras and D. Poole, editors, Proceedings
of the Tenth Conference on Uncertainty in Artificial Intelligence, pages

155

367–373, Seattle, Washington, July 29–31, 1994. Morgan Kaufmann,
San Mateo, California.

[10] F. V. Jensen. Bayesian Networks and Decision Graphs. Statistics for En-
gineering and Information Science. Springer-Verlag, New York, 2001.

[11] F. V. Jensen, B. Chamberlain, T. Nordahl, and F. Jensen. Analysis in
HUGIN of data conflict. In P. P. Bonissone, M. Henrion, L. N. Kanal, and
J. F. Lemmer, editors, Uncertainty in Artificial Intelligence, volume 6,
pages 519–528. Elsevier Science Publishers, Amsterdam, The Nether-
lands, 1991.

[12] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian updating in
causal probabilistic networks by local computations. Computational
Statistics Quarterly, 4:269–282, 1990.

[13] F. V. Jensen, K. G. Olesen, and S. K. Andersen. An algebra of Bayesian
belief universes for knowledge-based systems. Networks, 20(5):637–
659, Aug. 1990. Special Issue on Influence Diagrams.

[14] S. L. Lauritzen. Propagation of probabilities, means, and variances in
mixed graphical association models. Journal of the American Statistical
Association (Theory and Methods), 87(420):1098–1108, Dec. 1992.

[15] S. L. Lauritzen. The EM algorithm for graphical association mod-
els with missing data. Computational Statistics & Data Analysis,
19(2):191–201, Feb. 1995.

[16] S. L. Lauritzen and F. Jensen. Stable local computation with condi-
tional Gaussian distributions. Statistics and Computing, 11(2):191–
203, Apr. 2001.

[17] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with prob-
abilities on graphical structures and their application to expert sys-
tems. Journal of the Royal Statistical Society, Series B (Methodological),
50(2):157–224, 1988. Reprinted in [22].

[18] K. G. Olesen, S. L. Lauritzen, and F. V. Jensen. aHUGIN: A system
creating adaptive causal probabilistic networks. In D. Dubois, M. P.
Wellman, B. D’Ambrosio, and P. Smets, editors, Proceedings of the
Eighth Conference on Uncertainty in Artificial Intelligence, pages 223–
229, Stanford, California, July 17–19, 1992. Morgan Kaufmann, San
Mateo, California.

[19] K. G. Olesen and A. L. Madsen. Maximal prime subgraph decompo-
sition of Bayesian networks. IEEE Transactions on Systems, Man and
Cybernetics, Part B: Cybernetics, 32(1):21–31, Feb. 2002.

156

[20] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, San Mateo, California, 1988.

[21] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge Uni-
versity Press, Cambridge, UK, 2000.

[22] G. Shafer and J. Pearl, editors. Readings in Uncertain Reasoning. Mor-
gan Kaufmann, San Mateo, California, 1990.

[23] K. Shoikhet and D. Geiger. A practical algorithm for finding optimal
triangulations. In Proceedings of the Fourteenth National Conference on
Artificial Intelligence, pages 185–190, Providence, Rhode Island, July
27–31, 1997. AAAI Press, Menlo Park, California.

[24] D. J. Spiegelhalter and S. L. Lauritzen. Sequential updating of con-
ditional probabilities on directed graphical structures. Networks,
20(5):579–605, Aug. 1990. Special Issue on Influence Diagrams.

[25] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and
Search. Adaptive Computation and Machine Learning. MIT Press,
Cambridge, Massachusetts, second edition, 2000.

157

Index

h attribute get key, 33
h attribute get next, 33
h attribute get value, 33
h attribute t, 32
h boolean make expression, 57
h category chance, 19
h category decision, 19
h category error, 19
h category instance, 19, 41
h category utility, 19
h cc delete, 38
h cc get class by name, 39
h cc get members, 38
h cc new class, 38
h cc save as net, 148
h class collection t, 37
h class create domain, 44
h class delete, 38
h class generate tables, 69
h class get attribute, 47
h class get class collection, 38
h class get file name, 148
h class get first attribute, 47
h class get first node, 47
h class get inputs, 40
h class get instances, 41
h class get name, 39
h class get node by name, 39
h class get node size, 151
h class get outputs, 40
h class get user data, 47
h class new instance, 41
h class new node, 39
h class parse nodes, 79
h class save as net, 148
h class set attribute, 47

h class set log file, 70
h class set name, 38
h class set node size, 151
h class set user data, 47
h class t, 37
h clique get junction tree, 86
h clique get members, 87
h clique get neighbors, 87
h clique t, 85
h constraint backward edge forbid-

den, 125
h constraint backward edge required,

125
h constraint edge forbidden, 125
h constraint edge required, 125
h constraint error, 126
h constraint forward edge forbidden,

125
h constraint forward edge required,

125
h constraint none, 125
h coordinate t, 150
h count t, 10
h domain adapt, 114
h domain approximate, 82
h domain cg evidence is propagated,

108
h domain compile, 75
h domain compress, 81
h domain delete, 20
h domain equilibrium is, 107
h domain evidence is propagated, 108
h domain evidence mode is, 107
h domain evidence to propagate, 108
h domain generate tables, 69

158

h domain get approximation constant,
84

h domain get attribute, 32
h domain get case count, 119
h domain get concurrency level, 14
h domain get conflict, 103
h domain get elimination order, 79
h domain get file name, 148
h domain get first attribute, 32
h domain get first junction tree, 86
h domain get first node, 29
h domain get grain size, 14
h domain get log likelihood tolerance,

128
h domain get log normalization con-

stant, 104
h domain get marginal, 93
h domain get max number of em it-

erations, 129
h domain get max number of sepa-

rators, 78
h domain get node by name, 28
h domain get node size, 150
h domain get normalization constant,

104
h domain get number of cases, 118
h domain get significance level, 125
h domain get user data, 31
h domain initialize, 106
h domain is compiled, 76
h domain is compressed, 82
h domain learn class tables, 129
h domain learn structure, 124
h domain learn tables, 126
h domain likelihood is propagated,

108
h domain new case, 118
h domain new node, 20
h domain parse case, 98
h domain parse cases, 121
h domain parse nodes, 79
h domain propagate, 101
h domain reset inference engine, 103
h domain retract findings, 92

h domain save as kb, 34
h domain save as net, 148
h domain save case, 97
h domain save cases, 121
h domain save to memory, 106
h domain seed random, 110
h domain set attribute, 32
h domain set case count, 119
h domain set concurrency level, 14
h domain set grain size, 14
h domain set log file, 80
h domain set log likelihood tolerance,

128
h domain set max number of em it-

erations, 129
h domain set max number of sepa-

rators, 78
h domain set node size, 150
h domain set number of cases, 118
h domain set significance level, 124
h domain set user data, 31
h domain simulate, 109
h domain t, 19
h domain tables to propagate, 109
h domain triangulate, 78
h domain triangulate with order, 78
h domain uncompile, 80
H DOUBLE, 3–6
h double t, 9
h edge constraint t, 125
h equilibrium max, 100
h equilibrium sum, 100
h equilibrium t, 100
h error code, 11
h error compressed, 82
h error description, 12
h error fast retraction, 102
h error inconsistency or underflow,

102
h error io, 13
h error name, 12
h error no memory, 13
h error none, 11
h error overflow, 102

159

h error t, 11
h error usage, 13
h evidence mode t, 101
h expression clone, 60
h expression delete, 60
h expression get boolean, 60
h expression get label, 60
h expression get node, 59
h expression get number, 59
h expression get operands, 59
h expression get operator, 59
h expression is composite, 59
h expression t, 56
h expression to string, 62
h index t, 10
h infinity, 65
h jt cg evidence is propagated, 108
h jt equilibrium is, 107
h jt evidence is propagated, 108
h jt evidence mode is, 108
h jt evidence to propagate, 108
h jt get cliques, 86
h jt get conflict, 103
h jt get next, 86
h jt get root, 86
h jt likelihood is propagated, 108
h jt propagate, 102
h jt tables to propagate, 109
h junction tree t, 85
h kb load domain, 34
h kind continuous, 20
h kind discrete, 20
h kind error, 20
h label make expression, 57
h location t, 62, 145
h make composite expression, 57
h mode fast retraction, 101
h mode normal, 101
h model delete, 63
h model get expression, 63
h model get nodes, 63
h model get number of samples per

interval, 70
h model get size, 63

h model set expression, 63
h model set number of samples per

interval, 70
h model t, 62
h net parse classes, 146
h net parse domain, 145
h new class collection, 38
h new domain, 20
h node add parent, 22
h node add to inputs, 40
h node add to outputs, 40
h node case is set, 119
h node category t, 19
h node delete, 21
h node enter finding, 91
h node enter value, 91
h node evidence is entered, 96
h node evidence is propagated, 96
h node evidence to propagate, 108
h node generate table, 69
h node get alpha, 28
h node get attribute, 32
h node get belief , 92
h node get beta, 28
h node get case state, 118
h node get case value, 119
h node get category, 21
h node get children, 25
h node get distribution, 94
h node get domain, 21
h node get edge constraint, 126
h node get entered finding, 95
h node get entered value, 95
h node get expected utility, 95
h node get experience table, 112
h node get fading table, 113
h node get first attribute, 32
h node get gamma, 28
h node get home class, 39
h node get input, 44
h node get instance, 43
h node get instance class, 41
h node get junction tree, 86
h node get kind, 21

160

h node get label, 149
h node get master, 42
h node get mean, 93
h node get model, 63
h node get name, 28
h node get next, 29
h node get number of states, 25
h node get output, 43
h node get parents, 24
h node get position, 150
h node get propagated finding, 95
h node get propagated value, 96
h node get sampled state, 109
h node get sampled value, 110
h node get selection, 109
h node get source, 45
h node get state label, 64
h node get state value, 65
h node get subtype, 56
h node get table, 26
h node get user data, 30
h node get variance, 93
h node has experience table, 112
h node has fading table, 113
h node kind t, 20
h node likelihood is entered, 96
h node likelihood is propagated, 96
h node make expression, 56
h node new model, 62
h node remove from inputs, 40
h node remove from outputs, 40
h node remove parent, 23
h node retract findings, 91
h node reverse edge, 23
h node select state, 90
h node set alpha, 28
h node set attribute, 32
h node set beta, 28
h node set case state, 118
h node set case value, 119
h node set edge constraint, 126
h node set gamma, 28
h node set input, 43
h node set label, 149

h node set name, 28
h node set number of states, 25
h node set position, 150
h node set state label, 64
h node set state value, 64
h node set subtype, 56
h node set user data, 30
h node substitute class, 43
h node subtype t, 56
h node switch parent, 23
h node t, 19
h node touch table, 27
h node unset case, 119
h node unset input, 44
h number make expression, 57
h number t, 9
h operator abs, 58
h operator add, 57
h operator and, 58
h operator Beta, 58
h operator Binomial, 58
h operator boolean, 59
h operator ceil, 58
h operator cos, 58
h operator cosh, 58
h operator Distribution, 58
h operator divide, 57
h operator equals, 57
h operator error, 59
h operator exp, 58
h operator Exponential, 58
h operator floor, 58
h operator Gamma, 58
h operator Geometric, 58
h operator greater than, 57
h operator greater than or equals, 57
h operator if , 58
h operator label, 59
h operator less than, 57
h operator less than or equals, 57
h operator log, 58
h operator log10, 58
h operator log2, 58
h operator max, 58

161

h operator min, 58
h operator mod, 58
h operator multiply, 57
h operator negate, 57
h operator NegativeBinomial, 58
h operator node, 59
h operator NoisyOR, 58
h operator Normal, 58
h operator not, 58
h operator not equals, 57
h operator number, 59
h operator or, 58
h operator Poisson, 58
h operator power, 57
h operator sin, 58
h operator sinh, 58
h operator sqrt, 58
h operator subtract, 57
h operator t, 57
h operator tan, 58
h operator tanh, 58
h operator Uniform, 58
h operator Weibull, 58
h status t, 10
h string parse expression, 61
h string t, 10
h subtype boolean, 56
h subtype error, 56
h subtype interval, 56
h subtype label, 56
h subtype number, 56
h table delete, 52
h table get covariance, 52
h table get data, 51
h table get mean, 52
h table get nodes, 51
h table get size, 53
h table get variance, 52
h table reorder nodes, 53
h table t, 51
h tm clique size, 76
h tm clique weight, 77
h tm fill in size, 77
h tm fill in weight, 77

h tm total weight, 77
h triangulation method t, 76

Linux, 2

Mac OS X, 2

Solaris, 2, 14–15

Windows, 4–7, 15

Zlib, 2

162

	Preface
	General Information
	Introduction
	Using the HUGIN API on UNIX platforms
	Using the HUGIN API on Windows platforms
	Naming conventions
	Types
	Errors
	Handling errors
	General errors

	Taking advantage of multiple processors
	Multiprocessing in the Solaris Operating Environment
	Multiprocessing on Windows platforms

	Using the HUGIN API in a multithreaded application

	Nodes and Domains
	Types
	Node category
	Node kind

	Domains: Creation and deletion
	Nodes: Creation and deletion
	The links of the network
	The number of states of a node
	The conditional probability and the utility table
	The name of a node
	Iterating through the nodes of a domain
	User data
	Arbitrary user data
	User-defined attributes

	HUGIN Knowledge Base files

	Object-Oriented Belief Networks and Influence Diagrams
	Classes and class collections
	Creating classes and class collections
	Deleting classes and class collections
	Naming classes
	Creating basic nodes
	Naming nodes
	The interface of a class
	Creating instances of classes
	Putting the pieces together
	Creating a runtime domain
	Node iterator
	User data

	Tables
	What is a table?
	The nodes and the contents of a table
	Deleting tables
	The size of a table
	Rearranging the contents of a table

	Generating Tables
	Subtyping of discrete nodes
	Expressions
	Syntax for expressions
	Creating and maintaining models
	Labeled nodes
	Numeric nodes
	Statistical distributions
	Continuous distributions
	Discrete distributions

	Generating tables
	How the computations are done
	Deterministic relationships

	Compiling Domains
	What is compilation?
	Compilation
	Triangulation
	Getting a compilation log
	Uncompilation
	Compression
	Approximation

	Cliques and Junction Trees
	Types
	Junction trees
	Cliques
	Traversal of junction trees

	Evidence and Beliefs
	Evidence
	Discrete evidence
	Continuous evidence

	Entering evidence
	About likelihood evidence

	Retracting evidence
	Retrieving beliefs
	Retrieving expected utilities
	Examining evidence
	Case files

	Inference
	Propagation methods
	Summation and maximization
	Evidence incorporation mode
	Inference in influence diagrams

	Propagation
	Conflict of evidence
	The normalization constant
	Initializing the domain
	Querying the state of the inference engine
	Simulation

	Sequential Updating of Conditional Probability Tables
	Experience counts and fading factors
	Updating tables

	Learning Network Structure and Conditional Probability Tables
	Data
	Data files
	Learning network structure
	Domain knowledge
	Learning conditional probability tables

	The NET Language
	Overview of the NET language
	Basic nodes
	Class instances
	The structure of the model
	Potentials
	Direct specification of the numbers
	Using the table generation facility
	Adaptation information

	Global information
	Lexical matters
	Parsing NET files
	Saving class collections, classes, and domains as NET files

	Display Information
	The label of a node
	The position of a node
	The size of a node

	Belief networks with Conditional Gaussian variables
	Bibliography
	Index

