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Abstract. We present a framework for formal verification of a real-
time extension of UML statecharts. For clarity, we restrict ourselves to a
reasonable subset of the rich UML statechart model and extend this with
real-time constructs (clocks, timed guards, and invariants). We equip the
obtained formalism, called hierarchical timed automata (HTA), with an
operational semantics.
We outline a translation of one HTA to a network of flat timed automata,
that can serve as input to the real-time model checking tool Uppaal.
This translation can be used to faithfully verify deadlock-freedom, safety,
and unbounded response properties of the HTA model. We report on
an XML-based implementation of this translation, use the well-known
pacemaker example to illustrate our technique, and report run-time data
for the formal verification part.

1 Introduction

Computer-dependent systems are experiencing an enormous increase in com-
plexity. Maintaining consistency and compatibility in the development process
of industrial-sized systems makes it necessary to describe systems on various
levels of detail in a coherent way. Modern software engineering answers the chal-
lenge with powerful modeling paradigms and expressive yet abstract formalisms.
Object orientation concepts provide—among many other features—a consistent
methodology to abstract away from implementation details and achieve a high
level view of a system.

Modeling languages, like UML, go a step further. They describe high-level
structure and behavior, rather than implementations of solutions. Thus they help
organizing design and specifications in different views of a system, meeting the
needs of developers, customers, and implementors. In particular, they capture a
notion of correctness, in terms of requirements the system has to meet. Formal
methods typically address model correctness, for they operate on a purely math-
ematical formalization of the model. This makes it possible to prevent errors
inexpensively at early design stages.
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For real-time systems correctness does not only depend on functionality but
also timeliness. This adds another dimension of complexity and make early vali-
dation an even more crucial step. Industrial CASE tools, e.g., VisualStateTM [19],
exemplify how implementations benefit from high level analysis. One particularly
interesting part of a complete model is the behavioral view, since it captures the
dynamics of a system. The action and inter-action of components is often non
trivial. Therefore a variety of formalisms allow execution of the model, that
unfolds and visualizes system behavior.

The UML statechart formalism focuses on the control aspect, where event
communication and data determines possible sequences of states. Often the be-
havior is dependent on real-time properties [5] and is therefore supported by
industrial tools like Rhapsody [18, 6]. The generated traces of the system model
can be validated to coincide with the intuitive understanding of the system.
However, we feel that in order to talk about correctness of a system the notion
of a formal requirement is needed, that is either fulfilled or violated.

High-level requirements have to be communicated among collaborators with
often very non-homogeneous backgrounds. It is desirable to express requirements
in a simple yet powerful language with a clearly defined meaning. In this pa-
per we use a formal logical language for this purpose, equipped with constructs
to express real-time properties, namely timed computation tree logic TCTL [8].
Logically expressed properties are completely unambiguous, and automated val-
idation and verification is possible for a reasonable class of systems. If the system
does not satisfy a required logical formula, this reflects a design flaw.

In addition, it is necessary to establish sanity properties of the model, like
deadlock freedom. If a behavioral model can enter a deadlock state, where no fur-
ther changes are possible, the behavior of an implementation is typically (flaw-
fully) unspecified. Simulators, e.g., ObjectGeode [16], can execute behavioral
descriptions and can help to validate systems, i.e., discover design flaws, if they
occur in a simulation session. Similar to testing, simulators cannot show the ab-
sence of errors. In contrast, formal verification establishes correctness by math-
ematical proof. If a model satisfies a property, there is no way to misbehave, at
least not for the model.

Properties only carry over safely to the implementation under certain as-
sumptions, e.g., that a local hardware bus can be accessed in below 2µs. These
values can often be included as parameters.

Related Work. Statecharts have been analyzed by means of model-checking ear-
lier. In [17] a formal semantics in terms of clocked transition systems is given,
that allows to benefit from the analysis tools developed for this formalism. How-
ever, this work treats time in a discrete lock-step fashion.

In [13] a formalization of UML statecharts is presented. The formalization
is given in terms of an operational semantics and is implemented in the vUML
tool that uses the model-checker SPIN [9]. However the timing aspects are not
treated in this approach.

In contrast, we propose dense time extensions of statecharts for formal verifi-
cation purposes. As a prerequisite, we give formal syntax and semantics. Then we



sketch a translation of our (hierarchical) formalism into a parallel composition of
timed automata, that serve as input to the Uppaal verification tool. We estab-
lish deadlock-freedom and TCTL safety and (unbounded) response properties of
a pacemaker model. The detailed version of the paper is found in [4].

Organization. Section 2 gives the formal syntax of our statechart restriction,
extended with real-time constructs. Section 3 contains the formal semantics. In
Section 4 we sketch a translation of our formalism to the Uppaal tool. Section 5
reports on formal verification of the pacemaker example and gives run-time data
for the tool executions. Section 6 summarizes and outlines further work.

2 Hierarchical Timed Automata

In this section we define the formal syntax of hierarchical timed automata. This
is split up in the data parts, the structural parts, and a set of well-formedness
constraints. Before we present the formal syntax we introduce some restrictions
on the UML statecharts.

2.1 A Restricted Statechart Formalism

In this paper we address the formal verification of a restricted version of the UML
statechart formalism. We add formal clocks in order to model timed behavior.

Unlike in the UML, where statecharts give rise to the incarnation of objects,
we treat a statechart itself as a behavioral entity. The notion of thread execution
is simplified to the parallel composition of state machines. Relationships to other
UML diagrams are dropped.

Our formalism does not support exotic modeling constructs, like synchro-
nization states. Some UML tools allow to use C++ as an action language, i.e.,
C++ code can be arbitrarily added to transitions. Formal verification of this is
out of scope of this work, we restrict ourselves to primitive functions and basic
variable assignments. Event communication is simplified to the case, where two
parts of the system synchronize via handshake.

Some of the restrictions we make can be relaxed, as explained in the Future
Work Section 6. What we preserve is the essence of the statechart formalism: hi-
erarchical structure, parallel composition at any level, synchronization of remote
parts, and history.

2.2 Data Components

We introduce the data components of hierarchical timed automata, that are
used in guards, synchronizations, resets, and assignment expressions. Some of
this data is kept local to a generic super-state, denoted by l. A super-state is a
state containing other states.

Integer variables. Let V be a finite set of integer variables. We later define their
scope locally.



Clocks. Let C be a finite set of clock variables. The set C(l) ⊆ C denotes the
clocks local to a super-state l. If l has a history entry, C(l) contains only clocks,
that are explicitly declared as forgetful . Other locally declared clocks of l belong
to C(root).

Channels. Let Ch a finite set of synchronization channels. Ch(l) ⊆ Ch is the set
of channels that are local to a super-state l, i.e., there cannot be synchronization
along a channel c ∈ Ch(l) between one transition inside l and one outside l.

Synchronizations. Ch gives rise to a finite set of channel synchronizations, called
Sync. For c ∈ Ch, c?, c! ∈ Sync.

Guards and invariants. A data constraints is a boolean expression of the form
A ∼ A, where A is an arithmetic expression over V and ∼∈ {<,>,=,≤,≥}.
A clock constraint is an expression of the form x ∼ n or x − y ∼ n, where
x, y ∈ C and n ∈ N with ∼∈ {<,>,=,≤,≥}. A clock constraint is downward
closed, if ∼∈ {<,=,≤}. A guard is a finite conjunction over data constraints
and clock constraints. An invariant is a finite conjunction over downward closed
clock constraints. Guard is the set of guards, Invariant is the set of invariants.
Both contain additionally the constants true and false.

Assignments. A clock reset is of the form x := 0, where x ∈ C. A data assignment
is of the form v := A, where v ∈ V and A an arithmetic expression over V . Reset

is the power set of clock resets and data assignments.

2.3 Structural Components

We give now the formal definition of our hierarchical timed automaton.

Def 1 A hierarchical timed automaton is a tuple 〈S, S0, δ, σ, V, C,Ch, Inv, T 〉
where

– S is a finite set of locations. root ∈ S is the root.
– S0 ∈ S is a set of initial locations.
– δ : S → 2S. δ maps l to all possible sub-states of l. δ is required to give rise

to a tree structure. We readily extend δ to operate on sets of locations in the
obvious way. If δ(l) 6= ∅, then l is called a super-state.

– σ : S → {AND,XOR,BASIC,ENTRY,EXIT,HISTORY} is the type func-
tion for locations.

– V, C,Ch are sets of variables, clocks, and channels. They give rise to Guard,
Reset, Sync, and Invariant as described in Section 2.2.

– Inv : S → Invariant maps every locations l to an invariant expression, pos-
sibly to the constant true.

– T ⊆ S × (Guard × (Sync ∪ {∅}) × Reset × {true, false}) × S is the set
of transitions. A transition connects two locations l and l′, has a guard g,
(optionally) a synchronization s, an assignment r (including clock resets),

and an urgency flag u. We use the notation l
g,s,r,u
−−−−→ l′ for this and omit

g, s, r, u, when they are necessarily absent (or false, in the case of u).



Notational conventions. We use the predicate notation TYPE(l) for TYPE ∈
{AND, XOR, BASIC, ENTRY, EXIT, HISTORY}, l ∈ S. E.g., AND(l) is true,
exactly if σ(l) = AND. The type HISTORY is a special case of an entry. We use
HENTRY(l) to capture simple entry or history entry, i.e., HENTRY(l) stands
for ENTRY(l) ∨ HISTORY(l).

We define the parent function

δ−1(l)
def
=

{

n, where l ∈ δ(n) if l 6= root

∅ otherwise.

We use δ∗(l) to denote the set of all nested locations of a super-state l, including l.

δ−∗ is the set of all ancestors of l, including l. Moreover we use δ×(l)
def
= δ∗(l)\{l}.

We introduce δ̃ to refer to the children, that are proper locations.

δ̃(l)
def
= {n ∈ δ(l) | BASIC(n) ∨ XOR(n) ∨ AND(n)}

We use V +(l) to denote the variables in the scope of location l: V +(l) =
⋃

n∈δ−∗(l) V (n). C+(l) and Ch+(l) are defined analogously.

2.4 Well-Formedness Constraints

We give only the major well-formedness constraints to ensure consistency, grouped
according to the synctactic categories variables, entries, and transitions.

Variable constraints. We explicitly disallow conflict in assignments in synchro-
nizing transitions:

It holds that l1
g,c!,r,u
−−−−→ l′1, l2

g′,c?,r′,u′

−−−−−−→ l′2 ∈ T ⇒ vars(r) ∩ vars(r′) = ∅,
where vars(r) is the set of integer variables occurring in r. We require an anal-
ogous constraint to hold for the pseudo-transitions originating in the entry of

an AND super-state. Static scope: For l
g,s,r,u
−−−−→ l′ ∈ T , g, r are defined over

V +(δ−1(l)) ∪ C+(δ−1(l)) and s is defined over Ch+(δ−1(l)).

Entry constraints. Let e ∈ S, HENTRY(e). If XOR(δ−1(l)), then T contains

exactly one transition e
r
−→ l′. If AND(δ−1(l)), then T contains exactly one

transition e
r
−→ ei for every proper sub-state li ∈ δ̃(δ−1(l)), and ei ∈ δ(li).

Transition constraints. Transitions have to respect the structure given in δ and
cannot cross levels in the hierarchy, except via connecting to entries or exits.

The set of legal transitions is given in Table 1. Transitions l
g,s,r,u
−−−−→ l′ with

HENTRY(l) or EXIT(l′) are called pseudo-transitions. They are restricted in
the sense, that they cannot carry synchronizations or urgency flags, and only
either guards or assignments. For HENTRY(l), only pseudo-transitions of the

form l
r
−→ l′ are allowed. For EXIT(l′), only pseudo-transition of the form l

g
−→ l′

are allowed. For EXIT(l) ∧ EXIT(l′), this is further restricted to be of the form
l −→ l′.



Entering
transitions

Exiting
transitions

Changing
transitions

Internal
transitions Comment l l

′ Constraint

BASIC BASIC

Internal BASIC EXIT δ
−1(l) = δ

−1(l′)
HENTRY BASIC

Entering BASIC HENTRY

and fork HENTRY HENTRY δ
−1(l) = δ

−2(l′)

Exiting EXIT BASIC(l)
and join EXIT EXIT δ

−2(l) = δ
−1(l′)

Changing EXIT HENTRY δ
−2(l) = δ

−2(l′)

Table 1. Overview over all legal transitions l
g,s,r,u

−−−−→ l
′.

3 Operational Semantics of HTAs

We present the operational semantics of our hierarchical timed automaton model.
A configuration captures a snapshot of the system, i.e., the active locations, the
integer variable values, the clock values, and the history of some super-states.
Configurations are of the form (ρ, µ, ν, θ), where

– ρ : S → 2S captures the control situation. ρ can be understood as a partial,
dynamic version of δ, that maps every super-state s to the set of active sub-

states. If a super-state s is not active, ρ(s) = ∅. We define Active(l)
def
= l ∈

ρ×(root), where ρ×(l) is the set of all active sub-states of l. Notice that
Active(l) ⇔ l ∈ ρ(δ−1(l)).

– µ : S → (Z)∗. µ gives the valuation of the local integer variables of a super-
state l as a finite tuple of integer numbers. If ¬Active(l) then µ(l) = λ
(the empty tuple). If Active(l) then we require that |µ(l)| = |V (l)| and µ is
consistent with respect to the value of shared variables (i.e., always maps
to the same value). We use µ(l)(a) to denote the value of a ∈ V (l). When
entering a non-basic location, local variables are added to µ and set to an
initial value (0 by default). We use the shorthand 0V (l) for the tuple (0, 0 . . . 0)
with arity |V (l)|.

– ν : S → (R+)∗. ν gives the real valuation of the clocks C(l) visible at location
l, thus |ν(l)| = |C(l)|. If ¬Active(l) then ν(l) = λ.

– θ reflects the history, that might be restored by entering super-states via
history entries. It is split up in the two functions θstate and θvar , where
θstate(l) returns the last visited sub-state of l—or an entry of the sub-state,
in the case where the sub-state is not basic—(to restore ρ(l)), and θvar (l)
returns a vector of values for the local integer variables.
There is no history for clocks at the semantics level, all non-forgetful clocks
belong to C(root).

History. The predicate HasHistory(l)
def
= ∃n ∈ δ(l). HISTORY(n) captures the

existence of a history entry. If HasHistory(l) holds, the term HEntry(l) denotes
the unique history entry of l. If HasHistory(l) does not hold, the term HEntry(l)



denotes the default entry of l. If l is basic HEntry(l) = l. If none of the above is
the case, then HEntry(l) is undefined.

Initially, ∀l ∈ S.HasHistory(l) ⇒ θstate(l) = HEntry(l) ∧ θvar (l) = 0V (l).

Reached locations by forks. In order to denote the set of locations reached by
following a fork, we define the function Targetsθ : 2S → 2S relative to θ.

Targetsθ(L)
def
= L∪

⋃⋃⋃

l∈L

{n|n ∈ θstate(l) ∧ HISTORY(l)}∪{n|l
r
−→ n ∧ ENTRY(l)}

We use the notation Targetsθ(l) for Targetsθ({l}), if the argument is a singleton.
Targets∗θ is the reflexive transitive closure of Targetsθ.

Configuration-vector transformation. Taking a transition t : l
g,s,r,u
−−−−→ l′ entails in

general 1. executing a join to exit l, 2. taking the proper transition t itself, and 3.
executing a fork at l′. If l (respectively l′) is a basic location, part 1. (respectively
3.) is trivial. We represent this complex transition by a transformation function
Tt, which depends on a particular transition t.

The three parts of this step are described as follows.

1. join:
(ρ, µ, ν, θ) is transformed to (ρ1, µ1, ν1, θ1) as follows:
ρ is updated to ρ1 := ρ[∀n ∈ ρ×(l). n 7→ ∅].
µ is updated to µ1 := µ[∀n ∈ ρ×(l). n 7→ λ].
ν is updated to ν1 := ν[∀n ∈ ρ×(l). n 7→ λ].

If EXIT(l), the history is recorded. Let H be the set of super-states h ∈
ρ×(δ−1(l)), where HasHistory(h) holds. Then

θ1
state := θstate [∀h ∈ H. h 7→ HEntry(ρ(h))] and

θ1
var := θvar [∀h ∈ H. h 7→ µ(h)].

If ¬EXIT(l) or H = ∅, then θ1 := θ.
2. proper transition part:

(ρ1, µ1, ν1, θ1) is transformed to (ρ2, µ2, ν2, θ2) := (ρ1[l′/l], r(µ1), r(ν1), θ1).
r(µ1) denotes the updated values of the integers after the assignments and
r(ν1) the updated clocks after the resets.

3. fork:
(ρ2, µ2, ν2, θ2) is transformed to (ρ3, µ3, ν3, θ3) by moving the control to all
proper locations reached by the fork, i.e., those in Targets∗θ2(l′). Note that
ρ2(n) = ∅ for all n ∈ δ×(l′). Thus we can compute ρ3 as follows:

ρ3 := ρ2

Forall n ∈ Targets∗θ2(l′)

If ENTRY(n)

Then ρ3(δ−2(n)) := ρ3(δ−2(n)) ∪ {δ−1(n)}

Else ρ3(δ−1(n)) := {n} / ? BASIC ? /

µ3 is derived from µ2 by first initializing all local variables of the super-states



s in Targets∗θ2(l′), i.e., µ3(V (s)) := 0V (s). If HasHistory(s), θvar(s) is used
instead of 0V (s). Then all variable assignments and clock-resets along the
pseudo-transitions belonging to this fork are executed to update µ3 and ν3.
The history does not change, θ3 is identical to θ2.

Note that parts 1. and 3. correspond to the identity transformation, if l and l′

are basic locations.
We define the configuration-vector transformation Tt for a transition t :

l
g,s,r,u
−−−−→ l′:

Tt(ρ, µ, ν, θ)
def
= (ρ3, µ3, ν3, θ3)

If the context is unambiguous, we use ρTt and νTt for the parts ρ3 respectively
ν3 of the transformed configuration corresponding to transition t.

Starting points for joins. A super-state s can only be exited, if all its paral-
lel sub-states can synchronize on this exit. For an exit l ∈ δ(s) we note by
PreExitSets(l) the family of sets of exits. If transitions are enabled to all exits
in X ∈ PreExitSets(l), then all sub-states can synchronize.

Rule predicates. To give the rules, we need to define predicates that evaluate
conditions on the dynamic tree ρ. We introduce the set set of active leaves (in
the tree described by ρ), which are the innermost active states in a super-state
l:

Leaves(ρ, l)
def
= {n ∈ ρ×(l) | ρ(n) = ∅}

The predicate expressing that all the sub-states of a state l can synchronize
on a join is:

JoinEnabled(ρ, µ, ν, l)
def
= BASIC(l) ∨

∃X ∈ PreExitSets(l). ∀n ∈ Leaves(ρ, l). ∃n′ ∈ X. n
g
−→ n′ ∧ g(µ, ν)

Note that JoinEnabled is trivially true for a basic location l.
For the invariants of a location we use a function Invν : S → {true, false},

that evaluates the invariant of a given location with respect to a clock evaluation
ν. We use the predicate Inv(ρ, ν) to express, that for control situation ρ and clock
valuation ν all invariants are satisfied.

Inv(ρ, ν)
def
=

∧

n∈ρ×(root)

Invν(n)

We introduce the predicate TransitionEnabled over transitions t : l
g,s,r,u
−−−−→ l′,

that evaluates to true, if t is enabled.

TransitionEnabled(t : l
g,s,r,u
−−−−→ l′, ρ, µ, ν)

def
=

g(µ, ν) ∧ JoinEnabled(ρ, µ, ν, l) ∧ Inv(ρTt , νTt) ∧ ¬EXIT(l′)

Since urgency has precedence over delay, we have to capture the global sit-
uation, where some urgent transition is enabled. We do this via the predicate
UrgentEnabled over a configuration.



UrgentEnabled(ρ, µ, ν)
def
= ∃t : l

g,r,u
−−−→ l′. TransitionEnabled(t, ρ, µ, ν) ∧ u

∨ ∃t1 : l1
g1,c!,r1,u1

−−−−−−−→ l′1, t2 : l2
g2,c?,r2,u2

−−−−−−−→ l′2.
TransitionEnabled(t1, ρ, µ, ν) ∧
TransitionEnabled(t2, ρ, µ, ν) ∧ (u1 ∨ u2)

Rules. We give now the action rule. It is not possible to break it in join, action,
and fork because the join can be taken only if the action is enabled and the action
is taken only if the invariants still hold after the fork. The predicate Transition-

Enabled takes into account the join, the action, and the fork conditions. The
inferred transition is computed with the configuration-vector transformation.

TransitionEnabled(t : l
g,r,u
−−−→ l′, ρ, µ, ν)

action
(ρ, µ, ν, θ)

t
−→ Tt(ρ, µ, ν, θ)

Here g is the guard of the transition and r the set of resets and assignments.
The urgency flag u has no effect here. This rule applies for action transitions
between basic locations as well as super-states. In the later case, this includes
the appropriate joins and/or fork operations.

The delay transition rule is:

Inv(l)(ρ, ν + d) ¬UrgentEnabled(ρ, µ, ν)
delay

(ρ, µ, ν, θ)
d
−→ (ρ, µ, ν + d, θ)

where ν + d stands for the clock assignment ν shifted by the delay d. Time can
elapse only if all the invariants stay satisfied and no urgent transition is enabled.

The last transition rule reflects the situation, where two action transitions
synchronize via a channel c.

TransitionEnabled(t1 : l1
g1,c!,r1,u1

−−−−−−−→ l′1, ρ, µ, ν) l1 6∈ δ×(l2)

TransitionEnabled(t2 : l2
g2,c?,r2,u2

−−−−−−−→ l′2, ρ, µ, ν) l2 6∈ δ×(l1)
sync

(ρ, µ, ν, θ)
t1,t2
−−−→ Tt2 ◦ Tt1(ρ, µ, ν, θ)

The order Tt2◦Tt1 could equivalently be replaced by Tt1◦Tt2 since the assignments
cannot conflict with each other (according to the well-formedness constraints on
transitions).

If no action transition is enabled or becomes enabled when time progresses,
we have a deadlock configuration, which is typically a bad thing. If in addition
time is prevented to elapse, this is a time stopping deadlock . Usually this is an
error in the model, since it does not correspond to any real world behavior.

Our rules describe all legal sequences of transitions. A trace is a finite of
infinite sequence of legal configurations that start at the initial configuration S0

with all variables and clocks set to 0. Any two subsequent configurations are
connected according to one of the transition rules. For our purposes it suffices
to associate a hierarchical timed automaton semantically with the (typically
infinite) set of all derivable traces.



4 Translation of Hierarchical Timed Automata to Uppaal

Timed Automata

In this section we outline the procedure for translating one hierarchical timed
automaton to a parallel composition of (flat) Uppaal timed automata [12].
We use the model of a pacemaker as a running example. We implemented our
procedure in Java.

4.1 Uppaal Timed Automata

Uppaal [12] is a tool box for modeling, verification and simulation or real-time
systems developed jointly by Uppsala University and Aalborg University. It is
appropriate for systems that can be described as collection of non-deterministic
parallel processes. The model used in Uppaal is the timed automaton and cor-
responds to the flat version of our hierarchical timed automaton where each
process is described as a state machine with finite control structure, real-valued
clocks and integers. Processes communicate through channels and (or) shared
variables [11]. The tool has been successfully applied in many case studies [14,
15, 7].

4.2 Flattening a Hierarchical Timed Automaton

Syntactically, HTAs are generated by a template mechanism that has to be
instantiated. The number of templates can be substantially smaller than the
number of super-states in the hierarchical state machine.

On the topmost level, conceptually under an implicit root, we find a parallel
composition of instantiated templates. Each corresponds to a super-state Si,
that can itself instantiate templates in sub-states and so on. This gives rise to
an instantiation tree, which expresses the actual behavior of the hierarchical
timed automaton.

The translation proceeds in three phases:

1. Collection of instantiations: the hierarchical instantiation tree is traversed
and for every hierarchical super-state, the skeleton of a (flat) template is
constructed.

2. Computation of global joins: transitions originating from super-states can
require a cascade of sub-state exits—called global join—in order to be taken.
All combinations of possible start configurations are computed; this yields
a guard condition, that evaluates to true if an only if one such cascade can
be taken to completion.

3. Post-processing channel communication: if a transition in the hierarchical
timed automaton formalism starts at a super-state S and carries a syn-
chronization, it cannot synchronize with a transition inside S. Since the
sub-state/super-state relation is lost in the translation, we resolve this scope
conflict explicitly. We do so by introducing duplications of channels and
transitions.



Every super-state S in the hierarchical timed automaton model corresponds
exactly to one Uppaal timed automaton Ŝ. We can relate control locations ρ
in the hierarchical timed automaton model to a control vector ρ̂ in the Uppaal

model. This correspondence allows us to trace back an error sequence obtained
with the flat representation to the original hierarchical one.

5 Formal Verification of a Cardiac Pacemaker

In this case study, we use a cardiac pacemaker example, as it is described in
various UML books, e.g. [5]. We translate our hierarchical timed automaton
model of it to an equivalent (flat) Uppaal timed automata model and report on
run-time data of the formal verification of deadlock, one safety, and one liveness
property.

Waiting

Pacing

Refractory

Ventricular

Waiting

Pacing

Refractory

Ventricular

A_Pacing

Refractory

Waiting

A_Pacing

Refractory

Waiting

Sensed

Off

ToInhibited? ToTriggered?

TriggeredInhibited

Self_Triggered
inIdle

ToIdle?

AVI

t==Pulse_Width
VPace!

t:=0

t==senseTime

t:=0APace!

t==RefTime

t:=0

V_Sense?

Atrial

RefractDone?

sense?
x:=0

x<=0

V_Sense!

APace?

VPace?

Ventricular

ToAVI?

inAVI

ToOn? ToOff?

RefractDone!

\sl Idle

Self_Inhibited

Fig. 1. Overview of our hierarchical timed automaton pacemaker model. Initially, the
VVI mode is entered.

5.1 The Cardiac Pacemaker Model

The main component of the pacemaker is a XOR super-state with the two sub-
states Off and On. If the pacemaker is on, it can be in the different modes Idle,
AAI, AAT, VVI, VVT, and AVI. The first letter indicates, to which chamber
of the heart an electrical pacing pulse is sent (articular or ventricular). The
second letter indicates, which chamber of the heart is monitored (articular or
ventricular). In the Self Inhibited (I) modes, a naturally occurring heartbeat
blocks a pulse from being sent, whereas in the Self Triggered (T) modes a pacing



pulse will always occur, either triggered by a timeout or by the heart contraction
itself.

For simplicity, we restrict to the operation modes Idle, VVT, VVI, and AVI.
Of particular interest is the AVI mode, which is described as an AND super-state
with two parallel sub-states that are entered on demand. Thus, in our example
only the ventricular chamber is observed, but a pace signal my be sent either to
the ventricular or articular chamber.

Programmer Model. The signals commandedOn! commandedOff! toIdle! toVVI!
toVVT! toAVI! are issued by a medical person, called the programmer in our
context. We do not make assumptions, on how or in which order she issues
these signals, but require a time delay of at least DELAY_AFTER_MODESWITCH

after each signal. If one of the signals commandedOff! or toIdle! was issued,
this is recorded in the binary variable wasSwitchedOff.

Note that we equipped the pacemaker with default exits, thus it can always
synchronize with these signals.

Composed Model. The complete hierarchical timed automaton model contains
in parallel the pacemaker, the programmer, and a model of a heart, that might
spontaneously cease beating on its own (not described here).

HTA model Uppaal model

# XML tags 549 1233

# proper control locations 35 45

# pseudo-sates / committed locations 31 62

# transitions 47 174

# variables and constants 33 90

# formal clocks 6 6

Table 2. Translations of a hierarchical timed automaton description to an equivalent
flat Uppaal model. For the cardiac pacemaker example, the increases are moderate.
Both data formats are described in terms of XML grammars.

5.2 Model-Checking the Uppaal Model

The automatic translation of the pacemaker model yielded a gentle expansion in
size, as recorded in Table 2. The high number of committed location indicates,
that most of the additional control structure is purely auxiliary and does not
contribute significantly to the state space of the translation.

We used the translation as input to the Uppaal tool. All run-times were
measured on a Sun Enterprise 450 with UltraSPARC-II processors, 300 MHz,
It took 0.92 seconds to establish deadlock-freedom. We verified two desirable
properties in the obtained hierarchical timed automaton model.



(i) A[] ( heart_sub.FLATLINE => (wasSwitchedOff == 1) )

(ii) A[] ( heart_Sub.AfterAContraction =>

A<> heart_Sub.AfterVContraction )

Property (i) is a safety property and establishes, that the heart never stops
for too long, unless the pacemaker was switched off by the programmer (in which
case we cannot give any guarantees). Property (ii) is a response property and
states, that after an articular contraction, there will inevitably follow a ventric-
ular contraction. In particular, this guarantees that no deadlocks are possible
between these control situations.

REFRACTORY_TIME = 50

SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50

DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

Fig. 2. Constants that yield property (i).

The latest version of the Uppaal

tool1 was able to perform the model-
checking of both properties success-
fully in 13.30 respectively 4.11 sec-
onds. The verification of the typi-
cally more expensive property (ii)
was faster, since here we were able
to apply a property preserving con-
vex hull over-approximation. This
approximation yields false negatives
for property (i). We note that using
Uppaal’s powerful optimization op-
tions, in particular the active clock
reduction, reduces also model-checking times drastically.

It is worthwhile to mention that validity of property (i) is strongly de-
pendent on the parameter setting of the model. We used the constants from
Figure 2. If the programmer is allowed to switch between modes very fast,
it is possible that she prevents the pacemaker from doing its job. E.g., for
MODE_SWITCH_DELAY = 65 the property (i) does not hold any more. In prac-
tice it is often a problem to find parameter settings, that entail a safe or correct
operation of the system.2

6 Conclusion & Further Work

We extract a subset of the behavioral part of UML for the purpose of formal
verification. We extend it with real-time constructs, i.e., with real-valued formal
clocks, invariants, and timed guards. We use a simple hand-shake synchroniza-
tions mechanism to express dependencies among components. For this formalism
we give a formal semantics to capture the exact behavior. This makes it possible
to translate our hierarchical structure to a flat timed automaton model while
preserving properties like timed reachability. We make use of this by applying

1 A release version that supports—among other new features—the possibility to
model-check response properties is available since April 2001.

2 In related work, an extended version of Uppaal is used to derive parameters yielding
property satisfaction automatically, see [10].



a mature model-checking algorithm and by this means established time-critical
safety and response properties of a pacemaker model.

Our formal extension of statecharts to timed statecharts is about to be final-
ized in a UML profile in the context of the European AIT-WOODDES project
No IST-1999-10069. Here, our proposed method is applied in the verification
part of a design methodology for real-time and embedded systems. Among other
tools, the mature Uppaal model-checking engine is used as a back-end. The run-
time data we get from our pacemaker example is encouraging—it suggests that
reasonable-sized models are in the reach of algorithmic treatment with formal
method tools.

The pacemaker example indicates, that clocks, guards, and invariants are a
feasible selection of real-time constructs. Though not necessarily familiar to the
designer, these constructs are expressive enough to capture essential real-time
behavior and nevertheless stay in a decidable fragment of real-time properties.
For every real-time model that can be encoded in our formalism, this opens the
way for formal and fully automated algorithmic verification in many interesting
cases. This suggests that real-time temporal logics can be included into the UML
requirement specification language.

Future Work. Event communication can be coded by hand with the help of
channel synchronizations and global variables. The inclusion of events into hi-
erarchical timed automata can be expressed by this way. Extensions of the ac-
tion language to other data types are planned, and the possibility of safe over-
approximation of C++ statements has to be investigated.

Since checking real-time temporal logics is computationally hard under var-
ious aspects [2, 1], it is desirable to try our technique on larger examples from
industrial designs. Currently the formal verification part is possible via a trans-
lation to a flattened version of the system. However, there is indication that the
hierarchical structure can be exploited. We plan to investigate this further in
the context of the Uppaal tool, see [3].
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