Modelling and Analysis of a Commercial Field Bus Protocol

Alexandre David Wang Yi
adavid@DoCS.UU.SE yi@DoCS.UU.SE
Uppsala University
Department of Computer Science
Box 325, 751 05 Uppsala Sweden
Fax: +46 18 55 02 25

Abstract tool UpPAAL and this is part of the motivation for initializ-
ing a project to model and analyse the protocol. A clear in-

We report on an industrial application dfPpPAAL, in terest is to improve the methods, decrease the maintenance
which a commercial field bus protocol (AF100) is modelled time/costs and to increase quality of the product. However
and analysed using the tool. During the case study, a num-the goal of the project is not to verify the correctness of the
ber of imperfections in the protocol logic and its implemen- protocol in any sense afompletenesswhich is basically
tation are found and their sources are debugged based onimpossible due to the size and complexity of the system,
abstract models of the protocol; respective improvementsbut to localize the error sources in both the protocol logic
have been suggested. In this paper, we shall summarize ouand the implementation at the source level.
experiences in dealing with the complexity of the protocol To our knowledge, the case study is the largest reported
using various modelling and abstraction features provided so far, where the BPAAL tool has been applied, which in-
in UPPAAL. As an example, we study the bus coupler of volves hundreds of pages of protocol specification and thou-
AF100, which serves as the data link layer of the protocol. sands of lines of source code. During the case study, a num-

ber of errors in the protocol logic and its implementation
have been found and debugged based on abstract models of
the protocol; respective improvements have been suggested
1. Introduction It turns out that many of the problems are due to incorrect
usage of synchronization and timing mechanisms in the im-

In recent years, a number of modelling and verification plementation of the protocol, in particular, semaphorek an
tools for real-time systems [HHWT95, BLf195, BLL1 96, timeouts. In this paper we shall summarize our experience
DOTY95] have been developed based on the theory ofin dealing with the complexity of the protocol using various
timed automata [AD94]. They have been successfully ap-abstraction features provided inPBAAL. As an example,
plied in various case-studies (e.g. [BG86, JLS96, we study the bus coupler of AF100, which serves as the data
SMF97]). However, the tools have been mainly used in the link layer of the protocol. However the high level functions
academic community, namely by the tool developers. It hasof VFI are believed not to be affected by these low level
been a challenge to apply these tools to the development an@ransient errors due to retransmission and protectiontaf da
debugging of industrial products. We are investigating this issue.

In this paper we report on an industrial application ofthe ~ UPPAAL is a tool box for modelling and verification
UPPAAL tool to model and debug a commercial field bus of safety and bounded liveness properties of networks of
communication protocol, AF100 (Advant Fieldbus 100) de- timed automata developed jointly by Uppsala University
veloped and implemented in ABB for safety-critical appli- and Aalborg University. It contains a number of tools in-
cations e.g. process control. The protocol has been runningcluding a graphical interface, automatic generator of di-
in various industrial environments over the world for the agnostic traces, and a model-checker based on on-the-fly
past ten years. During its seven years on the market a numstate-space examination and constraint solving techaique
ber of errors have been detected which result in time—outs[YPD94, BLL*95]. It provides several features for mod-
and retransmissions. Due to the complexity it has been veryelling system behaviours on different levels of abstractio
time and resource consuming to troubleshoot these errors. In modelling AF100, it turned out that “urgent state” is a
It is a great potential to become more efficient by using the useful notion for modelling race condition and “committed

location” is a convenient means for abstraction. Both are | Master application [Slave application |
implemented in BPAAL. As an example, we have studied (requestRespo
in details the bus coupler of AF100, which corresponds to —d

the data link layer of the protocol. Several abstract models \531"’ N

[gfndConfilrE/\>

endCont Comten Crosponi

have been developed, offering different levels of abstact ~sop Service Data Transfert sDP
on the behaviour of the bus coupler. A number of properties = Diessags Transfors Protoeol ==
related to the abstraction levels have been checked and the ‘ B“f;

sources of found errors have been exhibited by generating

the diagnostic traces. In addition, dead codes are found in Figure 1. Layers of AF100.

the protocol implementation.

The paper is organized as follows: Section 2 gives an On top of this message passing protocol we have the mas-
informal description of AF100. Section 3 presents the mod- ter/slave concept: a client application sends a VFI-master
elling and the abstraction. Section 4 the verification and request message to a server which responds with a VFI-
debugging. Section 5 concludes the paper. slave answer message. An acknowledgment mechanism en-
sures that messages are transmitted correctly.

Figure 1 gives the layered structure of the protocol of
AF100. The API services are on top of the structure, VFI
covers theService Data Transfeand theMessage Transfer
2.1. Overview Protocollayers and the Bus Coupler is tRacket Transport

Protocol

2. An Informal Description of AF100

AF100 is a field bus communication protocol (Advant
Fieldbus). Itis designed for 80 stations communicatingove 2.2. The Transport Layer: VFI
a bus. A station acting as a “master”, may initiate a dialog
with up to 79 other stations acting as “slaves” in this dialog As mentioned earlier, VFI corresponds to the transport
The master requests information from a slave which only layer in the ISO standard. It offers three different sersice
responds to it, thus the names master and slave. In fact th®n the master side, which have a counterpart on the slave
dialog is established between applications on stations andside: request respondend confirnrandsend messagéd he
each station may have several applications running (actinglast one is simple: it does not require an answer. The first

as masters or slaves). two are similar and both require an answer provided by the
The protocol has two main layers which ax| (Virtual servicegespondandconfirmon the slave.
Field Interfacd and theBus Couplercorresponding to the The VFI protocol is in short an alternating bit proto-

transport and data link layers respectively in the ISO proto col at the message level and a sliding window protocol at
col standard [Tan81]. Typically a client application wiiei the packet level. Packets are sent transparently, i.e- with
the master part of VFI to send requests to another stationout acknowledgment within the window and they require
where a server application will respond through the slave acknowledgment between each window. The bit used to
part of VFI. VFI communicates with the bus via the Bus mark the packet is called theansparent bitand it is actu-

Coupler which uses a low level bus queue. ally checked at every layer, which is the exception in the
We are interested in the service calls from the appli- layered structure of the whole protocol.
cation, which is the API offered by AF100Application We will now focus on the Bus Coupler that runs on a

Programmer Interface the VFI protocol between the VFI different board and operating system than VFI. This com-
peers over the Bus Coupler and the bus; the interface bemunication is the object of this paper.

tween VFI and the Bus Coupler; and the protocol between

the Bus Coupler peers that we call the Bus Coupler proto-2.3. The Data Link Layer: Bus Coupler

col.

Message passing through VFl is as follows: First,anap- The Bus Coupler corresponds to the data link layer in
plication sends messages to VFI, VFI cuts messages intahe ISO standard. It is located on a separated board run-
packets and sends them to the Bus Coupler via an inter-ning its own operating system. The Bus Coupler communi-
face; the Bus Coupler receives packets and sends them overates with VFI via an interface (a buffer accessible to both
the bus to the next Bus Coupler. The receiving Bus Cou- parts). The communication with the bus is achieved via
pler accepts packets and sends them to VFI via an inter-ports There are four dedicated ports per station. For each
face; VFI assembles messages from packets and signals theort, there is an associated Bus Coupler task, listening to
application when they are ready to be fetched. Finally anthe bus or the VFI. These dedicated ports are to be used in
application blocked by VFI is signaled and gets messagesthe following ways:

request

and uses semaphores on both sides (different boards and op-

S| vELoToportd _ port4-—— VFI w | { _
£ |master| —port2 < [-port3-——slave | § erating systems) and the modelling stresses this feature.
K] VFI: port 3 al i port 2 VFI $
@ slave port4 L / port 1 master. N
' ‘ _ 3. Modelling and Abstraction
Tasks serving ports 1 and 4: » ; Tasks serving ports Z‘a‘nd 3:
listens to VE. listens to B 31 Some Experiences
sends to Bus sends to VFI
We started to study the VFI layer. The documentation
acknowledgment to VFI acknowledgment to Bus received from ABB included a functional description, a
design description and a programmer’s guide, that is 140
Figure 2. Bus Coupler communication pages and 62 pages of Modula-2 source code covering the
scheme. relevant parts of VFI, notably parts of the interface with th
Bus Coupler.

The source code was used to construct the models and
the documentation to understand the protocol and to make
abstractions. The role of ABB was crucial in this phase.
It turned out that to understand VFI, we had to consider
the Bus Coupler because we needed information from the

Figure 2 illustrates this communication scheme on which |ow level mechanisms. This ended up with the study of the
we will focus. Tasks for the master and the slave are de-Bus Coupler with 40 pages of dedicated source code. It
picted. The request and the response are acknowledged. resulted in a detailed model where the control structure of

This communication is symmetric for a request sent from the source code can be tracked down though the automata.
the master or a response sent from the slave. From the Bughen we simplified this model using abstraction techniques
Coupler point of view it is just a point to point communica- to localize errors.
tion and this will give us an abstraction in the modelling.

After sending to the bus, the Bus Coupler willwaitforan 3. 2. The Modelling Process
acknowledgment if the packet is not transparent, otherwise

it returns and “lies” to VFI with a positive acknowledgment. We have adopted a top-down approach first to find and
The same holds for VFI receiving from the Bus Coupler. hqerstand the relevant components of the systems and then

Communication between VFI and the Bus Coupler is 5 potom-up approach with progressive abstractions which
achieved via a buffer which is separated into fields writable o ows us to build up several abstract models for verifica-

by only one side, but readable by the other side. The syn-y,, As the goal of the project is debugging, finding the

arequestfrom the master is sent fwort 1
aresponses received by the master froport 2
arequestis received by the slave froport 3
aresponsefrom the slave is sent toort 4.

chronization bits are: right properties to check has been an interesting experienc
e mail box reservedto reserve access to the buffer itself. The fOIIOWing steps have been taken in the mOde”ing
e data readto notify that data was read process as illustrated in Figure 3:

e data written to notify that data was written

o data lost to return positive or negative acknowledg- - Model the Bus Coupler based on the source code

2. simplify the model for the Bus Coupler with abstrac-

ment. :
_ . . _ tions

Furthermore a data field to write the packet itself is re- 3. model VFI master and slave separately based on source
served. Both sides have these fields. code

The Bus Coupler protocol has two main components: 4. simplify the model for VFI master and the slave part
the communication with VFI through this interface and the with abstractions
communication with the other Bus Coupler. The commu- 5. compose the complementary parts of the relevant com-
nication between bus couplers involves a minimum control ponents to derive abstract models for the whole system

of packets with management of re-sending packets and as-
sociated acknowledgments. The layer below is used via a Phase 1 is to construct a detailed model respecting the
simple API of the form send/receive. This part of the proto- source code of the Bus Coupler which is presented in sub-
col is known to be robust so we will not treat it in this paper, section 3.3. Phase 2 is to derive an abstract model of the im-
which will be abstracted away in the model. plementation model of the Bus Coupler, presented in sub-
The implementation of the protocol uses signals to no- section 3.4 using the abstraction mechanism implemented
tify the reading side when a bit has been written. The inter- in UPPAAL. Phase 3 was the first attempt in the project. As
ruption/signal mechanism is specific to this implementatio it turned out that we had to deal with the Bus Coupler first,

VFI Couplers . Couplers vrL of data packets. This has been important for us to under-
- 6@’ D 6@’ o stand the protocol and to abstract away irrelevant details i
|1 <= the later phases of the project.
L -e |l i~e | — P project _
- = The first UPPAAL model derived directly from the source
© I l] ©® code consists of 16 automata, 4 clocks and 32 integer
Bus Coupler implementation model __ VFI master sub model VFI slave sub model variables, modelling 4 sending and receiving processes, 4
packet iy = ——m semaphores and 8 functions. Note that this is only a part of
g e e, g TR - TR the whole AF100 protocol. The structure of the model fol-
@jj<@?{l I o piEI. I lows figure 2. Considering the number and the size of the
Cbstraction i abatraction P automata, there is no point in giving them in Fhis paper.
As usual, the contents of the packets are irrelevant to the
©) 1 ® correct behaviour of the protocol, except the transpariént b
) f 1 The transparent bit is global in the sense that it is set by the
Bus Coupler abstraction VFI master VFI slave

VFI _ Couplers VFI abstraction abstraction VFI and read by all the layers of the protocol. It may have

i i i i E H the special value -1 to mark corrupted data that should not
|

be read. As there may be several applications using the bus
coupler via VFI, packet$, 1, or —1 may arrive randomly
at the Bus Coupler to be sent or delivered. We assume that
e packets may be generated randomly. The same idea is used
<= _}EI E_ - in the receiver part where the upper layers may accept or
I D’ B o] ' I refuse a packet; so positive or negative acknowledgment are
— randomly generated as well. Note that the value -1 is not
part of the protocol but modelling bad data for the purpose
of verification.

in phase 3, we aimed at deriving a test automaton based on ;—Tﬁre ?re tW% bus COUD:eLS [;nvtc;:vedhln Fhel rtr)lastfer sc;dte
the abstract behaviour of the VFI master and slaves. The®" € s'ave side connected by the pnysical bus for data

simplified model for the Bus Coupler has been constructed.transm'ss'on' There is a protocol for this layer. The bus

and it contains the essential timing properties of the coampo ljsagOd:(I;fgtsas gnlffgh C;gg”;' tﬁ;eEi;v'gguﬂ;grgr?ﬁgpegigfa
nents, allowing us to carry out the last phases. P ' plers,

The work presented in this paper concerns mainly the gueue. The queue only introduces delay from the Bus Cou-

first two phases. To avoid the state explosion problem, Weiﬁ:lﬁ: when it :Na;n}ls t?,dsfhnd anrgefshaget. -\I;vh?t S"_"I_r;e rich)j“eIS
have adopted the standard compositional verification tech- € queue IS full a € sender has to walt. ‘The mode

niques namely checking properties on the abstract model<S°NCceming this part is a non-deterministic process sendin

derived from low level models that are basically the di- or ignoring a packet wthm a tme_wmdow. Timeout may
rect transformation of the source code to thePdAL de- occur as vyell. Concerning trgnsmssmq, the delays.are ne-
scription language. In parallel, we have developéstract glected with respect to the timeout periods controlling re-

. . . transmissions.
source codesn a C-like language, corresponding to the . . .
timed automata written in theRPAAL modelling language. We have derived 3 different models. The variations ex-

Assumptions, abstractions, approximations and the event eSS difierent levels of assumptions on the program. The

models are annotated in the abstract sources. It turns ou{dea of the verification is to use amror pruningtechnique

that the abstract codes are very helpfl for debuging anditi 2 A0 B2 SRR C8 0 AR, S SRS RS
justifying our modelling decisions for our industrial part y P

explored further. We call this set of states #veor border.

ner.

When verifying properties, the interpretation of the result
is as follows: if such a state is reached, then the property
is partially verified for a system which does not contain the
A icul) ; industrial . “error” states. However we know that they occur; so we
h partﬁu akrj requirement from oudr Iln Lrj]stna partnerr] IS" make another model with less pruning, and in this way we
that we should construct RPAAL models that respect the have different refinement levels of the model with different

protocol |mplementat|é)n hso It(;‘%t aIIIerrzrs f%und and Im-d levels of assumptions with corresponding partial properti
provements suggested should be related to the source Codeqg js yseful to track bugs. The variations of the model are
In developing the first model for the Bus Coupler, we had to < ¢0iows:

keep the same structure as the source code and model all the
implementation details except irrelevant data e.g. cdaten 1. semaphore counter limited to 1, pruning error space

VFI master model VFI slave model

Figure 3. The modelling steps.

3.3. Faithful Models of the Bus Coupler

2. semaphore counter limited to 2, pruning error space Model 5 relaxes model 4 by allowing delays as in model 3.

3. semaphore counter limited to 3, full space) _
The case with no delay is modelled by an urgent syn-

The limitation on the counter is still kept because it was chronization which is always enabled, but in order to take
proved that the semaphores could be badly used and thehe transition, a guard on a condition (the bit the compo-
counter could grow. It was limited to 3 because there is nent is waiting for) must be satisfied. When enabling delay,
one class of semaphores which can have their counter reacthis synchronization is removed, allowing time to progress
2 but not 3. The aim is to include the case where we haveeven if the guard is true. By the semanticscofnmitted
a greater counter of one class over the other one. Finallyandurgentstates, the state spaces of the derived models are

the 4'" model with a proposed correction was derived. The
models are constructed so that the following inclusions be-
tween their state spaces hold:

space; C spaces C spaces
spacen\gp C spacea\pp C spaceq C spaces

Wherespace,;\ g denotesspace; excludingEB.

In the modelling process, the models are refined by var-
ious modelling mechanisms implemented iPRAAL in-
cluding:

e committedstates: the state must be left immediately
with no delay. Interleaving is allowed only between
other committed states. Atomicity in a sequence of

related as follows :

space; C spaces C spacey
N N
spaces C spaces

These variants are used to analyse different aspects of the
behaviour. The idea to derive models 3 and 5 is to stress de-
lay and models 4 and 5 is to stress race condition. Note also
that the reason for having these different models is to under
stand the influence of slight variations of the interpretati
of the protocol and how they are related to the properties we
want to check. The verification results are consistent with
the inclusions.

4. Verification and Debugging

states may be achieved, thus reducing the state space.

urgentstates: time is not allowed to progress in such
a state, but all interleavings are allowed. It is useful to
model race condition and non-determinism.
urgenttransitions: they should be taken whenever the
guards become true. It is useful to model progress.
states decorated withvariantswhich are constraints
on clocks. It can be used to model timeouts.

3.4. Abstract Models of the Bus Coupler

To debug the protocol logic, we had to simplify the de-

tailed model (which is based on the source code) using ab-
straction techniques and the modelling mechanisms listed

above, in particular, the notions ebmmittedand urgent

states. The derivation takes away specific parts related to

implementation which are the signal implementation and
the way to wait on the bits.

The evolution of the models is in two dimensions: break-
ing atomicity of transitions and allowing delay in reading
the bits. This process yields five models:

Model 1 is the simplest model where some transitions are

considered to be atomic to study their consequences.

Model 2 relaxes model 1, by removing the atomicity of the
transitions performing data-reading.

Model 3 relaxes model 2 by allowing delays when a bit is
set to the expected value.

Model 4 also relaxes model 2 but by converting commit-

ted states related to data reading and writing to urgent

states.

In this section we present the correctness properties
checked. They are either reachability properties of theafor
3O ¢ or invariants of the fornvd ¢. The¢ predicate is on
states, variables and time.

4.1. Properties

Finding the properties to check was a problem in itself
because the documentation was not adequate for verifica-
tion purposes. We succeeded in formalizing 4 classes of
properties for the full model and the reduced models :

e 6 correctness properties (resp. 6 for the reduced
model), related to the logics of the protocol. Violat-
ing these properties result in inconsistent data read. 4
of these properties are equivalent in both abstraction
levels.

25 functional properties (resp. 5), related to the syn-
chronization of the components. Violating these prop-
erties could induce bad/wrong behaviour. The proper-
ties of the implementation models are classified as fol-
lows: 8 related to the implemented semaphores, 10 to
detection of possibly bad states belonging todtrer
borderand 7 related to precedence between states. The
abstract models properties were based only on prece-
dence.

19 behaviour properties (resp. 5), which are intuitively
believed to hold with respect to the protocol. This is
expected behaviour which has only performance im-
pact.

\ Model Size Construction| Verification

1 213 MB 4:43 min 10:02 min
2 320 MB 8:34 min 19:10 min
3 892 MB | 37:19 min 55:28 min
4 600 MB | 21:51 min 44:13 min

Table 1. Resources used for verification.

Model 1: 213MB
Model 2: 320MB

Avoided errors

Figure 4. View of the state space.

- Full state space, model 3: 892MB

Proposed correction: 600MB

whereA[] stands foi/[J. They concern the transparent bit
(data modelled) which should not be written/read when not
valid (-1) by VFI (vfiTrans) and the Bus Coupler (bcTrans).
The full state model 3 does not satisfy properties 2,3,4 and
6. The models 1 and 2 partially verify these properties and
the 4" one appears to be able to avoid the error. The other
properties are satisfied. By enabling the error trace ore see
that the problem may come from a de-synchronization.
4 Properties concerning semaphores are:

44: Al 1 not SemVFI t oCoupl er 24. si gnal Not Taken
45: Al 1 not SenCoupl ert oVFI 24. si gnal Not Taken
46: Al] not SenVFIt oCoupl er 11. si gnal Not Taken
47: Al 1 not SentCoupl ert oVFI 11. si gnal Not Taken

They mean that whenever a signal is sent, the previ-
ous one should have been accepted otherwise “it has not
been taken” and if there is a wait on that signal, it will

e 32 validation properties (resp. 19), related to the model "0t make much sense since the semaphore stores previ-
itself to validate it. The protocol works in practice ©US signals. Other properties are checked on the explicit

and the model must work the same. A more complex value of the counter as well. None of these properties

model requires more validation hence the difference.

are verified for model 1, only property 45 fails for the
other models. With respect to the models, we proved

We do not intend to present the 82 properties (resp. 35)that the counter may reach 2, but not 3 except for one
but rather the important ones in the following sub-sections gsemaphore where the bound is not known: a separate test
Verification was conducted on Sun Ultra-Sparc-Il Ultra- ity a temporary modified automaton was performed with
Enterprise server 248MHz equipped with 1.2GB of memory <> SenCoupl er t oVFI 24. si gnal Not Taken with

running SunOS 5.6. The version oPBAAL was 2.28.8 and
the verification options were re-use state space, breadth-fi

search and no trace generation to save memory.

4.2. Checking the Implementation Models

a limit on the stored signals of 10 and this was satisfied.
E<> stands foA<. There seems to be a live-loop.
2 Precedence properties are:

75: Al] not (Coupl er ToVFI 2P4. endWai t 2 and
(VFI FromCoupl er 2P4. wai ted or VFI

The resources needed to verify the properties are givenFr onCoupl er 2P4. wai t 0))

in table 1 and they are consistent with the inclusions 76: ALl not (VFI ToCoupl er 1P1.test OK and

spacen\gp C spacea\gp C spacey C spacez that were (Coupl er FromVFl _1P1. st eplw0 or

given in sub-section 3.3. The construction time correspond ©UP! €r Fr oMVl _1P1. st ep2))

to verifying the first property that requires to constru@ th - oy the full error model does not satisfy these ones. How-
whole state space. The verification time is the cumulative oot it is not true for all this kind of properties. They mean

time of the verification of 82 properties. The interest of -t 4 side should not be sending an acknowledgment while

re-using state space is clear. Figure 4 illustrates theespac ihe other side is going to begin to send a packet, or one side
inclusions. A typical found trace is 100 steps long.

The correctness properties are:

1: Al] VFI ToCoupl er AP1. witten inply

vfi Transl!=-1

2: Al] (Coupl er FronVFI _1P1. done and

resul t C11==0) inply bcTransll!=-1

3: A[] Coupl er ToBus_1P1. sentl1 inmply
bcTrans11l!=-1

4: Al] Coupl er FronBus_2P4. recei ved i nply
bcTrans24! =-1

5: Al] Coupl er TOVFI 2P4. st ep2w0 i nply
bcTrans24! =-1

6: Al] VFI FronCoupl er 2P4. dat aTaken inply
vfi Trans2! =-1

is at the end of sending a packet with success while the other
side still waits for acknowledgment. These precedences are
between VFI and the couplers, where the communication is
not lossy and closely synchronized.

Examples of behaviour properties are:

10: A[] not (VFI ToCoupl er _1P1. done and
resultV1l! =0 and bcTransll==1)

16: Al not (Coupl er .1P1. sent TO and
bcTransl11==1)

32: Al not (Coupl er 2P4. acki ng and
saveTrans24==1)

78: AL] (VFI ToCoupl er _1P1. t est OK and
vfi Transl==1) inply devdatal ost 11==0

Model | Size | Construction| Verification VFI-slave with dev/cpudatalost. This is verified in the im-
1 3.8 MB 5sec 8 sec plementation as well, but indirectly.
2 4.1 MB 5sec 9 sec Properties 1 and 5 are satisfied by all the models. Prop-
4 5.0 MB 7 sec 10 sec erties 2 and 3 are satisfied only when no delay is allowed,
3 11 MB 28 sec 32 sec which is the case for the models2 and4. When delay is
5 14 MB 37 sec 41 sec allowed a timeout may occur concurrently leading to an un-
wanted change which leads to a race condition. To interpret
Table 2. Resources used for the abstract this as realistic or not, the hardware and runtime environ-
models. ment has to be taken into consideration. In the context of

multitasking that we have with non-preemption on the Bus

Property 10 states that sending a transparent packet shoul@OUPIer side, this situation could be possible if the couple
never fail and this is false. Property 16 states that timeoutPlocks while sending. _ _

should not occur on transparent packet which is true. Prop- Property 4 is satisfied only for the first model. This prop-
erty 32 states that acknowledgement is not sent after trans®/t iS sensitive to race condition. Property 6 is satisfied
parent packets which is true. Property 78 states that theonly for the 3 first models. Models 4 and 5 introduce new

coupler “lies” properly to VFI when a transparent packet is interleavings and a race condition is enabled by changing
sent. which is true. commitstates tairgentstates.

As we will see in the next sub-section, the origin of the 1 he functional properties are:
de-synchronization may come from race conditions. We Use31: aof]not (coupl er 2P4. r eadnot t rans and
“may” because the model-checker finds just one counter-s| ave. r ead)
example which happens to be like that. Other cases may32: A[] not (coupl er 2P4. readtrans and
be possible. This explains that the protocol still works in sl ave. r ead)
practice. However problems are possible and they do occur33: Al] not (master. K and
The partial correctness of properties allow us to pinpoint coupl er 1P1. sendi ng)

the source of a possible problem, which is in essence de-34: ALl not (coupl er 2P4. sendi ng and
synchronization. cpunbr 24==1 and sl ave. read)

35: A[]not (master.waitMBR and devnbr1l==1

4.3. Debugging the Abstract Models and coupl er 1P1. sendi ng and ck11==0)

They concern de-synchronization, when a component is one

The resources needed to verify the properties are given incycle late on the other. Properties 31 and 32 state that the
table 2 and they are consistent with the inclusigmsce; C coupler should not be in a state ready to read the acknowl-
spaces C spaces C spaces and spaces C spaces C edgment from the slave while this one has not written it and
spaces that were given in sub-section 3.3. 35 properties is about to do it: modeld and5 violate these properties.
were verified in this case. Due to the way we constructed theThis result is similar to property 6.
models, we believe thataces = spaces N spacey though Property 33 states that the master should not have read
we can not prove it. However even the weaker relation the acknowledgment from the coupler whereas this one has
spacea C spaces N spacey IS interesting especially when not written it yet. Modeb does not satisfy this one, which

some properties are verified #pace; but not in spaces means that this property is related to detendrace condi-

and therefore neither ispaces nor spacey. This allows us tion.

to pinpoint behaviour differences. Property 34 states that the coupler should not be in a state
The correctness properties are: waiting for the mailbox being available in order to write

data while the slave has read data and not reserved yet the

-Al]master.vai tDataR inply viitransil=-1 mailbox. This is satisfied by all the models.

1

2: Al]coupl er1Pl.sending inply bctransll!=-1 .

3: A] coupl er 2P4. got Msg i nply store24!=-1 Property 35 states that the coupler should not be in a state
4

. A[]slave.read inply vfitrans2!=-1 when it has just rgservgd the'r.nailbox and rgad data from the
5: Al] mast er. OK i nply devdat al ost 11! =- 1 master though this one is waiting for the mailbox to be freed
in order to write data. Modetsand5 do not satisfy this one.
This property is sensitive to delays.

The conclusion on the abstract model is that the protocol
These are of the same type of the implementation proper-is implementable since the first model is valid. However the
ties. They state that wrong data should not be read. Wrongimplementation has to avoid some possible race conditions
data are too early or too late. We added here the explicitas well as some delays in order to work. This is a feasibility
test on the acknowledgment answer from the coupler or theproof with warnings on the robustness of the protocol.

6: A[] coupl er 2P4. readnottrans inply
cpudat al ost 24! =-1

5. Conclusion

In this paper, we have presented an industrial case study
where the WPAAL tool is applied to model and verify a
commercial real-time communication protocol. The main [DOTYS5]
output of the case-study is a sequence of abstract models
of the protocol logic and its implementation at different ab
straction levels, and a number of properties verified on the
models to check functionality of the protocol and to local-

ize errors in the implementation. During the case study, aHHwT95]

number of imperfections in the protocol logic and its imple-
mentation have been found and debugged based on abstract
models of the protocol; respective improvements have been
suggested. This may be considered as one piece of evidence

that the validation and verification tools of today are matur

enough to be applied in debugging industrial systems. Fi-[JLS96]
nally we are pleased to mention that the work has been very

much appreciated by ABB and the company intends to ex-

tend further the use of formal methods.

6. Acknowledgment [SMF97]
We would like to thank UlIf Hammar, Tomas Lind8tmn

and Patrik Gunnarsson from ABB Automation Products

who devoted much of their time to explain the protocol. We

are very grateful to Pedro D’Argentinio who participated in

the initial phase of the project, as well as the whokePlalaL

team for their support. [Tan81]
References [YPD94]
[AD94] R. Alur and D. Dill. Automata for Modelling

Real-Time Systems. Theoretical Computer
Sciencel126(2):183-236, April 1994,

[BGK'96] Johan Bengtsson, W.O. David Griffioen,
Kare J. Kristoffersen, Kim G. Larsen, Fredrik
Larsson, Paul Pettersson, and Wang Yi. Veri-
fication of an Audio Protocol with Bus Colli-
sion Using WPPAAL. CAV'96, LNCS 1102 in,

pages 244-256. Springer—Verlag, July 1996.

[BLLT95] Johan Bengtsson, Kim G. Larsen, Fredrik
Larsson, Paul Pettersson, and Wang Yir-U
PAAL — a Tool Suite for Automatic Verifica-
tion of Real-Time Systems. Iroc. of Work-
shop on Verification and Control of Hybrid
Systems lllnumber 1066 in Lecture Notes in
Computer Science, pages 232—-243. Springer—

Verlag, October 1995.

[BLL*T96] Johan Bengtsson, Kim G. Larsen, Fredrik
Larsson, Paul Pettersson, and Wang Yir-U

PAAL in 1995. InProc. of the 2d Workshop

on Tools and Algorithms for the Construction
and Analysis of Systerria LNCS 1055, pages
431-434, March 1996.

C. Daws, A. Olivero, S. Tripakis, and
S. Yovine. The tookRoONOS Proc. of Work-
shop on Verification and Control of Hybrid
Systems IIILNCS 1066, pages 208-219, Oc-
tober 1995.

Thomas A. Henzinger, Pei-Hsin Ho, and
Howard Wong-Toi. ¥ TECH: The Next Gen-
eration. InProc. of the 1éh IEEE Real-Time
Systems Symposiupages 56—65. IEEE Com-
puter Society Press, December 1995.

Henrik E. Jensen, Kim G. Larsen, and Arne
Skou. Modelling and Analysis of a Collision
Avoidance Protocol Using SPIN andPBAAL.

In Proc. of hd Int. Workshop on the SPIN Ver-
ification Systenmpages 1-20, August 1996.

Thomas Stauner, Olaf Mller, and Max Fuchs.
Using HyTech to Verify an Automotive Con-
trol System. InProc. Hybrid and Real-Time
Systems, Grenoble, March 26-28, 199&ch-
nische Universét Minchen, Lecture Notes in
Computer Science, Springer, 1997.

A.S. Tanenbaum. networks

Prentice—Hall, 1981.

Computer

Wang Vi, Paul Pettersson, and Mats Daniels.
Automatic Verification of Real-Time Commu-
nicating Systems By Constraint-Solving. In
Dieter Hogrefe and Stefan Leue, editdPsoc.

of the #h Int. Conf. on Formal Description
Techniques pages 223-238. North—Holland,
1994.

