
Modelling and Analysis of a Commercial Field Bus Protocol

Alexandre David Wang Yi
adavid@DoCS.UU.SE yi@DoCS.UU.SE

Uppsala University
Department of Computer Science
Box 325, 751 05 Uppsala Sweden

Fax: +46 18 55 02 25

Abstract

We report on an industrial application ofUPPAAL, in
which a commercial field bus protocol (AF100) is modelled
and analysed using the tool. During the case study, a num-
ber of imperfections in the protocol logic and its implemen-
tation are found and their sources are debugged based on
abstract models of the protocol; respective improvements
have been suggested. In this paper, we shall summarize our
experiences in dealing with the complexity of the protocol
using various modelling and abstraction features provided
in UPPAAL. As an example, we study the bus coupler of
AF100, which serves as the data link layer of the protocol.

1. Introduction

In recent years, a number of modelling and verification
tools for real-time systems [HHWT95, BLL+95, BLL+96,
DOTY95] have been developed based on the theory of
timed automata [AD94]. They have been successfully ap-
plied in various case-studies (e.g. [BGK+96, JLS96,
SMF97]). However, the tools have been mainly used in the
academic community, namely by the tool developers. It has
been a challenge to apply these tools to the development and
debugging of industrial products.

In this paper we report on an industrial application of the
UPPAAL tool to model and debug a commercial field bus
communication protocol, AF100 (Advant Fieldbus 100) de-
veloped and implemented in ABB for safety-critical appli-
cations e.g. process control. The protocol has been running
in various industrial environments over the world for the
past ten years. During its seven years on the market a num-
ber of errors have been detected which result in time–outs
and retransmissions. Due to the complexity it has been very
time and resource consuming to troubleshoot these errors.
It is a great potential to become more efficient by using the

tool UPPAAL and this is part of the motivation for initializ-
ing a project to model and analyse the protocol. A clear in-
terest is to improve the methods, decrease the maintenance
time/costs and to increase quality of the product. However
the goal of the project is not to verify the correctness of the
protocol in any sense ofcompleteness, which is basically
impossible due to the size and complexity of the system,
but to localize the error sources in both the protocol logic
and the implementation at the source level.

To our knowledge, the case study is the largest reported
so far, where the UPPAAL tool has been applied, which in-
volves hundreds of pages of protocol specification and thou-
sands of lines of source code. During the case study, a num-
ber of errors in the protocol logic and its implementation
have been found and debugged based on abstract models of
the protocol; respective improvements have been suggested.
It turns out that many of the problems are due to incorrect
usage of synchronization and timing mechanisms in the im-
plementation of the protocol, in particular, semaphores and
timeouts. In this paper we shall summarize our experience
in dealing with the complexity of the protocol using various
abstraction features provided in UPPAAL. As an example,
we study the bus coupler of AF100, which serves as the data
link layer of the protocol. However the high level functions
of VFI are believed not to be affected by these low level
transient errors due to retransmission and protection of data.
We are investigating this issue.

UPPAAL is a tool box for modelling and verification
of safety and bounded liveness properties of networks of
timed automata developed jointly by Uppsala University
and Aalborg University. It contains a number of tools in-
cluding a graphical interface, automatic generator of di-
agnostic traces, and a model-checker based on on-the-fly
state-space examination and constraint solving techniques
[YPD94, BLL+95]. It provides several features for mod-
elling system behaviours on different levels of abstraction.

In modelling AF100, it turned out that “urgent state” is a
useful notion for modelling race condition and “committed



location” is a convenient means for abstraction. Both are
implemented in UPPAAL. As an example, we have studied
in details the bus coupler of AF100, which corresponds to
the data link layer of the protocol. Several abstract models
have been developed, offering different levels of abstraction
on the behaviour of the bus coupler. A number of properties
related to the abstraction levels have been checked and the
sources of found errors have been exhibited by generating
the diagnostic traces. In addition, dead codes are found in
the protocol implementation.

The paper is organized as follows: Section 2 gives an
informal description of AF100. Section 3 presents the mod-
elling and the abstraction. Section 4 the verification and
debugging. Section 5 concludes the paper.

2. An Informal Description of AF100

2.1. Overview

AF100 is a field bus communication protocol (Advant
Fieldbus). It is designed for 80 stations communicating over
a bus. A station acting as a “master”, may initiate a dialog
with up to 79 other stations acting as “slaves” in this dialog.
The master requests information from a slave which only
responds to it, thus the names master and slave. In fact the
dialog is established between applications on stations and
each station may have several applications running (acting
as masters or slaves).

The protocol has two main layers which are:VFI (Virtual
Field Interface) and theBus Couplercorresponding to the
transport and data link layers respectively in the ISO proto-
col standard [Tan81]. Typically a client application will use
the master part of VFI to send requests to another station
where a server application will respond through the slave
part of VFI. VFI communicates with the bus via the Bus
Coupler which uses a low level bus queue.

We are interested in the service calls from the appli-
cation, which is the API offered by AF100 (Application
Programmer Interface); the VFI protocol between the VFI
peers over the Bus Coupler and the bus; the interface be-
tween VFI and the Bus Coupler; and the protocol between
the Bus Coupler peers that we call the Bus Coupler proto-
col.

Message passing through VFI is as follows: First, an ap-
plication sends messages to VFI, VFI cuts messages into
packets and sends them to the Bus Coupler via an inter-
face; the Bus Coupler receives packets and sends them over
the bus to the next Bus Coupler. The receiving Bus Cou-
pler accepts packets and sends them to VFI via an inter-
face; VFI assembles messages from packets and signals the
application when they are ready to be fetched. Finally an
application blocked by VFI is signaled and gets messages.

confirm respond
sendConfirm

requestRespond

send

Master application Slave application

Bus

MTP

PTP

SDP

MTP

PTP

SDPService Data Transfert

Message Transfert Protocol

Packet Transport Protocol

Figure 1. Layers of AF100.

On top of this message passing protocol we have the mas-
ter/slave concept: a client application sends a VFI-master
request message to a server which responds with a VFI-
slave answer message. An acknowledgment mechanism en-
sures that messages are transmitted correctly.

Figure 1 gives the layered structure of the protocol of
AF100. The API services are on top of the structure, VFI
covers theService Data Transferand theMessage Transfer
Protocollayers and the Bus Coupler is thePacket Transport
Protocol.

2.2. The Transport Layer: VFI

As mentioned earlier, VFI corresponds to the transport
layer in the ISO standard. It offers three different services
on the master side, which have a counterpart on the slave
side:request respond, send confirmandsend message. The
last one is simple: it does not require an answer. The first
two are similar and both require an answer provided by the
servicesrespondandconfirmon the slave.

The VFI protocol is in short an alternating bit proto-
col at the message level and a sliding window protocol at
the packet level. Packets are sent transparently, i.e. with-
out acknowledgment within the window and they require
acknowledgment between each window. The bit used to
mark the packet is called thetransparent bitand it is actu-
ally checked at every layer, which is the exception in the
layered structure of the whole protocol.

We will now focus on the Bus Coupler that runs on a
different board and operating system than VFI. This com-
munication is the object of this paper.

2.3. The Data Link Layer: Bus Coupler

The Bus Coupler corresponds to the data link layer in
the ISO standard. It is located on a separated board run-
ning its own operating system. The Bus Coupler communi-
cates with VFI via an interface (a buffer accessible to both
parts). The communication with the bus is achieved via
ports. There are four dedicated ports per station. For each
port, there is an associated Bus Coupler task, listening to
the bus or the VFI. These dedicated ports are to be used in
the following ways:



sends to Bus

acknowledgment to VFI

listens to VFI

Tasks serving ports 1 and 4:

sends to VFI

acknowledgment to Bus

listens to Bus

Tasks serving ports 2 and 3:

VFI
master slave

VFIport 1

port 3

port 4

port 4

port 3

port 2

port 1

port 2

S
ta

ti
o
n

 1

S
ta

tio
n

 2

slave

VFI VFI
master

request

response

Figure 2. Bus Coupler communication
scheme.

• a requestfrom the master is sent toport 1
• a responseis received by the master fromport 2
• a request is received by the slave fromport 3
• a responsefrom the slave is sent toport 4.

Figure 2 illustrates this communication scheme on which
we will focus. Tasks for the master and the slave are de-
picted. The request and the response are acknowledged.

This communication is symmetric for a request sent from
the master or a response sent from the slave. From the Bus
Coupler point of view it is just a point to point communica-
tion and this will give us an abstraction in the modelling.

After sending to the bus, the Bus Coupler will wait for an
acknowledgment if the packet is not transparent, otherwise
it returns and “lies” to VFI with a positive acknowledgment.
The same holds for VFI receiving from the Bus Coupler.

Communication between VFI and the Bus Coupler is
achieved via a buffer which is separated into fields writable
by only one side, but readable by the other side. The syn-
chronization bits are:

• mail box reservedto reserve access to the buffer
• data read to notify that data was read
• data written to notify that data was written
• data lost to return positive or negative acknowledg-

ment.

Furthermore a data field to write the packet itself is re-
served. Both sides have these fields.

The Bus Coupler protocol has two main components:
the communication with VFI through this interface and the
communication with the other Bus Coupler. The commu-
nication between bus couplers involves a minimum control
of packets with management of re-sending packets and as-
sociated acknowledgments. The layer below is used via a
simple API of the form send/receive. This part of the proto-
col is known to be robust so we will not treat it in this paper,
which will be abstracted away in the model.

The implementation of the protocol uses signals to no-
tify the reading side when a bit has been written. The inter-
ruption/signal mechanism is specific to this implementation

and uses semaphores on both sides (different boards and op-
erating systems) and the modelling stresses this feature.

3. Modelling and Abstraction

3.1. Some Experiences

We started to study the VFI layer. The documentation
received from ABB included a functional description, a
design description and a programmer’s guide, that is 140
pages and 62 pages of Modula-2 source code covering the
relevant parts of VFI, notably parts of the interface with the
Bus Coupler.

The source code was used to construct the models and
the documentation to understand the protocol and to make
abstractions. The role of ABB was crucial in this phase.
It turned out that to understand VFI, we had to consider
the Bus Coupler because we needed information from the
low level mechanisms. This ended up with the study of the
Bus Coupler with 40 pages of dedicated source code. It
resulted in a detailed model where the control structure of
the source code can be tracked down though the automata.
Then we simplified this model using abstraction techniques
to localize errors.

3.2. The Modelling Process

We have adopted a top-down approach first to find and
understand the relevant components of the systems and then
a bottom-up approach with progressive abstractions which
allows us to build up several abstract models for verifica-
tion. As the goal of the project is debugging, finding the
right properties to check has been an interesting experience
itself. The following steps have been taken in the modelling
process as illustrated in Figure 3:

1. model the Bus Coupler based on the source code
2. simplify the model for the Bus Coupler with abstrac-

tions
3. model VFI master and slave separately based on source

code
4. simplify the model for VFI master and the slave part

with abstractions
5. compose the complementary parts of the relevant com-

ponents to derive abstract models for the whole system

Phase 1 is to construct a detailed model respecting the
source code of the Bus Coupler which is presented in sub-
section 3.3. Phase 2 is to derive an abstract model of the im-
plementation model of the Bus Coupler, presented in sub-
section 3.4 using the abstraction mechanism implemented
in UPPAAL. Phase 3 was the first attempt in the project. As
it turned out that we had to deal with the Bus Coupler first,



2

5

1 3

4

slavemaster

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

� �
� �
� �
� �

�
�
�
�

�
�
�
�
�
�

	
	
	
	
	
	










�
�
�
�

� �
� �
� �
� �
� �
� �


 


 


 


 


 


 


�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �
� �
� �
� �

�
�
�
�

B
u

s

2 3

VFIVFI

1 4

Coupler Coupler

ack

VFI VFI

abstractionabstraction

packet

Bus Coupler implementation model VFI slave sub model

VFI VFICouplers

Bus Coupler abstraction VFI master
abstraction

VFI slave
abstraction

VFI master model VFI slave model

VFI master sub model

1 4

Couplers Couplers

Figure 3. The modelling steps.

in phase 3, we aimed at deriving a test automaton based on
the abstract behaviour of the VFI master and slaves. The
simplified model for the Bus Coupler has been constructed
and it contains the essential timing properties of the compo-
nents, allowing us to carry out the last phases.

The work presented in this paper concerns mainly the
first two phases. To avoid the state explosion problem, we
have adopted the standard compositional verification tech-
niques namely checking properties on the abstract models
derived from low level models that are basically the di-
rect transformation of the source code to the UPPAAL de-
scription language. In parallel, we have developedabstract
source codesin a C-like language, corresponding to the
timed automata written in the UPPAAL modelling language.
Assumptions, abstractions, approximations and the event
models are annotated in the abstract sources. It turns out
that the abstract codes are very helpful for debugging and
justifying our modelling decisions for our industrial part-
ner.

3.3. Faithful Models of the Bus Coupler

A particular requirement from our industrial partner is
that we should construct UPPAAL models that respect the
protocol implementation so that all errors found and im-
provements suggested should be related to the source code.
In developing the first model for the Bus Coupler, we had to
keep the same structure as the source code and model all the
implementation details except irrelevant data e.g. contents

of data packets. This has been important for us to under-
stand the protocol and to abstract away irrelevant details in
the later phases of the project.

The first UPPAAL model derived directly from the source
code consists of 16 automata, 4 clocks and 32 integer
variables, modelling 4 sending and receiving processes, 4
semaphores and 8 functions. Note that this is only a part of
the whole AF100 protocol. The structure of the model fol-
lows figure 2. Considering the number and the size of the
automata, there is no point in giving them in this paper.

As usual, the contents of the packets are irrelevant to the
correct behaviour of the protocol, except the transparent bit.
The transparent bit is global in the sense that it is set by the
VFI and read by all the layers of the protocol. It may have
the special value -1 to mark corrupted data that should not
be read. As there may be several applications using the bus
coupler via VFI, packets0, 1, or −1 may arrive randomly
at the Bus Coupler to be sent or delivered. We assume that
packets may be generated randomly. The same idea is used
in the receiver part where the upper layers may accept or
refuse a packet; so positive or negative acknowledgment are
randomly generated as well. Note that the value -1 is not
part of the protocol but modelling bad data for the purpose
of verification.

There are two bus couplers involved in the master side
and the slave side connected by the physical bus for data
transmission. There is a protocol for this layer. The bus
is modelled as a lossy channel preserving the ordering of
data packets. On each side of the bus couplers, there is a
queue. The queue only introduces delay from the Bus Cou-
pler when it wants to send a message. The same applies
if the queue is full and the sender has to wait. The model
concerning this part is a non-deterministic process sending
or ignoring a packet within a time window. Timeout may
occur as well. Concerning transmission, the delays are ne-
glected with respect to the timeout periods controlling re-
transmissions.

We have derived 3 different models. The variations ex-
press different levels of assumptions on the program. The
idea of the verification is to use anerror pruning technique
which is to detect an error and to go to that state where we
deliberately cause a deadlock so that the state space is not
explored further. We call this set of states theerror border.
When verifying properties, the interpretation of the results
is as follows: if such a state is reached, then the property
is partially verified for a system which does not contain the
“error” states. However we know that they occur; so we
make another model with less pruning, and in this way we
have different refinement levels of the model with different
levels of assumptions with corresponding partial properties.
This is useful to track bugs. The variations of the model are
as follows:

1. semaphore counter limited to 1, pruning error space



2. semaphore counter limited to 2, pruning error space
3. semaphore counter limited to 3, full space

The limitation on the counter is still kept because it was
proved that the semaphores could be badly used and the
counter could grow. It was limited to 3 because there is
one class of semaphores which can have their counter reach
2 but not 3. The aim is to include the case where we have
a greater counter of one class over the other one. Finally
the4

th model with a proposed correction was derived. The
models are constructed so that the following inclusions be-
tween their state spaces hold:

space1 ⊆ space2 ⊆ space3

space1\EB ⊆ space2\EB ⊆ space4 ⊆ space3

Wherespacei\EB denotesspacei excludingEB.
In the modelling process, the models are refined by var-

ious modelling mechanisms implemented in UPPAAL in-
cluding:

• committedstates: the state must be left immediately
with no delay. Interleaving is allowed only between
other committed states. Atomicity in a sequence of
states may be achieved, thus reducing the state space.

• urgentstates: time is not allowed to progress in such
a state, but all interleavings are allowed. It is useful to
model race condition and non-determinism.

• urgenttransitions: they should be taken whenever the
guards become true. It is useful to model progress.

• states decorated withinvariantswhich are constraints
on clocks. It can be used to model timeouts.

3.4. Abstract Models of the Bus Coupler

To debug the protocol logic, we had to simplify the de-
tailed model (which is based on the source code) using ab-
straction techniques and the modelling mechanisms listed
above, in particular, the notions ofcommittedand urgent
states. The derivation takes away specific parts related to
implementation which are the signal implementation and
the way to wait on the bits.

The evolution of the models is in two dimensions: break-
ing atomicity of transitions and allowing delay in reading
the bits. This process yields five models:

Model 1 is the simplest model where some transitions are
considered to be atomic to study their consequences.

Model 2 relaxes model 1, by removing the atomicity of the
transitions performing data-reading.

Model 3 relaxes model 2 by allowing delays when a bit is
set to the expected value.

Model 4 also relaxes model 2 but by converting commit-
ted states related to data reading and writing to urgent
states.

Model 5 relaxes model 4 by allowing delays as in model 3.

The case with no delay is modelled by an urgent syn-
chronization which is always enabled, but in order to take
the transition, a guard on a condition (the bit the compo-
nent is waiting for) must be satisfied. When enabling delay,
this synchronization is removed, allowing time to progress
even if the guard is true. By the semantics ofcommitted
andurgentstates, the state spaces of the derived models are
related as follows :

space1 ⊆ space2 ⊆ space4⊆ ⊆

space3 ⊆ space5

These variants are used to analyse different aspects of the
behaviour. The idea to derive models 3 and 5 is to stress de-
lay and models 4 and 5 is to stress race condition. Note also
that the reason for having these different models is to under-
stand the influence of slight variations of the interpretation
of the protocol and how they are related to the properties we
want to check. The verification results are consistent with
the inclusions.

4. Verification and Debugging

In this section we present the correctness properties
checked. They are either reachability properties of the form
∃3 φ or invariants of the form∀¤ φ. Theφ predicate is on
states, variables and time.

4.1. Properties

Finding the properties to check was a problem in itself
because the documentation was not adequate for verifica-
tion purposes. We succeeded in formalizing 4 classes of
properties for the full model and the reduced models :

• 6 correctness properties (resp. 6 for the reduced
model), related to the logics of the protocol. Violat-
ing these properties result in inconsistent data read. 4
of these properties are equivalent in both abstraction
levels.

• 25 functional properties (resp. 5), related to the syn-
chronization of the components. Violating these prop-
erties could induce bad/wrong behaviour. The proper-
ties of the implementation models are classified as fol-
lows: 8 related to the implemented semaphores, 10 to
detection of possibly bad states belonging to theerror
borderand 7 related to precedence between states. The
abstract models properties were based only on prece-
dence.

• 19 behaviour properties (resp. 5), which are intuitively
believed to hold with respect to the protocol. This is
expected behaviour which has only performance im-
pact.



Model Size Construction Verification
1 213 MB 4:43 min 10:02 min
2 320 MB 8:34 min 19:10 min
3 892 MB 37:19 min 55:28 min
4 600 MB 21:51 min 44:13 min

Table 1. Resources used for verification.

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Full state space, model 3: 892MB

Avoided errors

Proposed correction: 600MB

Model 1: 213MB

Model 2: 320MB

Figure 4. View of the state space.

• 32 validation properties (resp. 19), related to the model
itself to validate it. The protocol works in practice
and the model must work the same. A more complex
model requires more validation hence the difference.

We do not intend to present the 82 properties (resp. 35)
but rather the important ones in the following sub-sections.
Verification was conducted on Sun Ultra-Sparc-II Ultra-
Enterprise server 248MHz equipped with 1.2GB of memory
running SunOS 5.6. The version of UPPAAL was 2.28.8 and
the verification options were re-use state space, breadth-first
search and no trace generation to save memory.

4.2. Checking the Implementation Models

The resources needed to verify the properties are given
in table 1 and they are consistent with the inclusions
space1\EB ⊆ space2\EB ⊆ space4 ⊆ space3 that were
given in sub-section 3.3. The construction time corresponds
to verifying the first property that requires to construct the
whole state space. The verification time is the cumulative
time of the verification of 82 properties. The interest of
re-using state space is clear. Figure 4 illustrates the space
inclusions. A typical found trace is 100 steps long.

The correctness properties are:

1:A[]VFIToCoupler 1P1.written imply
vfiTrans1!=-1
2:A[](CouplerFromVFI 1P1.done and
resultC11==0) imply bcTrans11!=-1
3:A[]CouplerToBus 1P1.sent1 imply
bcTrans11!=-1
4:A[]CouplerFromBus 2P4.received imply
bcTrans24!=-1
5:A[]CouplerToVFI 2P4.step2w0 imply
bcTrans24!=-1

6:A[]VFIFromCoupler 2P4.dataTaken imply

vfiTrans2!=-1

whereA[] stands for∀¤. They concern the transparent bit
(data modelled) which should not be written/read when not
valid (-1) by VFI (vfiTrans) and the Bus Coupler (bcTrans).
The full state model 3 does not satisfy properties 2,3,4 and
6. The models 1 and 2 partially verify these properties and
the4

th one appears to be able to avoid the error. The other
properties are satisfied. By enabling the error trace one sees
that the problem may come from a de-synchronization.

4 Properties concerning semaphores are:

44:A[]not SemVFItoCoupler24.signalNotTaken
45:A[]not SemCouplertoVFI24.signalNotTaken
46:A[]not SemVFItoCoupler11.signalNotTaken

47:A[]not SemCouplertoVFI11.signalNotTaken

They mean that whenever a signal is sent, the previ-
ous one should have been accepted otherwise “it has not
been taken” and if there is a wait on that signal, it will
not make much sense since the semaphore stores previ-
ous signals. Other properties are checked on the explicit
value of the counter as well. None of these properties
are verified for model 1, only property 45 fails for the
other models. With respect to the models, we proved
that the counter may reach 2, but not 3 except for one
semaphore where the bound is not known: a separate test
with a temporary modified automaton was performed with
E<> SemCouplertoVFI24.signalNotTaken with
a limit on the stored signals of 10 and this was satisfied.
E<> stands for∃3. There seems to be a live-loop.

2 Precedence properties are:

75:A[]not (CouplerToVFI 2P4.endWait2 and
(VFIFromCoupler 2P4.waited or VFI
FromCoupler 2P4.wait0))
76:A[]not (VFIToCoupler 1P1.testOK and
(CouplerFromVFI 1P1.step1w0 or
CouplerFromVFI 1P1.step2))

Only the full error model does not satisfy these ones. How-
ever it is not true for all this kind of properties. They mean
that a side should not be sending an acknowledgment while
the other side is going to begin to send a packet, or one side
is at the end of sending a packet with success while the other
side still waits for acknowledgment. These precedences are
between VFI and the couplers, where the communication is
not lossy and closely synchronized.

Examples of behaviour properties are:

10:A[]not (VFIToCoupler 1P1.done and
resultV1!=0 and bcTrans11==1)
16:A[]not (Coupler 1P1.sentTO and
bcTrans11==1)
32:A[]not (Coupler 2P4.acking and
saveTrans24==1)

78:A[](VFIToCoupler 1P1.testOK and

vfiTrans1==1) imply devdatalost11==0



Model Size Construction Verification
1 3.8 MB 5 sec 8 sec
2 4.1 MB 5 sec 9 sec
4 5.0 MB 7 sec 10 sec
3 11 MB 28 sec 32 sec
5 14 MB 37 sec 41 sec

Table 2. Resources used for the abstract
models.

Property 10 states that sending a transparent packet should
never fail and this is false. Property 16 states that timeout
should not occur on transparent packet which is true. Prop-
erty 32 states that acknowledgement is not sent after trans-
parent packets which is true. Property 78 states that the
coupler “lies” properly to VFI when a transparent packet is
sent, which is true.

As we will see in the next sub-section, the origin of the
de-synchronization may come from race conditions. We use
“may” because the model-checker finds just one counter-
example which happens to be like that. Other cases may
be possible. This explains that the protocol still works in
practice. However problems are possible and they do occur.
The partial correctness of properties allow us to pinpoint
the source of a possible problem, which is in essence de-
synchronization.

4.3. Debugging the Abstract Models

The resources needed to verify the properties are given in
table 2 and they are consistent with the inclusionsspace1 ⊆

space2 ⊆ space4 ⊆ space5 and space2 ⊆ space3 ⊆

space5 that were given in sub-section 3.3. 35 properties
were verified in this case. Due to the way we constructed the
models, we believe thatspace2 = space3 ∩ space4 though
we can not prove it. However even the weaker relation
space2 ⊆ space3 ∩ space4 is interesting especially when
some properties are verified inspace1 but not in space2

and therefore neither inspace3 nor space4. This allows us
to pinpoint behaviour differences.

The correctness properties are:

1:A[]master.waitDataR imply vfitrans1!=-1
2:A[]coupler1P1.sending imply bctrans11!=-1
3:A[]coupler2P4.gotMsg imply store24!=-1
4:A[]slave.read imply vfitrans2!=-1
5:A[]master.OK imply devdatalost11!=-1

6:A[]coupler2P4.readnottrans imply

cpudatalost24!=-1

These are of the same type of the implementation proper-
ties. They state that wrong data should not be read. Wrong
data are too early or too late. We added here the explicit
test on the acknowledgment answer from the coupler or the

VFI-slave with dev/cpudatalost. This is verified in the im-
plementation as well, but indirectly.

Properties 1 and 5 are satisfied by all the models. Prop-
erties 2 and 3 are satisfied only when no delay is allowed,
which is the case for the models1, 2 and4. When delay is
allowed a timeout may occur concurrently leading to an un-
wanted change which leads to a race condition. To interpret
this as realistic or not, the hardware and runtime environ-
ment has to be taken into consideration. In the context of
multitasking that we have with non-preemption on the Bus
Coupler side, this situation could be possible if the coupler
blocks while sending.

Property 4 is satisfied only for the first model. This prop-
erty is sensitive to race condition. Property 6 is satisfied
only for the 3 first models. Models 4 and 5 introduce new
interleavings and a race condition is enabled by changing
commitstates tourgentstates.

The functional properties are:

31:A[]not (coupler2P4.readnottrans and
slave.read)
32:A[]not (coupler2P4.readtrans and
slave.read)
33:A[]not (master.OK and
coupler1P1.sending)
34:A[]not (coupler2P4.sending and
cpumbr24==1 and slave.read)

35:A[]not (master.waitMBR and devmbr11==1

and coupler1P1.sending and ck11==0)

They concern de-synchronization, when a component is one
cycle late on the other. Properties 31 and 32 state that the
coupler should not be in a state ready to read the acknowl-
edgment from the slave while this one has not written it and
is about to do it: models4 and5 violate these properties.
This result is similar to property 6.

Property 33 states that the master should not have read
the acknowledgment from the coupler whereas this one has
not written it yet. Model5 does not satisfy this one, which
means that this property is related to delayand race condi-
tion.

Property 34 states that the coupler should not be in a state
waiting for the mailbox being available in order to write
data while the slave has read data and not reserved yet the
mailbox. This is satisfied by all the models.

Property 35 states that the coupler should not be in a state
when it has just reserved the mailbox and read data from the
master though this one is waiting for the mailbox to be freed
in order to write data. Models3 and5 do not satisfy this one.
This property is sensitive to delays.

The conclusion on the abstract model is that the protocol
is implementable since the first model is valid. However the
implementation has to avoid some possible race conditions
as well as some delays in order to work. This is a feasibility
proof with warnings on the robustness of the protocol.



5. Conclusion

In this paper, we have presented an industrial case study
where the UPPAAL tool is applied to model and verify a
commercial real-time communication protocol. The main
output of the case-study is a sequence of abstract models
of the protocol logic and its implementation at different ab-
straction levels, and a number of properties verified on the
models to check functionality of the protocol and to local-
ize errors in the implementation. During the case study, a
number of imperfections in the protocol logic and its imple-
mentation have been found and debugged based on abstract
models of the protocol; respective improvements have been
suggested. This may be considered as one piece of evidence
that the validation and verification tools of today are mature
enough to be applied in debugging industrial systems. Fi-
nally we are pleased to mention that the work has been very
much appreciated by ABB and the company intends to ex-
tend further the use of formal methods.

6. Acknowledgment

We would like to thank Ulf Hammar, Tomas Lindström
and Patrik Gunnarsson from ABB Automation Products
who devoted much of their time to explain the protocol. We
are very grateful to Pedro D’Argentinio who participated in
the initial phase of the project, as well as the whole UPPAAL

team for their support.

References

[AD94] R. Alur and D. Dill. Automata for Modelling
Real-Time Systems. Theoretical Computer
Science, 126(2):183–236, April 1994.

[BGK+96] Johan Bengtsson, W.O. David Griffioen,
Kåre J. Kristoffersen, Kim G. Larsen, Fredrik
Larsson, Paul Pettersson, and Wang Yi. Veri-
fication of an Audio Protocol with Bus Colli-
sion Using UPPAAL. CAV’96, LNCS 1102 in,
pages 244–256. Springer–Verlag, July 1996.

[BLL +95] Johan Bengtsson, Kim G. Larsen, Fredrik
Larsson, Paul Pettersson, and Wang Yi. UP-
PAAL — a Tool Suite for Automatic Verifica-
tion of Real–Time Systems. InProc. of Work-
shop on Verification and Control of Hybrid
Systems III, number 1066 in Lecture Notes in
Computer Science, pages 232–243. Springer–
Verlag, October 1995.

[BLL +96] Johan Bengtsson, Kim G. Larsen, Fredrik
Larsson, Paul Pettersson, and Wang Yi. UP-
PAAL in 1995. InProc. of the 2nd Workshop

on Tools and Algorithms for the Construction
and Analysis of Systems, in LNCS 1055, pages
431–434, March 1996.

[DOTY95] C. Daws, A. Olivero, S. Tripakis, and
S. Yovine. The toolKRONOS. Proc. of Work-
shop on Verification and Control of Hybrid
Systems III, LNCS 1066, pages 208–219, Oc-
tober 1995.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and
Howard Wong-Toi. HYTECH: The Next Gen-
eration. InProc. of the 16th IEEE Real-Time
Systems Symposium, pages 56–65. IEEE Com-
puter Society Press, December 1995.

[JLS96] Henrik E. Jensen, Kim G. Larsen, and Arne
Skou. Modelling and Analysis of a Collision
Avoidance Protocol Using SPIN and UPPAAL.
In Proc. of 2nd Int. Workshop on the SPIN Ver-
ification System, pages 1–20, August 1996.

[SMF97] Thomas Stauner, Olaf Mller, and Max Fuchs.
Using HyTech to Verify an Automotive Con-
trol System. InProc. Hybrid and Real-Time
Systems, Grenoble, March 26-28, 1997. Tech-
nische Universiẗat München, Lecture Notes in
Computer Science, Springer, 1997.

[Tan81] A.S. Tanenbaum. Computer networks.
Prentice–Hall, 1981.

[YPD94] Wang Yi, Paul Pettersson, and Mats Daniels.
Automatic Verification of Real-Time Commu-
nicating Systems By Constraint-Solving. In
Dieter Hogrefe and Stefan Leue, editors,Proc.
of the 7th Int. Conf. on Formal Description
Techniques, pages 223–238. North–Holland,
1994.


