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Data Conflict Analysis

What is data conflict?

Data conflict measure

Tracing conflicts

Conflict or rare case?
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Data Conflict

Inconsistencies among observations are easily detected
(P(ε) = 0).

Negatively correlated observations can lead to opposing
hypotheses, neutralizing each others effect on a hypothesis
variable.

A flawed observation will be negatively correlated with
non-flawed observations.

Flawed observation should be detected and traced.

In a diagnostic situation a single flawed test result may take
the investigation in a completely wrong direction.

Rare case: A Bayesian network represents a closed world with
a finite set of variables and causal relations (holds true only
under certain assumptions).

Alert the user if a set of observations is not well covered by
the model.
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Mr. Holmes

Seismometer

Dr. Watson makes frequent calls to Mr. Holmes
regarding the burglar alarm. Every time Mr. Holmes
rushes home, just to find that everything is in order,
since, till now, the cause of activation of the alarm

has been small earthquakes. So now Mr. Holmes is
installing a seismometer in his house with a direct
line to his office.

S : No, Small, and Large vibrations.

B E

A S

Reykjavik University, April/May 2005, BNs and DGs: Analyses in Bayesian Networks 5



Mr. Holmes

One afternoon Dr. Watson calls again and announces that Mr.
Holmes’ alarm has gone off. Mr. Holmes checks the seismometer,
it is in state 0 (i.e., no vibrations).

From our knowledge of the model, we would say that the
findings are in conflict.

A propagation does not disclose the conflict
(P(B = yes) = 0.38).

Using the model only, we cannot distinguish between flawed data
and a case not covered by the model.
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The Conflict Measure

We need a conflict measure that is easy to calculate and gives an
indication of a possible conflict. Two pieces of evidence
ε = {εi , εj} are

positively correlated if P(εi |εj) > P(εi ),

negatively correlated if P(εi |εj) < P(εi ),

independent if P(εi |εj) = P(εi ).
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The Conflict Measure

We need a conflict measure that is easy to calculate and gives an
indication of a possible conflict. Two pieces of evidence
ε = {εi , εj} are

positively correlated if P(εi |εj) > P(εi ),

negatively correlated if P(εi |εj) < P(εi ),

independent if P(εi |εj) = P(εi ).

There is an indication of a conflict between εi and εj , if

P(εi )P(εj)

P(εi , εj)
> 1 ⇐⇒ log

P(εi )P(εj)

P(εi , εj)
> 0
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The Conflict Measure

We need a conflict measure that is easy to calculate and gives an
indication of a possible conflict. Two pieces of evidence
ε = {εi , εj} are

positively correlated if P(εi |εj) > P(εi ),

negatively correlated if P(εi |εj) < P(εi ),

independent if P(εi |εj) = P(εi ).

There is an indication of a conflict between εi and εj , if

P(εi )P(εj)

P(εi , εj)
> 1 ⇐⇒ log

P(εi )P(εj)

P(εi , εj)
> 0

The conflict between εi and εj is

conf(ε) = log
P(εi )P(εj)

P(ε)
.
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The Conflict Measure

Let ε = {ε1, . . . , εn} be a set of observations (evidence).

For positively correlated findings we expect that

P(ε) >

n
∏

i=1

P(εi )

Thus, the conflict measure is defined as

conf(ε) = conf({ε1, . . . , εn}) = log

∏n
i=1 P(εi )

P(ε)
.

A positive conf(ε) indicates a possible conflict.
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Mr. Holmes

The evidence ε = {S = 0, A = yes}.

conf(ε) = conf({S = 0, A = yes})

= log
P(S = 0)P(A = yes)

P(S = 0, A = yes)

= log
0.44 · 0.55

0.012

= 3.0

> 0.

Thus, conf(ε) indicates a possible conflict.
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Conflict or Rare Case?

Typical data from a very rare case may indicate a possible conflict.

Let ε = {ε1, . . . , εn} be findings for which conf(ε) > 0 and let h be
a hypothesis which could explain the findings (i.e.
conf(ε ∪ {h}) ≤ 0):

conf(ε ∪ {h}) = log
P(ε1) · · ·P(εn)P(h)

P(ε, h)

= conf(ε) + log
P(h)

P(h |ε)
.

Thus, if conf(ε) ≤ log
P(h |ε)

P(h)
, then h can explain away the

conflict (normalized likelihood).
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Mr. Holmes

Holmes looks out his window. It rains cats and dogs.

F : Flood, R: Rain, ε = {R = heavy, S = 0, A = yes}.

R B E

F A S

The posterior probability of flood is P(F = yes |ε) = 0.99 and prior
is P(F = yes) = 0.006 — the conflict is explained away as a rare
case.

The conflict is conf(ε) = −0.24.
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Tracing Conflicts

After the conflict measure has been found to indicate a possible
conflict, the conflict should be traced.

Compute the conflict measure for different subsets ε′ of ε.

In the example, we have three subsets with partial conflicts:

conf({εA, εR}) = −0.45

conf({εA, εS}) = 3.03

conf({εR , εS}) = 0

Local conflict: conf({{εA, εR}, εS}) = 0.213.

Global conflict is the sum of the local and partial conflicts:

conf({εA, εR , εS}) = conf({εA, εR}) + conf({{εA, εR}, εS})
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Summary

Data conflict

Data conflict measure

Tracing conflicts

Conflict or rare case
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Value of Information Analysis in Bayesian Networks

Value of information analysis

Myopic value of information analysis

Value of information analysis in influence diagrams

Non-myopic value of information analysis

Value of information analysis in a Bayesian network
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Value of Information

Before deciding on an action more information can be acquired.

Seldomly cost free.

Is it worthwhile consulting additional information sources.

If more than one source exists, the task is to come up with a
strategy for consulting the information sources.

Additional information (if free) cannot make you worse off.

No value of information if you will not change your decision.
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Insemination

Insemination

Six weeks after insemination of
a cow there are three tests for
the result: blood test (BT),
urine test (UT), and scanning

(Sc). The results of the blood
test and the urine test are
mediated through the
hormonal state (Ho) which is
affected by a possible
pregnancy (Pr).

Pr pr+
pr−

ho+
ho−

Ho Sc sc+
sc−

bt+
bt−

BT UT ut+
ut−
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Insemination

Assume that you have the options to repeat the insemination
or to wait for another six-weeks period.

The cost of repeating the insemination is 65 units no matter
the pregnancy state of the cow. If the cow is pregnant, and
you wait, it will cost you nothing, but if the cow is not
pregnant, and you wait, it will cost you an additional 30 units
plus the eventual repeated insemination (that makes a total of
95 units for waiting).

wait repeat

pr+ 0 −65
pr− −95 −65

A blood test has a cost of 1 unit and a urine test has a cost
of 2 units.
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Value of Information

Hypothesis driven data request.

Pr pr+
pr−

ho+
ho−

Ho Sc sc+
sc−

bt+
bt−

BT UT ut+
ut−

The value of the
information scenario with
respect to hypothesis Pr
is:

VPr = max
a∈A

∑

h∈Pr

U(a, h)P(h).

A proper analysis of the
data request situation
consists of an analysis of
all possible sequences.
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Myopic Value of Information

Assume we are allowed to consult at most one information source.

If test T with cost CT yields outcome t, then the value of the
new information scenario is

VPr(t) = max
a∈A

∑

h∈Pr

U(a, h)P(h | t).

Since the outcome of T is not known we calculate the
expected value

EVPr(T ) =
∑

t∈T

VPr(t)P(t).

The expected benefit is EBPr(T ) = EVPr(T ) − VPr.

The expect profit is EPPr(T ) = EBPr(T ) − CT .
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Insemination

With P(pr+) = 0.87, P(pr+ |bt+) = 0.976, P(pr+ |bt−) = 0.729,
and P(bt+) = 0.571 we get

VPr = max
a∈{wait,repeat}

∑

h∈{pr+,pr−}

U(a, h)P(h)

= max{U(wait, pr+)P(pr+) + U(wait, pr−)P(pr−),

U(repeat, pr+)P(pr+) + U(repeat, pr−)P(pr−)}

= max{0 · 0.87 + (−95) · 0.13,−65 · 0.87 + (−65) · 0.13}

= −12.35,

which is the value associated with the hypothesis variable Pr with
nothing observed.
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Insemination

Now, if BT is observed, we get

VPr(bt+) = max
a∈{wait,repeat}

∑

h∈{pr+,pr−}

U(a, h)P(h |bt+)

= max{0 · 0.976 + (−95) · 0.0.024,

−65 · 0.976 + (−65) · 0.024}

= −2.28,

VPr(bt−) = max{0 · 0.729 + (−95) · 0.0.271,

−65 · 0.729 + (−65) · 0.271}

= −25.75.
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Insemination

Then if we weigh these values with the probabilities of the
associated observations, we get

EVPr(BT ) =
∑

t∈{bt+,bt−}

VPr(t)P(t)

= −2.28 · 0.571 + (−25.75) · 0.429 = −12.35,

which is exactly the same as VPr(BT )! Hence

EBPr(BT ) = EVPr(BT ) − VPr = 0,

and
EPPr(BT ) = EBPr(BT ) − CBT = −1.
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Insemination: Interpretation of Result

We found
VPr = EVPr(BT ) = −12.35,

and hence
EBPr(BT ) = EVPr(BT ) − VPr = 0,

meaning that we do not gain anything by getting the extra
information from a blood test.

Value of information

The value of information is zero, unless it will make
you change your decision.
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Insemination: Interpretation of Result

In particular, we found

arg max
a∈{wait,repeat}

∑

h∈{pr+,pr−}

U(a, h)P(h |bt+) = wait

arg max
a∈{wait,repeat}

∑

h∈{pr+,pr−}

U(a, h)P(h |bt−) = wait

That is, no matter the outcome of BT our decision should be
“wait”.

An interesting question:

How much can the model parameters (i.e., the probabilities
and utilities) change without affecting the result of the
analysis?

Answer can be provided through sensitivity analysis.

Reykjavik University, April/May 2005, BNs and DGs: Analyses in Bayesian Networks 27



Non-Myopic Value of Information

Assume we are allowed to consult any number of information
sources.

Important if the expected benefit of consulting a pair of
information sources is greater than the sum of the costs.

This is a much more computationally involved task to perform.

If costs cannot be reduced by performing tests simultaneously,
then deciding to perform two tests can never be better than
to consult one information source and decide afterwards
whether to consult the second.
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VOI Analysis in Bayesian Networks

How do we perform value of information analysis without
specifying utilities?

The reason for acquiring more information is to decrease the
uncertainty about a hypothesis.

The entropy is a measure of how much probability mass is
scattered around on the states (the degree of chaos).

H(P(H)) = −
∑

h∈H

P(h) log2(P(h)).

Thus, H(P(H)) ∈ [0, log2(n)] where |H| = n.

Entropy is a measure of randomness. The more random a
variable is, the higher its entropy.
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Entropy

If the entropy is to be used as a value function, then

VH = −H(P(H)) =
∑

h∈H

P(h) log2(P(h)).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Entropy for the binary case

E(H)
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Entropy for the binary case

E(H)

H(P(H)) VH = −H(P(H))

We want to maximize VH = −H(P(H)) (i.e., minimize
H(P(H))).
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Entropy

What is the expected most informative observation?

The conditional entropy is

H(T |X ) = −
∑

X

P(X )
∑

T

P(T |X ) log2 P(T |X ).

Let T be the target, now select X with maximum information
gain

MI (T , X ) = H(T ) − H(T |X ) = H(X ) + H(T ) − H(X , T )

A measure of the reduction of the entropy of T given X .
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Summary

Value of information analysis

Myopic value of information analysis

Value of information analysis in influence diagrams

Non-myopic value of information analysis

Value of information analysis in Bayesian networks
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Sensitivity Analysis

Given a model N and a hypothesis variable H we would like to
determine the sensitivity of the model or hypothesis relative to the
observations made or the parameters of the model.

Sensitivity analysis with respect to ε can give answers to
questions like:

Which evidence is in favor of/against/irrelevant for hi .
Which evidence discriminate hi from hj?

A structural analysis can give answers to some of these
questions, but this is not the point here.
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Mr. Holmes

Wet Grass

In the morning when Mr. Holmes leaves his house he
realizes that his grass is wet. He wonders whether it
has rained during the night or whether he has
forgotten to turn off his sprinkler. He looks at the
grass of his neighbors, Dr. Watson and Mrs. Gibbon.
Both lawns are dry and he concludes that he must
have forgotten to turn off his sprinkler.

hS : S = yes and ε = {εG , εW , εH}
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Mr. Holmes: Structure

The structure:

R S

G W H

Which pieces of evidence are Mr. Holmes’ reasoning sensitive to?

Recall d-separation.
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Mr. Holmes: Sensitivity Analysis

We have P(hS) = 0.1 and P(hS |ε) = 0.9999.

Since P(hS |εH) = 0.51, P(hS |εW ) = 0.1 = P(hS |εG ), we
conclude:

Neither εW nor εG alone have any impact on hS .
εH is not sufficient for the conclusion.

The conclusion that εW and εG are irrelevant is not correct.

The evidence in combination has a larger impact than the
“sum” of the individual impacts.
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Sensitivity Analysis Concepts

Some loosely defined concepts:

Let ε = {ε1, . . . , εn} be a set of observations, and let ε′ ⊆ ε.

ε′ is sufficient if P(h |ε′) is almost equal to P(h |ε).

ε \ ε′ is redundant.

ε′ is minimally sufficient, if it is sufficient and no ε′′ ⊂ ε′ is.

ε′ is crucial, if it is a subset of all sufficient sets.

ε′ is important if P(h |ε) change too much without it.

Now, let’s try to be more precise.
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Sufficiency and Importance

Let ε = {ε1, . . . , εn} be a set of observations, and let ε′ ⊆ ε.

ε′ is sufficient if P(h |ε′) is almost equal to P(h |ε):

∣

∣

∣

∣

p(h |ε′)

p(h |ε)
− 1

∣

∣

∣

∣

< θ1.

ε′ is important if the probability of h change too much
without it:

∣

∣

∣

∣

p(h |ε \ ε′)

p(h |ε)
− 1

∣

∣

∣

∣

> θ2.
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Redundancy and Irrelevance

We distinguish between redundancy and irrelevance.

A subset ε′ ⊆ ε is redundant if ε \ ε′ is sufficient; i.e., if

∣

∣

∣

∣

P(h |ε \ ε′)

P(h |ε)
− 1

∣

∣

∣

∣

< θ.

If two subsets of evidence ε′ and ε′′ are redundant, then both
cannot necessarily be removed (e.g. wet grass example).

A piece of evidence x is irrelevant for h if it is redundant in all
subsets of ε:

∣

∣

∣

∣

P(h |ε′ \ {x})

P(h |ε′)
− 1

∣

∣

∣

∣

< θ, ∀ε′ ⊆ ε.
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Mr. Holmes: Redundancy and Irrelevance

Consider εG and εW in the Mr. Holmes example.

P(hS |ε = {εW , εG , εH}) = 0.9999

P(hS |εG , εH) = P(hS |εW , εH) = 0.988

P(hS |εH) = 0.51

With θ = 0.02 both εG and εW are redundant, but none of them
are irrelevant.
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What-if

Let ε = {ε1, . . . , εn} be a set of observations and assume a
single hypothesis h is of interest.

What if the observation εi had not been made, but ε′i
instead ?

Involves computing P(h |ε ∪ {ε′i} \ {εi}) and comparing
results.

This kind of analysis will help you determine, if a subset of
evidence acts for or against a hypothesis.
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Discrimination of Hypotheses

Let H = (h1, . . . , hm) be the hypotheses of interest.

Question: Which evidence discriminate hi from hj?

To relate the impact of ε′ on hi and hj we can use:

P(ε′ |hi )

P(ε′ |hj)
=

L(hi |ε
′)

L(hj |ε′)
.
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Discrimination of Hypotheses

Mr. Holmes has two hypotheses hR and hS and evidence
ε = {εW , εG , εH}.

ε′
P(ε′ |hS )
P(ε′ |hR)

εG εW εH 6622

εG εW − 7300

εG − εH 74

εG − − 81

− εW εH 74

− εW − 81

− − εH 0.92

− − − 1

Thus, εG and εW are good discriminators.
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Complexity of Sensitivity Analysis

The heart of sensitivity analysis is the computation of

P(h |ε′), ∀ε′ ⊆ ε, ∀h ∈ H.

The complexity of this task grows exponentially.
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Summary

Classification of evidence as

sufficient
important
crucial
redundant
irrelevant

What-if analysis.

Discrimination among hypotheses.

Sensitivity analyses relative to evidence can have high
computational complexity.
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Sensitivity Analysis Relative to Parameters

Let N be a Bayesian network with parameters ~t, where each
t ∈ ~t is of the form t = P(A = a |pa(A) = π).

A single hypothesis H = h is of interest.

We are interested in how P(h |ε) varies with ~t.

It turns out that P(ε)(t) = αt + β, α, β ∈ R. Thus

P(h |ε)(t) =
P(h, ε)(t)

P(ε)(t)
=

γt + δ

αt + β
.

The posterior probability is a fraction of two multi-linear
functions of the parameters.

The coefficients can easily be found through inference.
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Determining The Sensitivity Function

In the Wet Grass example:

P(hS |ε = {εH , εG})(t) =
−0.08t + 0.081

−0.071t + 0.081
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0.9
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0 0.2 0.4 0.6 0.8 1

Sensitivity of Parameter

(-0.08*x+0.081)/(-0.071*x+0.081)

Whether or not the precision of an assessment of the value t0 of a
parameter t is important depends on the size of |P ′(h |ε)(t0)|.
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The Derivative and Sensitivity Value

The derivative of the sensitivity function tells us how much
P(h |ε)(t) change as a function of t.

In general, P ′(h |ε)(t) =
P(h |ε)(t)

∂t
=

αδ − βγ

(γt + δ)2
.

The sensitivity value of a parameter t is |P ′(h |ε)(t0)|.

Where t0 is the original assessment.
If |P ′(h |ε)(t0)| > 0, then t is of interest.

In the example we for t0 = 0.1 get |P ′(hS |ε)(t0)| = 0.08.

Not enough to consider the sensitivity value alone since
approximation is good for small deviations only.
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The Sensitivity Function

The alternative hypothesis hS=n has:

P(hS=n |ε)(t) =
0.009t

−0.071t + 0.081

0
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t=0.91

S=y
S=n

For t = 0.91: P(hS=n |ε)(t) = P(hS=y |ε)(t).
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Which Parameters Should Be Investigated?

Parameters that deserve further investigation have:

A sensitivity value > θ.

How much can the parameter vary before the most likely
hypothesis change (admissible deviation)?

Sensitivity bounds ∆t ∈ [a, b] before hypothesis change.

In the example, ∆t ∈ [−0.1, 0.91 − 0.1].
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Summary

The sensitivity function P(h |ε)(t) for a hypothesis H = h as
a function of a parameter, say, t = P(A = a |B = b) can
easily be determined.

A sensitivity function is a fraction of two (multi-)linear
functions of the parameter(s).

The derivative of a sensitivity function tells you how much
P(h |ε)(t) changes as a function of t.

Sensitivity functions provide very useful information in the
probability elicitation process, telling you with which precision
you need to assess parameter values.

One-way sensitivity analysis — how does P(h |ε) change as a
function of each parameter — is simple. n-way is
computationally expensive.
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