
Formal Verification of UML Statecharts with Real-time

Extensions?

Alexandre David1, M. Oliver Möller2, and Wang Yi1

1 Department of Information Technology, Uppsala University,
adavid@docs.uu.se

2 BRICS Basic Research in Computer Science, Aarhus University,
omoeller@brics.dk.

Abstract. We present a framework for formal verification of a real-time extension of UML
statecharts. For clarity, we restrict ourselves to a reasonable subset of the rich UML state-
chart model and extend this with real-time constructs (clocks, timed guards, and invariants).
We equip the obtained formalism, called hierarchical timed automata (HTA), with a rule-
based formal semantics. To formally verify deadlock-freedom as well as safety and response
properties expressed in TCTL using an existing model-checker e.g. UPPAAL, we present
a translation of HTAs to networks of timed automata, that are enriched with data types,
committed locations, and hand-shake synchronization. We report on an XML based im-
plementation of this translation, use the well-known Pacemaker example to illustrate our
technique and report run-time data for the formal verification part.

1 Introduction

Computer dependent systems are experiencing an enormous increase in complexity. Maintaining
consistency and compatibility in the development process of industrial sized systems makes it nec-
essary to describe systems on various levels of detail in a coherent way. Modern software engineering
answers the challenge with powerful modeling paradigm and expressive yet abstract formalisms.
Object orientation concepts provide—among many other things—a consistent methodology to
abstract away from implementation details and achieve a high level view of a system.

Modeling languages, like UML, go a step further. They describe concepts, rather than imple-
mentations of solutions. Thus they help organizing design and specifications in different views of a
system, meeting the needs of developers, customers, and implementors. In particular, they capture
a notion of correctness, in terms of requirements the system has to meet. Formal methods typically
address model correctness, for they operate on a (possibly very close) mathematical formalization
of the model. This makes it possible to prevent errors inexpensively at early design stages.

In the area of real-time systems—where correctness does not only depend on functional-
ity but also timeliness—it is crucial to validate complex layouts. Industrial CASE tools, e.g.,
visualStateTM [vis], exemplify how implementations benefit from high level analysis. One particu-
larly interesting part of a complete model is the behavioral view, since it captures the dynamics
of a system. The action and inter-action of components is often non trivial. Therefore a variety of
formalism allow execution of the model, that unfolds and visualize system behavior.

The UML statechart formalism focuses on the control aspect, where event communication and
data steers the sequence of system model states. Often the behavior is dependent on real-time
properties [Dou99] and is therefore supported by industrial tools like Rhapsody [Rha,HG97]. The
generated traces of the system model can be validated to coincide with the intuitive understanding
of the system. However, we feel that in order to talk about correctness of a system the notion of
a requirement is needed, that is either fulfilled or violated.

High-level requirements have to be communicated among collaborators with often very non-
homogeneous backgrounds. It is desirable to express requirements in a simple yet powerful lan-
guage with a clearly defined meaning. In this paper we use a formal logical language for this

? Supported by the European AIT-WOODDES project, No IST-1999-10069.

purpose, equipped with construct to express real-time properties, namely timed computation tree
logic (TCTL, [HNSY94]). Logically expressed properties are completely unambiguous, and auto-
mated validation and verification is possible for a reasonable class of systems. If the system does
not satisfy a required logical formula, this reflects a design flaw. In addition it is necessary to
establish sanity properties of the model, like deadlock freedom. If a behavioral model can enter
a deadlock state, where no further changes are possible, the behavior of an implementation is
typically (flaw-fully) unspecified. Simulators, e.g., ObjectGeode [Obj], can execute behavioral de-
scriptions and can help to validate systems, i.e., discover design flaws, if they occur in a simulation
session. However, similar to testing, simulators cannot show absence of errors. In contrast, formal
verification establishes correctness by mathematical proof. If a model satisfies a property, there is
no way to misbehave, at least not for the model. The carry-over of properties relies on assump-
tions about a realization, e.g., that a local hardware bus can be accessed in below 2µs. Sometimes
these values are included as parameters. More often, we choose to ignore these details if their total
effect is negligible.

In this paper we describe a way to extract a behavioral part of a UML model for formal veri-
fication. In order to resolve ambiguities, we equip this part with formal syntax and semantics. We
sketch a translation of our (hierarchical) formalism into a parallel composition of timed automata,
that serve as input to the Uppaal verification tool. The detailed description can be found in
[DM01]. We establish deadlock-freedom and TCTL safetey and (unbounded) response properties
of a pacemaker model.

Organization. The following section describes the formal syntax of our UML statechart restriction,
extended with real-time constructs. Section 3 contains the formal semantics. In Section 4 we sketch
a translation of this formalism to Uppaal tool. Section 5 reports on formal verification of the
pacemaker example and gives run-time data for the tool executions. Section 6 summarizes and
outlines further work.

2 Formal Syntax of HTAs

In this section we define the formal syntax of hierarchical timed automata. This is split up in the
data parts, the structural parts, and a set of well-formedness constraints.

2.1 Data Components

We introduce the data components of hierarchical timed automata, that are used in guards, syn-
chronizations, resets, and assignment expressions. Some of this data is kept local to a generic
location, denoted by l.

Integer variables Let V be a finite set of integer variables. V (l) ⊆ V is the set of integer variables
local to a superstate l.

Clocks Let C be a finite set of clock variables. The set C(l) ⊆ C denotes the clocks local to a
superstate l. If l has a history entry, C(l) contains only clocks, that are explicitly declared as
forgetful. Other locally declared clocks of l belong to C(root).

Channels Let Ch a finite set of synchronization channels. Ch(l) ⊆ Ch is the set of channels that
are local to a superstate l, i.e., there cannot be synchronization along a channel c ∈ Ch(l) between
one transition inside l and one outside l.

Synchronizations Ch gives rise to a finite set of channel synchronizations, called Sync. For c ∈ Ch,
c?, c! ∈ Sync. For s ∈ Sync, s̄ denotes the matching complementary, i.e., c̄! = c? and c̄? = c!.

Guards and invariants A data constraints is a boolean expressions of the form A ∼ A, where A is
an arithmetic expression over V and ∼∈ {<,>,=,≤,≥}. A clock constraints is an expressions of
the form x ∼ n or x−y ∼ n, where x, y ∈ C and n ∈ N with ∼∈ {<,>,=,≤,≥}. A clock constraint
is downward closed, if ∼∈ {<,=,≤}. A guard is a finite conjunction over data constraints and clock
constraints. An invariant is a finite conjunction over downward closed clock constraints. Guard is
the set of guards, Invariant is the set of invariants. Both contain additionally the constants true

and false.

Assignments A clock reset is of the form x := 0, where x ∈ C. A data assignment is of the form
v := A, where v ∈ V and A an arithmetic expression over V . Reset is the set of clock resets and
data assignments.

2.2 Structural Components

We give now the formal definition of our hierarchical timed automaton.

Def 1 A hierarchical timed automaton is a tuple 〈S, S0, δ, σ, V, C,Ch, T 〉 where

– S is a finite set of locations. root ∈ S is the root.
– S0 ∈ S is a set of initial locations.
– δ : S → 2S. δ maps l to all possible substates of l. δ is required to give rise to a tree structure

with root root. We readily extend δ to operate on sets of locations in the obvious way.
– σ : S → {AND,XOR,BASIC,ENTRY,EXIT,HISTORY} is a type function on locations.
– V, C,Ch are sets of variables, clocks, and channels. They give rise to Guard, Reset, Sync, and

Invariant as described in Section 2.1.
– Inv : S → Invariant maps every locations l to an invariant, possibly to the constant true.
– T ⊆ S × (Guard × Sync × Reset × {true, false}) × S is the set of transitions. A transition

connects two locations l and l′, has a guard g, an assignment r (including clock resets), and

an urgency flag u. We use the notation l
g,s,r,u
−−−−→ l′ for this and omit g, s, r, u, when they are

necessarily absent (or false, in the case of u).

Notational conventions We use the predicate notation TYPE(l) for TY PE ∈ {AND, XOR,BASIC,ENTRY,EXIT,HISTOR
l ∈ S. E.g., AND(l) is true, exactly if σ(l) = AND. The type HISTORY is a special case of an
entry. We use HENTRY(l) to capture simple entry or history entry, i.e., HENTRY(l) stands for
ENTRY(l) ∨ HISTORY(l).

We define the parent function

δ−1(l)
def
=

{

n, where l ∈ δ(n) if l 6= root
⊥ otherwise

We use δ∗(l) to denote the set of all nested locations of a superstate l, including l. δ−∗ is the set

of all ancestors of l, including l. Moreover we use δ×(l)
def
= δ∗(l) \ {l}.

We introduce δ̃ to refer to the children, that are proper locations.

δ̃(l)
def
= {n ∈ δ(l) | BASIC(n) ∨ XOR(n) ∨ AND(n)}

We use V +(l) to denote the variables in the scope of location l: V +(l) =
⋃

n∈δ−∗(l) V (l). C+(l)

and Ch+(l) are defined analogously.

2.3 Well-Formedness Constraints

We give the rules to ensure consistency of a given hierarchical timed automaton.

Location constraints We require a number of sanity properties on locations and structure.
The function δ has to give rise to a proper tree rooted at root, and S = δ∗(root).
Basic nodes are empty: BASIC(l) ⇔ δ(l) = ∅.
Substates of AND superstate are not basic: AND(l) ∧ n ∈ δ(l) ⇒ ¬BASIC(n).
Invariants of pseudo-locations are trivial: HENTRY(l) ∨ EXIT(l) ⇒ Inv(l) = true.

Initial location constraints S0 has to correspond to a consistent and proper control situation, i.e.,
root ∈ S0 and for every l ∈ S0 it the following holds:

(i) BASIC(l) ∨ XOR(l) ∨ AND(l),
(ii) l = root ∨ δ−1(l) ∈ S0,
(iii) XOR(l) ⇒ |δ(l) ∩ S0| = 1, and

(iv) AND(l) ⇒ δ(l) ∩ S0 = δ̃(l).

Variable constraints We explicitly disallow conflict in assignments in synchronizing transitions:

It holds that l1
g,c!,r,u
−−−−→ l′1, l2

g′,c?,r′,u′

−−−−−−→ l′2 ∈ T ⇒ vars(r) ∩ vars(r′) = ∅, where vars(r) is
the set of integer variables occurring in r. We require an analogous constraint to hold for the
pseudo-transitions originating in the entry of an AND superstate.

Static scope: For l
g,s,r,u
−−−−→ l′ ∈ T , g, r are defined over V +(δ−1(l))∪C+(δ−1(l)) and s is defined

over Ch+(δ−1(l)).

Entry constraints Let e ∈ S, HENTRY(e). If XOR(δ−1(l)), then T contains exactly one transition

e
r
−→ l′. If AND(δ−1(l)), then T contains exactly one transitions e

r
−→ ei for every proper substate

li ∈ δ̃(δ−1(l)), and ei ∈ δ(li).
In case of HISTORY(e), outgoing transitions declare the default history locations.
If a superstate s has a history entry, then every substate l of s has to provide either a history

entry or a default entry.

Transition constraints Transitions have to respect the structure given in δ and cannot cross levels
in the hierarchy, except via connecting to entries or exits. The set of legal transitions is given in
Table 1 Note that transitions cannot lead directly from entries to exits.

Transitions l
g,s,r,u
−−−−→ l′ with HENTRY(l) or EXIT(l′) are called pseudo-transitions. They are

restricted in the sense, that they cannot carry synchronizations or urgency flags, and only either
guards or assignments. For HENTRY(l), only pseudo-transition of the form l

r
−→ l′ are allowed.

For EXIT(l′), only pseudo-transition of the form l
g
−→ l′ are allowed. For EXIT(l) ∧ EXIT(l′),

this is further restricted to be of the form l −→ l′.

Intern
transitions

Entering
transitions

Exiting
transitions

Changing
transitions

Comment l l
′ Constraint

BASIC BASIC
Intern BASIC EXIT δ

−1(l) = δ
−1(l′)

HENTRY BASIC

Entering BASIC HENTRY
and fork HENTRY HENTRY δ

−1(l) = δ
−2(l′)

Exiting EXIT BASIC(l)
and join EXIT EXIT δ

−2(l) = δ
−1(l′)

Changing EXIT HENTRY δ
−2(l) = δ

−2(l′)

Table 1. Overview over all legal transitions l
g,s,r,u

−−−−→ l
′.

3 Operational Semantics of HTAs

We present the operational semantics of our hierarchical timed automaton model. A configuration
captures a snapshot of the system, i.e., the active locations, the integer variable values, the clock
values, and the history of some superstates. Configurations are of the form (ρ, µ, ν, θ), where

– ρ : S → 2S captures the control situation. ρ can be understood as a partial, dynamic version
of δ, that maps every superstate s to the set of active substates. If a superstate s is not active,

ρ(s) = ∅. We define Active(l)
def
= l ∈ ρ×(root), where ρ×(l) is the set of all active sub-states

of l. Notice that Active(l) ⇔ l ∈ ρ(δ−1(l)).
– µ : S → (Z)∗. µ gives the valuation of the local integer variables of a superstate l as a finite

tuple of integer numbers. If ¬Active(l) then µ(l) = λ (the empty tuple). If Active(l) then we
require that |µ(l)| = |V (l)| and µ is consistent with respect to the value of shared variables
(i.e., always maps to the same value). We use µ(l)(a) to denote the value of a ∈ V (l). When
entering a non-basic location, local variables are added to µ and set to an initial value (0 by
default). We use the shorthand 0V (l) for the tuple (0, 0 . . . 0) with arity |V (l)|.

– ν : S → (R+)∗. ν gives the real valuation of the clocks C(l) visible at location l, thus |ν(l)| =
|C(l)|. If ¬Active(l) then ν(l) = λ.

– θ reflects the history, that might be restored by entering superstates via history entries. It is
split up in the two functions θstate and θvar , where θstate(l) returns the last visited substate of
l—or an entry of the substate, in the case where the substate is not basic—(to restore ρ(l)),
and θvar (l) returns a vector of values for the local integer variables.
There is no history for clocks at the semantics level, all non-forgetful clocks belong to C(root).

History We capture the existence of a history entry with the predicate HasHistory(l)
def
= ∃n ∈

δ(l). HISTORY(n). If HasHistory(l) holds, the term HEntry(l) denotes the unique history entry
of l. If HasHistory(l) does not holds, the term HEntry(l) denotes the default entry of l. If l is basic
HEntry(l) = l. If none of the above is the case, then HEntry(l) is undefined.

Initially, ∀l ∈ S.HasHistory(l) ⇒ θstate(l) = HEntry(l) ∧ θvar (l) = 0V (l).

Reached locations by forks In order to denote the set of locations reached by following a fork, we
define the function Targetsθ : 2S → 2S relative to θ.

Targetsθ(L)
def
= L ∪

⋃⋃⋃

l∈L

{n | n ∈ θstate(l) ∧ HISTORY(l)} ∪ {n | l
r
−→ n ∧ ENTRY(l)}

We use the notation Targetsθ(l) for Targetsθ({l}), if the argument is a singleton. Targets∗θ is the
reflexive transitive closure of Targetsθ.

Configuration vector transformation Taking a transition t : l
g,s,r,u
−−−−→ l′ entails in general 1. exe-

cuting a join to exit l, 2. taking the proper transition t itself, and 3. executing a fork at l′. If l
(respectively l′) is a basic location, part 1. (respectively 3.) is trivial. Together, this defines a run-
to-completion step. We represent a run-to-completion step formally by a transformation function
Tt, which depends on a particular transition t. The three parts of this step are described as follows.

1. join:
(ρ, µ, ν, θ) is transformed to (ρ1, µ1, ν1, θ1) as follows:
ρ is updated to ρ1 := ρ[∀n ∈ ρ×(l). n 7→ ∅].
µ is updated to µ1 := µ[∀n ∈ ρ×(l). n 7→ λ].
ν is updated to ν1 := ν[∀n ∈ ρ×(l). n 7→ λ].

If EXIT(l), the history is recorded. Let H be the set of superstates h ∈ ρ×(δ−1(l)), where
HasHistory(h) holds. Then

θ1
state := θstate [∀h ∈ H. h 7→ HEntry(ρ(h))] and

θ1
var := θvar [∀h ∈ H. h 7→ µ(h)].

If ¬EXIT(l) or H = ∅, then θ1 := θ.

2. proper transition part:
(ρ1, µ1, ν1, θ1) is transformed to (ρ2, µ2, ν2, θ2) := (ρ1[l′/l], r(µ1), r(ν1), θ1). r(µ1) denotes the
updated values of the integers after the assignments and r(ν1) the updated clocks after the
resets.

3. fork:
(ρ2, µ2, ν2, θ2) is transformed to (ρ3, µ3, ν3, θ3) by moving the control to all proper locations
reached by the fork, i.e., those in Targets∗θ2(l′). Note that ρ2(n) = ∅ for all n ∈ δ×(l′). Thus
we can compute ρ3 as follows:

ρ3 := ρ2

Forall n ∈ Targets∗θ2(l′)

If ENTRY(n)

Then ρ3(δ−2(n)) := ρ3(δ−2(n)) ∪ {δ−1(n)}

Else ρ3(δ−1(n)) := {n} /? BASIC ?/

µ3 is derived from µ2 by first initializing all local variables of the superstates s in Targets∗θ2(l′),
i.e., µ3(V (s)) := 0V (s). If HasHistory(s), θvar(s) is used instead of 0V (s). Then all variable
assignments and clock-resets along the pseudo-transitions belonging to this fork are executed
to update µ3 and ν3. The history does not change, θ3 is identical to θ2.

Note that parts 1. and 3. correspond to the identity transformation, if l and l′ are basic locations.

We define the configuration vector transformation Tt for a transition t : l
g,s,r,u
−−−−→ l′:

Tt(ρ, µ, ν, θ)
def
= (ρ3, µ3, ν3, θ3)

If the context is unambiguous, we use ρTt and νTt for the parts ρ3 respectively ν3 of the
transformed configuration corresponding to transition t.

Starting points for joins A superstate s can only be exited, if all its parallel substates can synchro-
nize on this exit. For an exit l ∈ δ(s) we recursively define the family of sets of exits PreExitSets(l).
Each element X of PreExitSets(l) is itself a set of exits. If transitions are enabled to all exits in
X, then all substates can synchronize.

PreExitSets(l)
def
=



































































⋃

n1,...,nk

£
1≤i≤k

PreExitSets(ni), where

k = |δ̃(δ−1(l))|, {n1, . . . , nk} ⊆ δ×(δ−1(l)),
∀i.EXIT(ni) ∧ ni −→ l ∈ T

δ−1({n1, . . . , nk}) = δ̃(l)



















if
EXIT(l)∧
AND(δ−1(l))

⋃

m∈δ(δ−1(l))

PreExitSets(m), where m
g,r
−−→ l ∈ T

∪ {{l}}







if
EXIT(l)∧
XOR(δ−1(l))

{} if BASIC(l)

Here, the operator £ : (22S

) × (22S

) → 22S

is a product over families of sets, i.e., it maps
({A1, . . . , Aa}, {B1, . . . , Bb}) to {A1 ∪B1, A1 ∪B2, . . . , Aa ∪Bb} and is extended to operate on an
arbitrary finite number of arguments in the obvious way.

Rule predicates To give the rules, we need to define predicates that evaluate conditions on the
dynamic tree ρ. We introduce the set set of active leaves (in the tree described by ρ), which are
the innermost active states in a superstate l:

Leaves(ρ, l)
def
= {n ∈ ρ×(l) | ρ(n) = ∅}

The predicate expressing that all the substates of a state l can synchronize on a join is:

JoinEnabled(ρ, µ, ν, l)
def
= BASIC (l) ∨

∃X ∈ PreExitSets(l). ∀n ∈ Leaves(ρ, l). ∃n′ ∈ X. n
g
−→ n′ ∧ g(µ, ν)

Note that JoinEnabled is trivially true for a basic location l.

For the invariants of a location we use a function Invν : S → {true, false}, that evaluates the
invariant of a given location with respect to a clock evaluation ν. We use the predicate Inv(ρ, ν)
to express, that for control situation ρ and clock valuation ν all invariants are satisfied.

Inv(ρ, ν)
def
=

∧

n∈ρ×(root)

Invν(n)

We introduce the predicate TransitionEnabled over transitions t : l
g,s,r,u
−−−−→ l′, that evaluates to

true, if t is enabled.

TransitionEnabled(t : l
g,s,r,u
−−−−→ l′, ρ, µ, ν)

def
=

g(µ, ν) ∧ JoinEnabled(ρ, µ, ν, l) ∧ Inv(ρTt , νTt) ∧ ¬EXIT(l′)

Since urgency has precedence over delay, we have to capture the global situation, where some
urgent transition is enabled. We do this via the predicate UrgentEnabled over a configuration.

UrgentEnabled(ρ, µ, ν)
def
= ∃t : l

g,r,u
−−−→ l′. TransitionEnabled(t, ρ, µ, ν) ∧ u

∨ ∃t1 : l1
g1,s,r1,u1

−−−−−−→ l′1, t2 : l2
g2,s̄,r2,u2

−−−−−−→ l′2.
TransitionEnabled(t1, ρ, µ, ν) ∧
TransitionEnabled(t2, ρ, µ, ν) ∧ (u1 ∨ u2)

Rules We give now the action rule. It is not possible to break it in join, action, and fork because
the join can be taken only if the action is enabled and the action is taken only if the invariants
still hold after the fork.

TransitionEnabled(t : l
g,r,u
−−−→ l′, ρ, µ, ν)

action
(ρ, µ, ν, θ)

t
−→ Tt(ρ, µ, ν, θ)

Here g is the guard of the transition and r the set of resets and assignments. The urgency flag
u has no effect here. This rule applies for action transitions between basic locations as well as
superstates. In the later case, this includes the appropriate joins and/or fork operations.

The delay transition rule is:

Inv(l)(ρ, ν + d) ¬UrgentEnabled(ρ, µ, ν)
delay

(ρ, µ, ν, θ)
d
−→ (ρ, µ, ν + d, θ)

where ν + d stands for the current clock assignment plus the delay for all the clocks. Time elapses
in a configuration only when all invariants are satisfied and there is no urgent transition enabled.

The last transition rule reflects the situation, where two action transitions synchronize via a
channel c.

TransitionEnabled(t1 : l1
g1,c!,r1,u1

−−−−−−−→ l′1, ρ, µ, ν) l1 6∈ δ×(l2)

TransitionEnabled(t2 : l2
g2,c?,r2,u2

−−−−−−−→ l′2, ρ, µ, ν) l2 6∈ δ×(l1)
sync

(ρ, µ, ν, θ)
t1,t2
−−−→ Tt2 ◦ Tt1(ρ, µ, ν, θ)

We choose a particular order here but it is not crucial since our well-formedness constraints ensure,
that the assignments cannot conflict with each other.

If no action transition is enabled or becomes enabled when time progresses, we have a deadlock
configuration, which is typically a bad thing. If in addition time is prevented to elapse, this is a
time stopping deadlock. Usually this is an error in the model, since it does not correspond to any
real world behavior.

Our rules describe all legal sequences of transitions. A trace is a finite or infinite sequence of
legal transitions, that start at the initial configuration S0, with all variables and clocks set to
0. For our purposes it suffices to associate a hierarchical timed automaton semantically with the
(typically infinite) set of all derivable traces.

4 From Hierarchical Timed Automata to Uppaal

In this section we outline our procedure for translation of our hierarchical timed automata to a
parallel composition of (flat) Uppaal timed automata [LPY97]. We use the model of a pacemaker
as a—hopefully—running example. The detailed flattening algorithm can be found in [DM01].

������

������

��	

��	

�

�

�
�����������

�
�����������

�		�����������

�
�������������������� ����� !�

��	

�		�������������	

��	

�		��������������������

������

������

�"����#
��������$		%

�

�

&'()*+'+,--.

Fig. 1. A simplified model of a human heart, that might require pacing. The human heartbeat is in fact
a complex sequence of chamber contractions, in this model we consider two chambers the (left) atrial
and ventricular. A healthy heart will contract those in a steady rhythm, dictated by the time delays
DELAY AFTER V and DELAY AFTER A. We use the local clock t to model this rhythm. Since in our example
we only monitor the ventricular chamber, this one synchronizes on VSense, in case that anybody is listening
(indicated by listening == 1).
After the contraction of the ventricular chamber, our model might non-deterministically stop beating on
own account. If it does so for too long, the critical state FLATLINE is reached.
A pacemaker can send an impulse either to the atrial or ventricular chamber, i.e., synchronize on channels
APace or VPace. The particular heart chamber then is scheduled for contraction in the very next moment,
no matter when these signals occur. This is modeled by using the default exit and re-entering at one of
the leftmost locations.

4.1 Uppaal Timed Automata

Uppaal [LPY97] is a tool box for modeling, verification and simulation or real-time systems
developed jointly by Uppsala University and Aalborg University. It is appropriate for systems
that can be described as collection of non-deterministic parallel processes. The model used in
Uppaal is the timed automaton and corresponds to the flat version of our hierarchical timed

S_ACTIVE_in_X

X_IDLE

X_AUX_S_VX_AUX_S_A

CONNECT_A CONNECT_V

enter_S_in_X_via_V!
enter_S_in_X_via_A!

enterTop?

HEART_TIME := 0

APace?

HEART_TIME := 0

xtSgnl_NR_5!
VPace?

HEART_TIME := 0
xtSgnl_NR_5!

VContraction

HEART_TIME <= 0

AContraction

HEART_TIME <= 0

After_V_Contraction

HEART_TIME <= HEART_DELAY_AFTER_V_CONTRACTION

After_A_Contraction

HEART_TIME <= HEART_DELAY_AFTER_A_CONTRACTION

Stopped

HEART_TIME <= HEART_ALLOWED_STOP_TIME

FLATLINE

S_IDLE

enter_S_in_X_via_A?

enter_S_in_X_via_V?

HEART_TIME == HEART_DELAY_AFTER_A_CONTRACTION

HEART_TIME := 0

V_listening == 0

V_listening == 1

VentricularChamberSense!

HEART_TIME == HEART_DELAY_AFTER_V_CONTRACTION

HEART_TIME := 0
HEART_TIME := 0

HEART_TIME == HEART_ALLOWED_STOP_TIME

HEART_TIME := 0

xtSgnl_NR_5?

xtSgnl_NR_5?

xtSgnl_NR_5?

xtSgnl_NR_5?

xtSgnl_NR_5?

xtSgnl_NR_5?

Fig. 2. Two Uppaal timed automata templates encoding the heart model in Figure 1. The upper automa-
ton is responsible for selecting the entry VContraction or AContraction, the lower automaton encodes
the behavior.

automaton where each process is described as a state machine with finite control structure, real-
valued clocks and integers. Processes communicate through channels and (or) shared variables
[KGLY95]. The tool has been successfully applied in many case studies [LPY98,LP97,HSLL97].

As a special modeling construct, locations can be declared committed, indicated by a c. If a
committed location l is active, it must be left as soon as possible, i.e., no time delay is possible
and all transitions originating in non-committed locations are blocked, unless they synchronize
with a transition leaving l. Committed locations can be used to encode more complex behavior,
but also to reduce the number of possible interleavings and thus render state space exploration
more efficient.

4.2 Translating Superstates

The fundamental concept of our flattening algorithm is the translation of every hierarchical su-
perstate into one Uppaal automaton. All these automatons are put in parallel. This can lead
to an exponential blow-up in terms of templates, or in other words, of the state space. This is
a consequence of the fact that hierarchical models can be exponentially more concise [AKY99].
Some auxiliary structures have to be introduced in order to mimic the behavior of hierarchical
machines adequately.

Translation of XOR Superstates. In a hierarchical XOR template X, at most one location is active
at the same point in time. To represent the situation that none is active, we introduce —in the
translation X̂—the special location X_IDLE, which is also the initial state. All entries are translated
by a transition from X_IDLE.

For every sub-state S of X we introduce a location S_ACTIVE_IN_X in X̂. In Figure 1, the XOR
superstate X has only one substate S. X and S are translated to the two timed automatons in
Figure 2.

Moreover, for every entry e of S we introduce an auxiliary location in X, called X_AUX_S_e.
These are declared committed and are connected to S_ACTIVE_IN_X with a transition, that syn-
chronizes on a signal enter_S_in_X_via_e. Transitions leading originally to a S-entry e in X are
represented in the translation by leading to X_AUX_S_e and trigger—without interleaving with
other components—the activation of the sub-state S.

Exits of this sub-state S are more complicated, for they are only possible, if all sub-components
of S can exit. This is described as global joins, see Section 4.3.

If superstate X is inactivated, this is realized in our translation by transitions to IDLE_X, that
are triggered by an exit_X synchronization channel. If the superstate X has a default exit, every
non-auxiliary location in X̂ has a transition to IDLE_X.

Translation of AND Superstates. A hierarchical AND machine A is a parallel composition of
sub-machines, where either none or all of them are active. In the translation Â (Figure 3), these
situations are represented by the locations A_IDLE and A_ACTIVE. If A is activated, this is always
specific to a designated entry ei of A. The sub-machines Si of A are all entered, but the signals
enter_Si_via_ej depend on the choice of ej. Therefore, for every entry there is a separate chain
leading from A_IDLE to A_ACTIVE. The auxiliary locations in between are declared committed
(marked by a c), thus there are no time delays possible.

The exit of A is represented in Â a transition from A_ACTIVE to A_IDLE, which carries the
synchronization signal exit_A.

4.3 Global Joins

Transitions originating from superstates are a subtle issue, for they may require a cascade of sub-
state exits, in order to be taken. In Figure 4 (a), the substates S1, S2, and S3 have to be exited,
before LOC can be reached. If Sn is active in S2, it has to be exited as well.

This cascade of exits is encoded the sequence of in Figure 4 (b). The auxiliary variable trigger
keeps track of the number of active basic locations, that are connected to this global join via a
transition to an exit. It has to reach the threshold value N to enable the first transition. Moreover,
it has to be possible to mimic the transition to LOC, i.e., the guard (if any) has to be satisfied and
synchronization (if any) has to be possible. We assume that synchronization is not possible with
transitions inside S1. If this situation arises in the given HTA model, we introduce new channels
to avoid this conflict and duplicate transitions accordingly. An auxiliary boolean variable BLOCK

in order to exclude interleaving with other global joins.

c

c c

c c

c

/01/234567/89:;

/01/234567/89<;/01/2=567/4>

/01/2=567/?>

/@61=>

/01/230567/89<;

/01/230567/89:;
=ABCD

==EFAGD

Fig. 3. Translation of entering and exiting an AND component.

HI

JIK

JIL

JM

HM

HN

OPQRST
OUVWXYT
OWPPZURT

H[

\]̂

_̀aabcdefghijklmn
_aodpe

hijq

arstnujvwxybdu

z{b|trstd}

z{b|arstn}

p

p

ghijklm~

�|�bccz�mm����ghijkmm~��_cr̀��e

(a) Part of hierarchical timed automaton X (b) Translation of the global join in X̂

Fig. 4. Translation of a global join in the topmost XOR component X.

One transition in a HTA can give rise to a number of global joins, possibly exponential in the
depth of hierarchical structure. In Figure 4, the locations L3a and L3b can be treated uniformly, but
the location L1 has to be encoded in a different global join, where there is no exit of sub-state Sn.

4.4 Putting the Pieces Together

One level below the root, we find a parallel composition of superstates Si. Their translations Ŝi

are initially in their Si_IDLE state. We add one automaton Global Kickoff, that sends an entry
signal to every single one of them.

The topmost superstates Si do not synchronize on exit, but may be enabled to become in-active
on their own via following an exit transition. Once a machine becomes inactive, this status can
never be revoked in our hierarchical timed automaton formalism, since there is no machine that
could accommodate a transition to some Si. If a superstate S should be able to be both inactivated
and activated again, it cannot nest at the root level, but must be part of a state machine itself,
e.g., one containing the additional basic control location S_is_IDLE.

Every superstate S in the hierarchical timed automaton model corresponds exactly to one
Uppaal timed automaton Ŝ. We can relate control locations ρ in the hierarchical timed automaton
model to a control vector ρ̂ in the Uppaal model. For all XOR superstates X, ρ̂ contains at position
X̂ either a translation of a basic state l̂, sub_S_active_in_X, or IDLE, depending on whether ρ(X)
maps to a basic state, to a substate S, or to ∅. For AND superstate A, ρ̂(Â) =IDLE if ρ(A) = ∅ and
ρ̂(Â) = {Ŝ |S parallel substate of A} otherwise. The value of the introduced auxillary variables is
completely dependend on the current control location, i.e., it is redundand for the state and only
serves to enabele or disable transitions.

Proposition A hierarchical state s = (ρ, u) is reachable if and only if a corresponding state
ŝ = (ρ̂, u) is reachable.

Since entries and exits in the Uppaal translation are guaranteed to take place without time
delay (due to encoding with committed locations), data and clock evaluations u carries over
without changes. If a hierarchical trace t exits, it can be mimiced by the translation in each step.
Likewise, if a translation t̂ of a hierarchical trace is valid in the Uppaal model, this is due to a
sound sequence of entries and exits and corresponds to a trace in the hierarchical timed automaton
formalism.

5 Formal Verification of a Cardiac Pacemaker

In this section we describe a hierarchical timed automaton version of a cardiac pacemaker example,
as described in various UML books, e.g. [Dou99]. We translate this description to an equivalent
(flat) Uppaal timed automata model and report on run-time data of the formal verification of
safety properties.

Waiting

Pacing

Refractory

Ventricular

Waiting

Pacing

Refractory

Ventricular

A_Pacing

Refractory

Waiting

A_Pacing

Refractory

Waiting

Sensed

Off

ToInhibited? ToTriggered?

TriggeredInhibited
inIdle

ToIdle?

AVI

t==Pulse_Width
VPace!

t:=0

t==senseTime

t:=0APace!

t==RefTime

t:=0

V_Sense?

Atrial

RefractDone?

sense?
x:=0

x<=0

V_Sense!

APace?

VPace?

Ventricular

ToAVI?

inAVI

ToOn? ToOff?

RefractDone!

���� ���������

����

���� ���������

Fig. 5. Overview of our hierarchical timed automaton pacemaker model. Initially, the VVI mode is entered.

5.1 The Cardiac Pacemaker Model

The main component of the pacemaker is a XOR superstate with the two sub-states Off and On.
If the pacemaker is on, it can in the different modes Idle, AAI, AAT, VVI, VVT, and AVI. The
first letter indicates, to which chamber of the heart an electrical pacing pulse is sent (articular
or ventricular). The second letter indicates, which chamber of the heart is monitored (articular
or ventricular). In the Self Inhibited (I) modes, a naturally occurring heartbeat blocks a pulse
from being sent, whereas in the Self Triggered (T) modes a pacing pulse will always occur, either
triggered by a timeout or by the heart contraction itself.

For simplicity, we restrict to the operation modes Idle, VVT, VVI, and AVI. Of particular
interest is the AVI mode, which is described as an AND superstate with two parallel substates
that are entered on demand. Thus, in our example only the ventricular chamber is observed, but
a pace signal my be sent either to the ventricular or articular chamber.

Programmer Model. The signals commandedOn! commandedOff! toIdle! toVVI! toVVT! toAVI!

are issued by a medical person, called the programmer in our context. We do not make assump-
tions, on how or in which order she issues these signals, but require a time delay of at least
DELAY_AFTER_MODESWITCH after each signal. If one of the signals commandedOff! or toIdle! was
issued, this is recorded in the binary variable wasSwitchedOff.

Note that we equipped the pacemaker with default exits, thus it can always synchronize with
these signals.

hierarchical timed automaton model Uppaal model

XML tags 549 1233

proper control locations 35 45

peudo-sates / committed locations 31 62

transitions 47 174

variables and constants 33 90

formal clocks 6 6

Table 2. Translations of a hierarchical timed automaton description to an equivalent flat Uppaal model.
For the cardiac pacemaker example, the increases are moderate. Both data formats are described in terms
of XML grammars.

5.2 Model-Checking the Uppaal Model

The automatic translation of the pacemaker model yielded a gentle expansion in size, as recorded
in Table 2. The high number of committed location indicates, that most of the additional con-
trol structure is purely auxillary and does not contribute significantly to the state space of the
translation.

We used the translation as input to the Uppaal tool. It took 0.92 seconds to establish deadlock-
freedom. We verified two desirable properties in the obtained hierarchical timed automaton model.

(i) A[] (heart_sub.FLATLINE => (wasSwitchedOff == 1))

(ii) A[] (heart_Sub.AfterAContraction => A<> heart_Sub.AfterVContraction)

REFRACTORY_TIME = 50

SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50

DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

Fig. 6. Constants that yield property (i).

Property (i) is a safety property and establishes,
that the heart never stops for too long, unless the
pacemaker was switched off by the programmer (in
which case we cannot give any guarantees). Property
(ii) is a response property and states, that after an ar-
ticular contraction, there will inevitably follow a ven-
tricular contraction. In particular, this guarantees that
no deadlocks are possible between these control situa-
tions.

The latest version of the Uppaal tool1 was able
to perform the model-checking of both properties suc-
cessfully in 13.30 repectively 4.11 seconds. The veri-
fication of the typically more expensive property (ii)
was faster, since here we were able to apply a property preserving convex hull overaproxima-
tion, that was not preservative with respect to property (i). We used a Sun Enterprise 450 with
UltraSPARC-II processors, 300 MHz, and made use of Uppaal’s rich set of optimization options.
In particular the active clock reduction reduced also model-checking time drastically.

1 A release version that supports—among other new features—the possibiliby to model-check response
properties is expected to be available in April 2001.

It is worthwhile to mention, that validity of property (i) is strongly dependent on the parameter
setting of the model. We used the constants from Figure 6. If the programmer is allowed to swich
between modes very fast, it is possible that she prevents the pacemaker from doing its job. E.g.,
for MODE_SWITCH_DELAY = 65 the property (i) does not hold any more. In practice it is often a
problem to find parameter settings, that entail a safe or correct operation of the system.2

6 Conclusion & Further Work

We extract a subset of the behavioral part of UML for the purpose of formal verification. We
extend it with real-time constructs, i.e., with real-valued formal clocks, invariants, and timed
guards. We use a simple hand-shake synchronizations mechanism to express dependencies among
components. For this formalism, we give a formal semantics to capture the exact behavior. This
makes it possible to translate our hierarchical structure to a flat timed automaton model, while
preserving properties like timed reachability. We make use of this by applying a mature model-
checking algorithm and by this means established time-critical safety and response properties of
a pacemaker model.

Our formal extension of statecharts to timed statecharts is about to be formalized in a UML
profile in the context of the European AIT-WOODDES project No IST-1999-10069. Here, our
proposed method is applied in the verification part of a design methodology for real-time and
embedded systems. Among others, the mature Uppaal model-checking engine is used as a back-
end. The run-time data we get from our pacemaker example is encouraging. It suggests, that
reasonable-sized models are in the reach of algorithmic treatment with formal method tools.

With respect to UML, our investigations indicate a reasonable selection of real-time constructs
common to the formal verification community. Though not necessarily familiar to the designer,
these constructs are expressive enough to capture essential real-time behavior and nevertheless stay
in a decidable fragment of real-time properties. For every real-time model that can be encoded
in our formalism, this opens the way for formal and fully automated algorithmic verification in
many interesting cases. Furthermore, we propose the inclusion of real-time temporal logics as
a unambiguous and (to some extend) algorithmically treatable part of the UML requirement
specification language.

Further Work History can be coded by hand with the help of global variables. The inclusion of
history directly into hierarchical timed automata can be expressed by this way. The same applies
for the event-communication codable with synchronizations. As straightforward extensions we
consider treatment of history states and a more expressive communication mechanism via events.

Since checking real-time temporal logics is computationally hard in various ways [AH93,AL99],
it is desirable to try our technique on larger examples from industrial designs. Currently, the formal
verification part is possible via a translation to a flattened version of the system. However, there
is indication that the hierarchical structure can be exploited. We plan to investigate this further
in the context of the Uppaal tool, see [ABB+].

References

[ABB+] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio, Alexandre David, Ans-
gar Fehnker, Thomas Hune, Bertrand Jeannet, Kim G. Larsen, M. Oliver Möller, Paul Petters-
son, Carsten Weise, , and Wang Yi. Uppaal - Now, Next, and Future. To appear in Proceedings
of the Summer School on Modelling and Verification of Parallel Processes (MOVEP’2k), Nantes,
France, June 19 to 23, 2001. Available at http://www.docs.uu.se/~paupet/.

[AH93] Rajeev Alur and Thomas A. Henzinger. Real-time Logics: Complexity and Expressiveness.
Information and Computation, 1(104):35–77, 1993. preliminary version appeared in Proc. 5th
LICS, 1990.

2 In related work, an extended version of Uppaal is used to derive parameters yieling property satisfaction
automatically, see [HRSV01].

[AKY99] Rajeev Alur, Sampath Kannan, and Mihalis Yannakakis. Communicating Hierarchical State
Machines. In Proc. of the 26th International Colloquium on Automata, Languages, and Pro-
gramming, volume 1644 of Lecture Notes in Computer Science, pages 169–178. Springer–Verlag,
1999.

[AL99] Luca Aceto and François Laroussinie. Is your model checker on time? In Proc. 24th Int. Symp.
Math. Found. Comp. Sci. (MFCS’99), Szklarska Poreba, Poland, Sep. 1999, volume 1672 of
Lecture Notes in Computer Science, pages 125–136. Springer–Verlag, 1999.

[DM01] Alexandre David and M. Oliver Möller. From Hierarichcal Timed Automata to uppaal. Re-
search Series RS-01-11, BRICS, Department of Computer Science, University of Aarhus, March
2001.

[Dou99] Bruce Powel Douglass. Real-Time UML, Second Edition - Developing Efficitnt Objects for
Embedded Systems. Addison-Wesley, 1999.

[HG97] David Harel and Eran Gery. Executable Object Modeling with Statecharts. IEEE Computer,
7(30):31–42, July 1997.

[HNSY94] Thomas. A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic Model
Checking for Real-Time Systems. Information and Computation, 111(2):193–244, 1994.

[HRSV01] Thomas S. Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. Linear parametric
model checking of timed automata. Research Series RS-01-5, BRICS, Department of Computer
Science, University of Aarhus, January 2001. 44 pp.

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal Modelling and Analysis
of an Audio/Video Protocol: An Industrial Case Study Using uppaal. In Proc. of the 18th IEEE

Real-Time Systems Symposium, pages ”2–13”. IEEE Computer Society Press, December 1997.
[KGLY95] Paul Pettersson Kim G. Larsen and Wang Yi. Model-Checking for Real-Time Systems. In

Proc. of the 10th International Conference on Fundamentals of Computation Theory, volume
965 of Lecture Notes in Computer Science, pages 62–88. Springer–Verlag, 1995.

[LP97] Henrik Lönn and Paul Pettersson. Formal verification of a tdma protocol start-up mechanism.
In Proc. of IEEE Pacific Rim International Symposium on Fault-Tolerant Systems, pages ”235–
242”, 1997.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal on Software
Tools for Technology Transfer, 1(1–2):134–152, October 1997.

[LPY98] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis of a Gear Con-
troller. In Proc. of the 4th International Workshop on Tools and Algorithms for the Construction
and Analysis of Systems., volume 1384 of Lecture Notes in Computer Science, pages ”281–297”.
Springer–Verlag, 1998.

[Obj] ObjectGeode is a commercial product of Verilog. Documentation and whitepapers are available
from http://www.telelogic.com/ObjectGeode/Geode Articles.asp.

[Rha] Rhapsody is a commercial product of I-Logix. Documentation and whitepapers are available
from http://www.ilogix.com/quick links/white papers/index.cfm.

[vis] visualStateTM is a commercial product of IAR Systems. Detailled information is available from
http://www.iar.com.

