
UPPAAL Implementation Secrets

Gerd Behrmann2, Johan Bengtsson1, Alexandre David1, Kim G. Larsen2,
Paul Pettersson1, and Wang Yi1

1 Department of Information Technology, Uppsala University, Sweden
{johanb,adavid,paupet,yi}@docs.uu.se.

2 Basic Research in Computer Science, Aalborg University, Denmark
{behrmann,kgl}@cs.auc.dk.

Abstract. In this paper we present the continuous and on-going de-
velopment of datastructures and algorithms underlying the verification
engine of the tool Uppaal. In particular, we review the datastructures
of Difference Bounded Matrices, Minimal Constraint Representation and
Clock Difference Diagrams used in symbolic state-space representation
and -analysis for real-time systems.
In addition we report on distributed versions of the tool, and outline the
design and experimental results for new internal datastructures to be
used in the next generation of Uppaal.
Finally, we mention work on complementing methods involving acceler-
ation, abstraction and compositionality.

1 Introduction

Uppaal [LPY97] is a tool for modeling, simulation and verification of real-time
systems, developed jointly by BRICS at Aalborg University and the Depart-
ment of Computer Systems at Uppsala University. The tool is appropriate for
systems that can be modeled as a collection of non-deterministic processes with
finite control structure and real-valued clocks, communicating through channels
or shared variables. Typical application areas include real-time controllers and
communication protocols.

Since the first release of Uppaal in 1995, the tool has been under constant
development by the teams in Aalborg and Uppsala. The tool has consistently
gained in performance over the years, which may be ascribed both to the devel-
opment of new datastructures and algorithms as well as constant optimizations
of their actual implementations. By now (and since long) Uppaal has reached
a state, where it is mature for application on real industrial development of
real-time systems as witnessed by a number of already carried out case-studies1.

Tables 1 and 2 show the variations of time and space consumption for three
different versions of Uppaal applied to five examples from the literature: Fis-
cher’s mutual exclusion protocol with five processes [Lam87], Philips audio-
control protocol with bus-collision detection [BGK+96], a Power-Down Con-
troller [HLS99], a TDMA start-up algorithm with three nodes [LP97], and a
1 See www.uppaal.com for detailed list.

W. Damm and E.-R. Olderog (Eds.): FTRTFT 2002, LNCS 2469, pp. 3–22, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

4 Gerd Behrmann et al.

Table 1. Time requirements (in seconds) for three different Uppaal versions.

1998 2000 DBM Min Ctrl Act PWL State 2002

Fischer 5 126.30 13.50 4.79 6.02 3.98 2.13 3.83 12.66 0.19
Audio - 2.23 1.50 1.79 1.45 0.50 1.57 2.28 0.45
Power Down * 407.82 207.76 233.63 217.62 53.00 125.25 364.87 13.26
Collision Detection 128.64 17.40 7.75 8.50 7.43 7.94 7.04 19.16 6.92
TDMA 108.70 14.36 9.15 9.84 9.38 6.01 9.33 16.96 6.01

CSMA/CD protocol with eight nodes [BDM+98]. In the column “1998” and
“2000” we give the run-time data of Uppaal versions dated January 1998 and
January 2000 respectively. In addition, we report the data of the current ver-
sion dated June 2002. The numbers in column “DBM” were measured with-
out any optimisations, “Min” with Minimal Constraints Representation, “Ctrl”
with Control Structure Reduction [LPY95], “Act” with Active Clock Reduction
[DT98], “PWL” with the Passed and Waiting List Unification, “State” with
Compact Representation of States, and finally “2002” with the best combina-
tion of options available in the current version of Uppaal. The different versions
have been compiled with a recent version of gcc and were run on the same Sun
Enterprise 450 computer equipped with four 400 MHz processors and 4 Gb or
physical memory. In the diagrams we use “-” to indicate that the input model
was not accepted due to compability issues, and “*” to indicate that the veri-
fication did not terminate within one hour. We notice that both the time and
space performance has improved significantly over the years. For the previous
period December 1996 to September 1998 a report on the run-time and space
improvements may be found in [Pet99]. Similar diagrams for the time period
November 1998 to Januari 2001 are reported in [ABB+01].

Despite this success improvement in performance, the state-explosion prob-
lem is a still a reality2 which prevents the tool from ever3 being able to provide
fully automatic verification of arbitrarily large and complex systems. Thus, to
truely scale up, automatic verification should be complemented by other meth-
ods. Such methods investigated in the context of Uppaal include that of accel-
eration [HL02] and abstractions and compositionality [JLS00].

The outline of the paper is as follows: Section 2 summaries the definition of
timed automata, the semantics, and the basic timed automaton reachability al-
gorithm. In section 3 we present the three main symbolic datastructures applied
in Uppaal: Difference Bounded Matrices, Minimal Constraint Representation
and Clock Difference Diagrams and in section 4 we review various schemes for
compact representations for symbolic states. Section 5 introduces a new exlo-
ration algorithm based on a unification of Passed and Waiting list datastructures
and Section 6 reviews our considerable effort in parallel and distributed reach-

2 Model-checking is either EXPTIME- or PSPACE-complete depending on the expres-
siveness of the logic considered.

3 unless we succeed in showing P=PSPACE

Uppaal Implementation Secrets 5

Table 2. Space requirements (in Mb) of for different Uppaal versions.

1998 2000 DBM Min Ctrl Act PWL State 2002

Fischer 5 8.86 8.14 9.72 6.97 6.40 6.35 6.74 4.83 3.21
Audio - 3.02 5.58 5.53 5.58 4.33 4.75 3.06 3.06
Power Down * 218.90 162.18 161.17 132.75 44.32 18.58 117.73 8.99
Collision Detection 17.00 12.78 25.75 21.94 25.75 25.75 10.38 13.70 10.38
TDMA 8.42 8.00 11.29 8.09 11.29 11.29 4.82 6.58 4.82

ability checking. Section 7 presents recent work on acceleration techniques and
section 8 reviews work on abstraction and compositionality. Finally, we conclude
by stating what we consider open problems for future research.

2 Preliminaries

In this section we summaries the basic definition of timed automata, their con-
crete and symbolic semantics and the reachability algorithm underlying the cur-
rently distributed version of Uppaal.

Definition 1 (Timed Automaton). Let C be the set of clocks. Let B(C) be
the set of conjunctions over simple conditions on the forms x �� c and x − y ��
c, where x, y ∈ C, ��∈ {<,≤, =,≥, >} and c is a natural number. A timed
automaton over C is a tuple (L, l0, E, g, r, I), where L is a set of locations, l0 ∈ L
is the initial location, E ∈ L × L is a set of edges, g : E → B(C) assigns guards
to edges, r : E → 2C assigns clocks to be reset to edges, and I : L → B(C)
assigns invariants to locations.

Intuitively, a timed automaton is a graph annotated with conditions and
resets of non-negative real valued clocks.

Definition 2 (TA Semantics). A clock valuation is a function u : C → R≥0
from the set of clocks to the non-negative reals. Let R

C be the set of all clock
valuations. Let u0(x) = 0 for all x ∈ C. We will abuse the notation by considering
guards and invariants as sets of clock valuations.

The semantics of a timed automaton (L, l0, E, g, r, I) over C is defined as a
transition system (S, s0,→), where S = L × R

C is the set of states, s0 = (l0, u0)
is the initial state, and →⊆ S × S is the transition relation such that:

– (l, u) → (l, u + d) if u ∈ I(l) and u + d ∈ I(l)
– (l, u) → (l′, u′) if there exists e = (l, l′) ∈ E s.t. u ∈ g(e), u′ = [r(e) �→ 0]u,

and u′ ∈ I(l)

where for d ∈ R, u+d maps each clock x in C to the value u(x)+d, and [r �→ 0]u
denotes the clock valuation which maps each clock in r to the value 0 and agrees
with u over C \ r.

6 Gerd Behrmann et al.

The semantics of timed automata results in an uncountable transition system.
It is a well known-fact that there exists a exact finite state abstraction based on
convex polyhedra in R

C called zones (a zone can be represented by a conjunction
in B(C)). This abstraction leads to the following symbolic semantics.

Definition 3 (Symbolic TA Semantics). Let Z0 =
∧

x∈C x ≥ 0 be the initial
zone. The symbolic semantics of a timed automaton (L, l0, E, g, r, I) over C is
defined as a transition system (S, s0,⇒) called the simulation graph, where S =
L × B(C) is the set of symbolic states, s0 = (l0, Z0 ∧ I(l0)) is the initial state,
⇒= {(s, u) ∈ S × S | ∃e, t : s

e⇒ t
δ⇒ u} : is the transition relation, and:

– (l, Z) δ⇒ (l,norm(M, (Z ∧ I(l))↑ ∧ I(l)))
– (l, Z) e⇒ (l′, re(g(e) ∧ Z ∧ I(l)) ∧ I(l′)) if e = (l, l′) ∈ E.

where Z↑ = {u + d | u ∈ Z ∧ d ∈ R≥0} (the future operation), and re(Z) =
{[r(e) �→ 0]u | u ∈ Z} (the reset operation). The function norm : N × B(C) →
B(C) normalises the clock constraints with respect to the maximum constant M
of the timed automaton.

The relation δ⇒ contains the delay transitions and e⇒ the edge transitions.
Given the symbolic semantics it is straight forward to construct the reachability
algorithm, shown in Figure 1. The symbolic semantics can be extended to cover
networks of communicating timed automata (resulting in a location vector to be
used instead of a location), timed automata with data variables (resulting in the
addition of a variable vector).

3 Symbolic Datastructures

To utilize the above symbolic semantics algorithmically, as for example in the
reachability algorithm of Figure 1, it is important to design efficient data struc-
tures and algorithms for the representation and manipulation of clock con-
straints. In this section, we present three such datastructures: Diffence Bounded
Matrices, Minimal Constraint Representation and Clock Difference Diagrams.

Difference Bounded Matrices

Difference Bounded Matrices (DBM, see [Bel57,Dil89]) is well–known data struc-
ture which offers a canonical representation for constraint systems. A DBM rep-
resentation of a constraint system Z is simply a weighted, directed graph, where
the vertices correspond to the clocks of C and an additional zero–vertex 0. The
graph has an edge from x to y with weight m provided x − y ≤ m is a con-
straint of Z. Similarly, there is an edge from 0 to x (from x to 0) with weight
m, whenever x ≤ m (x ≥ −m) is a constraint of Z4. As an example, consider
the constraint system E over {x0, x1, x2, x3} being a conjunction of the atomic
constraints x0 − x1 ≤ 3, x3 − x0 ≤ 5, x3 − x1 ≤ 2, x2 − x3 ≤ 2, x2 − x1 ≤ 10,
and x1 − x2 ≤ −4. The graph representing E is given in Figure 2 (a).
4 We assume that Z has been simplified to contain at most one upper and lower bound

for each clock and clock–difference.

Uppaal Implementation Secrets 7

W = {(l0, Z0 ∧ I(l0))}
P = ∅

while W �= ∅ do
(l, Z) = W.popstate()
if testProperty(l, Z) then return true
if ∀(l, Y) ∈ P : Z �⊆ Y then

P = P ∪ {(l, Z)}
∀(l′, Z′) : (l, Z) ⇒ (l′, Z′) do

if ∀(l′, Y ′) ∈ W : Z′ �⊆ Y ′ then
W = W ∪ {(l′, Z′)}

endif
done

endif
done
return false

Fig. 1. The timed automaton reachability algorithm, with P being the passed-list
containing all explored symbolic states, and W being the waiting-list containing en-
countered symbolic states waiting to be explored. The function testProperty evaluates
the state property that is being checked for satisfiability. The while loop is refered to
as the exploration loop.

In general, the same set of clock assignments may be described by several
constraint systems (and hence graphs). To test for inclusion between constraint
systems Z and Z ′5, which we recall is essential for the termination of the reacha-
bility algorithm of Figure 1, it is advantageous, that Z is closed under entailment
in the sense that no constraint of Z can be strengthened without reducing the
solution set. In particular, for Z a closed constraint system, Z ⊆ Z ′ holds if
and only if for any constraint in Z ′ there is a constraint in Z at least as tight;
i.e. whenever (x − y ≤ m) ∈ Z ′ then (x − y ≤ m′) ∈ Z for some m′ ≤ m.
Thus, closedness provides a canonical representation, as two closed constraint
systems describe the same solution set precisely when they are identical. To close
a constraint system Z simply amounts to derive the shortest–path closure for
its graph and can thus be computed in time O(n3), where n is the number of
clocks of Z . The graph representation of the closure of the constraint system E
from Figure 2 (a) is given in Figure 2 (b). The emptiness-check of a constraint
system Z simply amounts to checking for negative–weight cycles in its graph
representation. Finally, given a closed constraint system Z the operations Z↑

and r(Z) may be performed in time O(n). For more detailed information on
how to efficiently implement these and other operations on DBM’s we refer the
reader to [Ben02,Rok93].

Minimal Constraint Representation

For the reasons stated above a matrix representation of constraint systems in
closed form is an attractive data structure, which has been successfully employed
5 To be precise, it is the inclusion between the solution sets for Z and Z′.

8 Gerd Behrmann et al.

�� ��

����

�

�

��

��

�
�

�	

�� ��

����

� �

�

��

�

���
��

��

��

��

�� ��

����

� �

��

�
�

�

Fig. 2. Graph for E (a), its shortest–path closure (b), and shortest–path reduction (c).

by a number of real–time verification tools, e.g. Uppaal [BLL+96] and Kro-
nos [DY95]. As it gives an explicit (tightest) bound for the difference between
each pair of clocks (and each individual clock), its space–usage is of the order
O(n2). However, in practice it often turns out that most of these bounds are re-
dundant, and the reachability algorithm of Figure 1 is consequently hampered in
two ways by this representation. Firstly, the main–data structure P (the passed
list) will in many cases store all the reachable symbolic states of the automaton.
Thus, it is desirable, that when saving a symbolic state in the passed list, we
save a representation of the constraint–system with as few constraints as pos-
sible. Secondly, a constraint system Z added to the passedlist is subsequently
only used in checking inclusions of the form Z ′ ⊆ Z. Recalling the method for
inclusion–check from the previous section, we note that (given Z ′ is closed) the
time–complexity of the inclusion–check is linear in the number of constraints of
Z. Thus, again it is advantageous for Z to have as few constraints as possible.

In [LLPY97,LLPY02] we have presented an O(n3) algorithm, which given
a constraint system constructs an equivalent reduced system with the mini-
mal number of constraints. The reduced constraint system is canonical in the
sense that two constrain systems with the same solution set give rise to identi-
cal reduced systems. The algorithm is essentially a minimization algorithm for
weighted directed graphs. Given a weighted, directed graph with n vertices, it
constructs in time O(n3) a reduced graph with the minimal number of edges
having the same shortest path closure as the original graph. Figure 2 (c) shows
the minimal graph of the graphs in Figure 2 (a) and (b), which is computed by
the algorithm.

The key to reduce a graph is obviously to remove redundant edges, i.e. edges
for which there exist alternative paths whose (accumulated) weight does not
exceed the weight of the edgesthemselves. E.g. in the graph of Figure 2 (a)
the edge (x1, x2) is clearly redundant as the accumulated weight of the path
(x1, x3, (x3, x2) has a weight (4) not exceeding the weight of the edge itself
(10). Being redundant, the edge (x1, x2) may be removed without changing the
shortest-path closure (and hence the solution-set of the corresponding constraint
system). In this manner both the edges (x1, x2) and (x2, x3) of Figure 2 (b) are

Uppaal Implementation Secrets 9

found to be redundant. However, thought redundant, we cannot just remove the
two edges as removal of one clearly requires the presence of the other. In fact,
all edges between the vertices x1, x2 and x3 are redundant, but obviously we
cannot remove them all simultaneously without affecting the solution-set. The
key explanation of this phenomena is that x1, x2 and x3 constitute a zero-cycle.
In fact, for zero-cycle free graphs simulataneous removal of redundant edges leads
to a canonical shortest-path reduction form. For general graphs the reduction is
based on a partitioning of the vertices according to membership of zero-cycles.

Our experimental results demonstrated significant space-reductions compared
with traditional DBMimplmentation: on a number of benchmark and indus-
trial examples the space saving was between 75% and 94%. Additionally, time-
performance was improved.

Clock Difference Diagrams

Difference Bound Matrices (DBM’s) as the standard representation for time
zones in analysis of Timed Automata have a well-known shortcoming: they are
not closed under set-union. This comes from the fact that a set represented by
a DBM is convex, while the union of two convex sets is not necessarily convex.

Within the symbolic computation for the reachability analysis of Uppaal,
set-union however is a crucial operation which occurs in every symbolic step.
The shortcoming of DBM’s leads to a situation, where symbolic states which
could be treated as one in theory have to be handled as a collection of several
different symbolic states in practice. This leads to trade-offs in memory and time
consumption, as more symbolic states have to be stored and visited during in
the algorithm.

DBM’s represent a zone as a conjunction of constraints on the differences
between each pair of clocks of the timed automata (including a fictitious clock
representing the value 0). The major idea of CDD’s (Clock Difference Diagrams)
is to store a zone as a decision tree of clock differences, generalizing the ideas
of BDD’s (Binary Decision Diagrams, see [Bry86]) and IDD’s (Integer Decision
Diagrams, see [ST98])

The nodes of the decision tree represent clock differences. Nodes on the same
level of the tree represent the same clock difference. The order of the clock
differences is fixed a-priori, all CDD’s have to agree on the same ordering. The
leaves of the decision tree are two nodes representing true and false, as in the
case of BDD’s.

Each node can have several outgoing edges. Edges are labeled with integral
intervals: open, half-closed and closed intervals with integer values as the borders.
A node representing the clock difference X − Y together with an outgoing edge
with interval I represents the constraint ”X − Y within I”. The leafs represent
the global constraints true and false respectively.

A path in a CDD from a node down to a leaf represents the set of clock values
with fulfill the conjunction of constraints found along the path. Remember that
a constraint is found from the pair node and outgoing edge. Paths going to false
thus always represent the empty set, and thus only paths leading to the true

10 Gerd Behrmann et al.

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

�

�

��� �� ��� ��

��� ��

����

�

� � �

��� �� ��� ��

��� ��
��� ��

��� ��

����

��� �	

�

�

� � � � � �

��
��

��
��

��� ��

��� ��

���� ��

����

�

� � � � � �
�

�

�

�

�

� � � � � �
�

�

�

�

�

� � � � �
�

�

�

�

�
�	 ��	 ��	

Fig. 3. Three example CDD’s. Intervals not shown lead implicitly to False.

node need to be stored in the CDD. A CDD itself represents the set given by
the union of all sets represented by the paths going from the root to the true
node. From this clearly CDD’s are closed under set-union. Figure 3 gives three
examples of two-dimensional zones and their representation as CDDs. Note that
the same zone can have different CDD representations.

All operations on DBM’s can be lifted straightforward to CDD’s. Care has
to be taken when the canonical form of the DBM is involved in the operation, as
there is no direct equivalent to the (unique) canonical form of DBM’s for CDD’s.

CDD’s generalize IDD’s, where the nodes represent clock values instead of
clock differences. As clock differences, in contrast to clock values, are not inde-
pendent of each other, operations on CDD’s are much more elaborated than the
same operations on IDD’s. CDD’s can be implemented space-efficient by using
the standard BDD’s technique of sharing common substructure. This sharing
can also take place between different CDD’s.

Experimental results have shown that using CDD’s instead of DBM’s can
lead to space savings of up to 99%. However, in some cases a moderate increase
in run time (up to 20%) has to be paid. This comes from the fact that operations
involving the canonical form are much more complicated in the case of CDD’s
compared to DBM’s. More on CDD’s can be found in [LWYP99] and [BLP+99].
A similar datastructure is that of DDD’s presented in [MLAH99a,MLAH99b].

4 Compact Representation of States

Symbolic states are the core objects of state space search and one of the key
issues in implementing a verifier is how to represent them. In the earlier versions
of Uppaal each entity in a state (i.e. an element in the location vector, the value
of an integer variable or a bound in the DBM) is mapped on a machine word.

Uppaal Implementation Secrets 11

The reason for this is simplicity and speed. However the number of possible
values for each entity is usually small, and using a machine word for each of
them is often a waste of space.

To conquer this problem two additional, more compact, state representations
have been added. In both of them the discrete part of each state is encoded as
a number, using a multiply and add scheme. This encoding is much like looking
at the discrete part as a number, where each digit is an entity in the discrete
state and the base varies with the number of different digits.

In the first packing scheme, the DBM is encoded using the same technique
as the discrete part of the state. This gives a very space efficient but computa-
tionally expensive representation, where each state takes a minimum amount of
memory but where a number of bignum division operations have to be performed
to check inclusion between two DBMs.

In the second packing scheme, some of the space performance is sacrificed to
allow a more efficient inclusion check. Here each bound in the DBM is encoded
as a bit string long enough to represent all the possible values of this bound plus
one test bit, i.e. if a bound can have 10 possible values then five bits are used to
represent the bound. This allows cheap inclusion checking based on ideas of Paul
and Simon [PS80] on comparing vectors using subtraction of long bit strings.

In experiments we have seen that the space performance of these represen-
tations are both substantially better than the traditional representation, with
space savings of between 25% and 70%. As we expect, the performance of the
first packing scheme, with an expensive inclusion check, is somewhat better,
space-wise, than the packing scheme with the cheap inclusion check.

Considering the time performance for the packed state representations we
have found that the price for using the encoding with expensive inclusion check
is a slowdown of 2 – 12 times, while using the other encoding sometimes is even
faster than the traditional representation. For more detailed information on this
we refer the interested reader to [Ben02].

5 Passed and Waiting List Unification

The standard reachability algorithm currently applied in Uppaal is based on
two lists: the passed and the waiting lists. These lists are used in the exploration
loop that pops states to be explored from the waiting list, explores them, and
keeps track of already explored states with the passed list. The first algorithm
of Figure 4 shows this algorithm based on two distinct lists.

We have unified these structures to a PWList and a queue. The queue has
only references to states in PWList and is a trivial queue structure: it stores
nothing by itself. The PWList acts semantically as a buffer that eliminates du-
plicate states, i.e. if the same state is added to the buffer several times it can
only be retrieved once, even when the state was retrieved before the state is
inserted a second time. To achieve this effect the PWList must keep a record of
the states seen and thus it provides the functionality of both the passed list and
the waiting list.

12 Gerd Behrmann et al.

W = {(l0, Z0 ∧ I(l0))}
P = ∅

while W �= ∅ do
(l, Z) = W.popState()
if testProperty(l, Z)
then return true
if ∀(l, Y) ∈ P : Z �⊆ Y
then

P = P ∪ {(l, Z)}
∀(l′, Z′) : (l, Z) ⇒ (l′, Z′) do

if ∀(l′, Y ′) ∈ W : Z′ �⊆ Y ′

then
W = W ∪ {(l′, Z′)}

endif
done

endif
done
return false

→

Q = PW = {(l0, Z0 ∧ I(l0))}
while Q �= ∅ do

(l, Z) = Q.popState()
if testProperty(l, Z)
then return true
∀(l′, Z′) : (l, Z) ⇒ (l′, Z′) do

if ∀(l′, Y ′) ∈ PW : Z′ �⊆ Y ′

then
PW = PW ∪ {(l′, Z′)}
Q.append(l′, Z′)

endif
done

done
return false

Fig. 4. Reachability algorithm with classical passed (P) and waiting (W) lists adapted
to a the unified list (Q and PW).

Definition 4 (PWList). Formally, a PWList can be described as a pair (P, W)
∈ 2S × 2S, where S is the set of symbolic states, and the two functions put :
2S × 2S × S → 2S × 2S and get : 2S × 2S → 2S × 2S × S, such that:

– put(P, W, (l, Z)) = (P ∪ {(l, Z)}, W ′) where

W ′ =

{
W ∪ {(l, Z)} if (l, Z) �∈ P

W otherwise

– get(P, W) = (P, W \ {(l, Z)}, (l, Z)) for some (l, Z) ∈ W .

Here P and W play the role of the passed list and waiting list, respectively,
but as we will see this definition provides room for alternative implementations.
It is possible to loosen the elimination requirement such that some states can
be returned several times while still ensuring termination, thus reducing the
memory requirements [LLPY97].

The reachability algorithm can then be simplified as shows in Figure 4. The
main difference with the former algorithm shows when a state is pushed to
PWList: it is pushed conceptually to the passed and the waiting lists at the
same time. States to be explored are considered already explored for the inclusion
checking of new generated states. This greedy behaviour improves performance.

The reference implementation uses a hash table based on the discrete part of
the states to find them. Every state entry has its symbolic part represented as
a zone union (single linked list of zones). The queue is a simple linked list with
references to the discrete and symbolic parts. Only one hash computation and

Uppaal Implementation Secrets 13

one inclusion checking are necessary for every state inserted into this structure,
compared to two with the former passed and waiting lists. Furthermore we gather
states with a common discrete part. The former representation did not have this
zone union structure. This zone union structure is particularly well-suited for
other union representations of zones such as CDDs [BLP+99,LWYP99].

A number of options are realisable via different implementations of the PWList
to approximate the representation of the state-space such as bitstate hashing
[Hol87], or choose a particular order for state-space exploration such as breadth
first, depth first, best first or random [BHV00,BFH+01]. The ordering is orthog-
onal to the storage structure and can be combined with any data representation.

This implementation is built on top of the storage structure that is in charge
of storing raw data. The PWList uses keys as references to these data. This
storage structure is orthogonal to a particular choice of data representation, in
particular, algorithms aimed at reducing the memory footprint such as convex
hull approximation [WT95] or minimal constraint representation [LLPY97] are
possible implementations. We have implemented two variants of this storage,
namely one with simple copy and the other one with data sharing.

Depending on the careful options given to Uppaal our new implementation
has been experimentally show to give improvements of up to 80% in memory and
improves speed significantly. The memory gain is expected due to the showed
sharing property of data. The speed gain (in spite of the overheads) comes from
only having a single hash table and from the zone union structure: the discrete
test is done only once, then comes only inclusion checks on all the zones in
one union. This is showed by the results of the simple copy version. For more
information we refer the interested reader to [DBLY].

6 Parallel and Distributed Reachability Checking

Parallel and distributed reachability analysis has become quite popular during
recent years. Most work is based on the same explicit state exploration algorithm:
The state space is partitioned over a number of nodes using a hash function.
Each node is responsible for storing and exploring those states assigned to it by
the hash function. The successors of a state are transfered to the owning nodes
according to the hash function. Given that all nodes agree on the hash function
to use and that the hash function maps states uniformly to the nodes, this results
in a very effective distributed algorithm where both memory and CPU usage are
distributed uniformly among all nodes.

In [BHV00] we reported on a version of Uppaal using the variation in Fig-
ure 5 of the above algorithm on a parallel computer (thus providing efficient
interprocess communication). The algorithm would only hash on the discrete
part of a symbolic state such that states with the same discrete part would map
to the same nodes, thus keeping the inclusion checking on the waiting list and
passed list. Due to the symbolic nature of the reachability algorithm, the number
of states explored depends on the search order. One noticeable side effect of the
distribution was an altered search order which most of the time would increase

14 Gerd Behrmann et al.

WA = {(l0, Z0 ∧ I(l0)) | h(l0) = A}
PA = ∅

while ¬terminated do
(l, Z) = WA.popState()
if ∀(l, Y) ∈ PA : Z �⊆ Y then

PA = PA ∪ {(l, Z)}
∀(l′, Z′) : (l, Z) ⇒ (l′, Z′) do

d = h(l′, Z′)
if ∀(l′, Y ′) ∈ Wd : Z′ �⊆ Y ′ then

Wd = Wd ∪ {(l′, Z′)}
endif

done
endif

done

Fig. 5. The distributed timed automaton reachability algorithm parameterised on node
A. The waiting list W and the passed list P is partitioned over the nodes using a
function h. States are popped of the local waiting list and added to the local passed
list. Successors are mapped to a destination node d.

the number of states explored. Replacing the waiting list with a priority queue
always returning the state with the smallest distance to the initial state solved
the problem.

More recently [Beh] we have ported the algorithm to a multi-threaded version
and a version running on a Linux Beowulf Cluster using the new PWList struc-
ture. Surprisingly, initial experiments on the cluster showed severe load balancing
problems, despite the fact that the hash function distributed states uniformly.
The problem turned out to be that the exploration rate of each node depends
on the load of the node6 (due to the inclusion checking). Slight load variations
will thus result in slight variations of the exploration rate of each node. A node
with a high load will have a lower exploration rate, and thus the load rapidly
becomes even higher. This is an unstable system. On the parallel machine used
in [BHV00] this is not a problem for most input systems (probably due to the
fast interprocess communication which reduces the load variations). Increasing
the size of the hash table used for the waiting list and/or using the new PWList
structure reduces this effect. Even with these modifications, some input systems
cause load balancing problems, e.g. Fischer protocol for mutual exclusion. Most
remaining load balancing problems can be eliminated by an explicit load balanc-
ing layer which uses a proportional controller that redirects states from nodes
with a high load to nodes with a low load.

The multi-threaded version uses a different approach to ensure that all threads
are equally balanced. All threads share the same PWList, or more precisely, the
hash table underlying the PWList is shared but the list of states needed to be
explored is thread local. Thus, if a thread inserts a state it will be retrieved by

6 The load of a node is defined as the length of its waiting list.

Uppaal Implementation Secrets 15

the same thread. With this approach we avoid that the threads need to access
the same queue. Each bucket in the hash table is protected by a semaphore. If the
hash table has much more buckets than we have threads, then the risk of multiple
simultaneous accesses is low. By default, each thread keeps all successors on the
same thread (since the hash table is shared it does not matter to which thread
a state is mapped). When the system is unbalanced some states are redirected
to other threads. Experiments show that this results in very high locality.

Experiments with the parallel version are very encouraging, showing excel-
lent speedups (in the range of 80-100% of optimal on a 4 processor machine).
The distributed version is implemented using MPI7 over TCP/IP over Fast Eth-
ernet. This results in high processing overhead of communication causing low
speedups in the range of 50-60% of optimal at 14 nodes. Future work will focus
on combining the two approaches such that nodes located on the same physical
machine can share the PWList. Also, experiments with alternatives to MPI over
TCP/IP will be evaluated, such as VIA8. Finally, it is unclear if the sharing
of sub-elements of a state introduced in the previous section will scale to the
distributed case.

7 Accelerating Cycles

An important problem concerning symbolic model checking of timed automata,
is encountered when the timed automata in a model use different time scales.
This, for example, is often the case for models of reactive programs with their en-
vironment. Typically, the automata that model the reactive programs are based
on microseconds whereas the automata of the environment function in the or-
der of seconds. This difference can give rise to an unnecessary fragmentation of
the symbolic state space. As a result, the time and memory consumption of the
model check process increases.

The fragmentation problem has already been encountered and described by
Hune and Iversen et al during the verification of LEGO Mindstorms programs
using Uppaal [Hun00,IKL+00]. The symbolic state space is severely fragmented
by the busy-waiting behaviour of the control program automata. Other exam-
ples were the phenomena of fragmantation is likely to show up include reactive
programs, and polling real-time systems, e.g., programmable logic controllers
[Die99]. The validation of communication protocols will probably also suffer
from the fragmentation problem when the context of the protocol is taken into
account.

In [HL02] we have proposed an acceleration technique for a subset of timed
automata, namely those that contain special cycles, that addresses the frag-
mentation problem. The technique consists of a syntactical adjustment that can
easily be computed from the timed automaton itself. It is proven that the syn-
tactical adjusment is exact with repsect to reachability properties, and it is

7 The Message Passing Interface.
8 The Virtual Interface Architecture.

16 Gerd Behrmann et al.

L3
L2
y<=5

L0
y<=2 L4

L1
y<=4

y>3
y:=0
y>=3 z>=LARGE

y:=0y>=1

Fig. 6. Timed automaton P .

experimentally validated that the technique effectively speed-up the symbolic
reachability analysis.

The timed automaton of figure 6 offers a simplified modeling of a control
program combined with an environment. The cycle L0, L1, L2 corresponds to
cyclic execution of a control program consisting of three atomic instructions with
the invariants and guards on the clock y providing execution time information.
Whenever the control cycle is in location L0, the enviroment (modelled by the
clock z) is consulted potentially leading to an exit of the control cycle. The size
of the threshold constant LARGE determines how slow the environment is relative
to the execution time of control program instructions: the larger the constant
the slower. Depending on the value of LARGE the cycle in automaton P must
be executed a certain (large) number of times before the edge to location L4 is
enabled. In a symbolic forward exploration the cycle must similarly be explored
a large number of times with a fragmentation of the symbolic states involving
location L0 as a consequence.

The acceleration technique proposed in [HL02] eliminates the fragmentation
that is due to special cycles. The subset of cycles we can accelerate may use only
a single clock y in the invariants, guards and resets. Though this might seem like
a strong restriction, this kind of cycles often occur in control graphs of single-
processor polling real-time systems. To be acceleratable all ingoing edges to the
first location of the cycle C should reset the clock y. This guarantees that C
has a window [a, b], in the sense that any execution of C has accumulated delay
between a and b, and, conversely, for any delay d between a and b any execution
of C can be ’adjusted’ to have accumulated delay d. Now, the acceleration of such
a cycle C is given by addition of a simple unfolding of C, where the invariant
of the (copy of the) intial location is removed. Figure 7 illustrates the result of
adding the unfolded cycle to the model. Provided 3a ≤ 2b it can be proved that in
terms of rechability (of original locations) the two models are equivalent. Thus,
the acceleration is exact. In case (n + 1)b ≤ na a similar result holds provided
the cycle is unfolded n times. If moreover the clock y is reset on the first edge
of C, all reachable states may be obtained by a single execution of the unfolded
cycle. Consequently, a symbolic breadth-first analysis of the accelerated version
of P in Figure 7 experimentally proves to be insensitive to the value of LARGE.

Uppaal Implementation Secrets 17

L3
L2
y<=5

L0
y<=2 L4

L1
y<=4

L1’
y<=4

L2’
y<=5

L2’’
y<=5

L1’’
y<=4

L0’

y>3
y:=0
y>=3 z>=LARGE

y:=0y>=1 y:=0

y>=1

y>=3
y:=0y:=0

y>=1

y>=3
y:=0

Fig. 7. The accelerated version of P .

In [HL02] and [Hen02] the proposed acceleration technique has been succes-
fully applied to analysis of models of LEGO Mindstorm byte code. In particular,
the acceleration technique allowed Uppaal to establish (at the byte code level)
several properties of the Production Cell which could not otherwise be analysed.

8 Abstraction and Compositionality

Despite the vast improvement in performance of Uppaal due to the development
improved datastructures and algorithms, the state-explosion is a reality. Thus, in
order for the application of a verification tools to truely scale up it is imperative
that they are complemented by other methods.

One such method is that of abstraction. Assume that SYS is a model of
some considered real-time system, and assume that we want some property ϕ
to be established, i.e. SYS |= ϕ. Now, the model, SYS, may be too complex
for our tools to settle this verification problem automatically (despite all of
our algorithmic efforts). The goal of abstraction is to replace the problem with
another, hopefully tractable problem ABS |= ϕ, where ABS is an abstraction
of SYS being smaller in size and less complex. This method requires the user
not only to supply the abstraction but also to argue that the abstraction is
safe in the sense that all relevant properties established for ABS also hold for
SYS; i.e. it should be established that SYS ≤ ABS, for some property-preserving
relationship ≤ between models9. Unfortunately, this brings the problem of state-
explosion right back in the picture because establishing SYS ≤ ABS may be as
computationally difficult as the original verification problem SYS |= ϕ.

To alleviate the above problem, the method of abstraction may be com-
bined with that of compositionality. Here, compositionality refers to principles
9 i.e. A ≤ B and B |= φ should imply that A |= φ.

18 Gerd Behrmann et al.

allowing properties of composite systems to be inferred from properties of their
components. In particular we want to establish the safe abstraction condition,
SYS ≤ ABS, in a compositional way, that is, assuming that SYS is a composite
system of the form SYS1 ‖ SYS2, we may hope to find simple abstractions ABS1
and ABS2 such that:

SYS1 ≤ ABS1 and SYS2 ≤ ABS2

Provided the relation ≤ is a precongruence with respect to the composition
operator ‖, we may now complete the proof of the safe abstraction condition by
establishing:

ABS1 ‖ ABS2 ≤ ABS

This approach nicely factors the original problem into the smaller problems
and, and may be applied recursively until problems small enough to be handled
by automatic means are reached.

The method of abstraction and compositionality is an old-fashion recipe
with roots going back to the original, foundational work on concurrency theory
[Mil89,Hoa78,OG76,Jon83,CM88]. In [JLS00] we have instantiated the method
to Uppaal, where real-time systems are modelled as networks of timed au-
tomata communicating over (urgent) channels and shared discrete (e.g. integer)
variables. A fundamental relationship between timed automata preserving safety
properties — and hence useful in establishing safe abstraction properties — is
that of timed simulation. However, in the presence of urgent communication and
shared variables, this relationship fails to be a precongruence, and hence does
not support compositionality. In [JLS00] we identify a notion of timed ready sim-
ulation supporting both abstraction and compositionality for Uppaal models.
In addition, a method for automatically testing for the existence of timed ready
simulation between timed automata using reachability analysis is presented (see
also [ABL98]). Thus Uppaal itself may be applied for such tests. The usefulness
of the developed method is demonstrated by application to the verification of
an industrial design: a system for audio/video power control developed by the
company Bang & Olufsen. The size of the full protocol model is of such complex-
ity that Uppaal immediately encounters the state-explosion problem in a direct
verification. However by application of the compositionality result and testing
theory we were able to carry through a verification of the full protocol model. In
[SS01] a similar approach is applied to the verification of the IEEE 1394a Root
contentin Protocol using Uppaal.

9 Conclusion

In addition to the techniques described in the previous sections, Uppaal offers a
range of other verification options including active clock reduction and approx-
imate analysis based on convex-hull, supertrace and hash compaction. We refer
the reader to www.uppaal.com for information on this.

The long effort effort spend on developing and implementing efficient datas-
tructures and algorithms for analysing timed systems has succesfully payed off

Uppaal Implementation Secrets 19

in terms of tools mature for industrial real-time applications. However, there is
still room and need for improvements. Below we give an incomplete list of what
could be some of the main algorithmic challanges for future research in the area:

– Continued search for appropriate BDD-like datastructures allowing for ef-
ficient representation and analysis of real-timed systems. CDDs and DDDs
may be seen as promissing first attempts.

– Partial order reduction for timed systems, and more generally, methods for
exploiting structure (e.g. hierarchicies) and (in)dependencies.

– Exploitation of symmetries to reduction explored and stored state-space.
– Extension of distributed and parallel reachability algorithm towards full

TCTL model checking.
– Development of techniques allowing efficient use of disk (secondary memory)

for storing explored state-spaces.
– Extension of acceleration technique to allow for more general cycles (e.g.

involving more than one clock).
– Application of abstract interpretation in particular for dealing with models

where the discrete part plays a major role (which is increasingly the case).

References

ABB+01. Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio,
Alexandre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet,
Kim G. Larsen, M. Oliver Möller, Paul Pettersson, Carsten Weise, and
Wang Yi. Uppaal - Now, Next, and Future. In F. Cassez, C. Jard,
B. Rozoy, and M. Ryan, editors, Modelling and Verification of Parallel
Processes, number 2067 in Lecture Notes in Computer Science, pages
100–125. Springer–Verlag, 2001.

ABL98. Luca Aceto, Augusto Burgueno, and Kim G. Larsen. Model checking
via reachability testing for timed automata. In Bernhard Steffen, editor,
Proc. 4th Int. Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’98), volume 1384 of Lecture Notes in
Computer Science, pages 263–280. Springer, 1998.

BDM+98. Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tri-
pakis, and Sergio Yovine. Kronos: A model-Checking Tool for Real-Time
Systems. In Proc. of the 10th Int. Conf. on Computer Aided Verifica-
tion, number 1427 in Lecture Notes in Computer Science, pages 546–550.
Springer–Verlag, 1998.

Beh. Gerd Behrmann. A performance study of distributed timed automata
reachability analysis. Submitted.

Bel57. Richard Bellman. Dynamic Programming. Princeton University Press,
1957.

Ben02. Johan Bengtsson. Clocks, DBMs and STates in Timed Systems. PhD
thesis, Faculty of Science and Technology, Uppsala University, 2002.

BFH+01. Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim Larsen, Paul
Petterson, and Judi Romijn. Efficient guiding towards cost-optimality in
uppaal. In Proc. of TACAS’2001, Lecture Notes in Computer Science.
Springer–Verlag, 2001.

20 Gerd Behrmann et al.

BGK+96. Johan Bengtsson, W.O. David Griffioen, K̊are J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Verification of
an Audio Protocol with Bus Collision Using Uppaal. In Rajeev Alur and
Thomas A. Henzinger, editors, Proc. of the 8th Int. Conf. on Computer
Aided Verification, number 1102 in Lecture Notes in Computer Science,
pages 244–256. Springer–Verlag, July 1996.

BHV00. Gerd Behrmann, Thomas Hune, and Frits Vaandrager. Distributed timed
model checking - How the search order matters. In Proc. of 12th Inter-
national Conference on Computer Aided Verification, Lecture Notes in
Computer Science, Chicago, Juli 2000. Springer-Verlag.

BLL+96. Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. Uppaal in 1995. In Proc. of the 2nd Workshop on Tools and
Algorithms for the Construction and Analysis of Systems, number 1055
in Lecture Notes in Computer Science, pages 431–434. Springer–Verlag,
March 1996.

BLP+99. Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and
Wang Yi. Efficient Timed Reachability Analysis Using Clock Difference
Diagrams. In Proc. of the 11th Int. Conf. on Computer Aided Verification,
number 1633 in Lecture Notes in Computer Science. Springer–Verlag,
1999.

Bry86. Randal E. Bryant. Graph-Based Algorithms for Boolean Function Ma-
nipulation. IEEE Trans. on Computers, 1986.

CM88. K.M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison Wesley, 1988.

DBLY. Alexandre David, Gerd Behrmann, Kim G. Larsen, and Wang Yi. The
next generation of uppaal. Submitted.

Die99. H. Dierks. Specification and Verification of Polling Real-Time Systems.
PhD thesis, Carl von Ossietzky Universität Oldenburg, July 1999.

Dil89. David Dill. Timing Assumptions and Verification of Finite-State Con-
current Systems. In J. Sifakis, editor, Proc. of Automatic Verification
Methods for Finite State Systems, number 407 in Lecture Notes in Com-
puter Science, pages 197–212. Springer–Verlag, 1989.

DT98. Conrado Daws and Stavros Tripakis. Model checking of real-time reach-
ability properties using abstractions. In Bernard Steffen, editor, Proc.
of the 4th Workshop on Tools and Algorithms for the Construction and
Analysis of Systems, number 1384 in Lecture Notes in Computer Science,
pages 313–329. Springer–Verlag, 1998.

DY95. C. Daws and S. Yovine. Two examples of verification of multirate timed
automata with Kronos. In Proc. of the 16th IEEE Real-Time Systems
Symposium, pages 66–75. IEEE Computer Society Press, December 1995.

Hen02. Martijn Hendriks. Devlopment of reactive programs using uppaal. Mas-
ter’s thesis, KUN, Nijmegen University, 2002.

HL02. Martin Hndriks and Kim G. Larsen. Exact acceleration of real-time model
checking. In Theory and Practice of Timed Systems, volume 65 of Elec-
tronic Notes in Theoretical Computer Science. Elsevier Science Publish-
ers, 2002.

HLS99. Klaus Havelund, Kim G. Larsen, and Arne Skou. Formal verification of a
power controller using the real-time model checker uppaal. In Proceed-
ings of AMST 1999, volume 1601 of Lecture Notes in Computer Science,
pages 277–298, 1999.

Uppaal Implementation Secrets 21

Hoa78. C.A.R. Hoare. Communicating Sequential Processes. Communications
of the ACM, 21(8):666–677, 1978.

Hol87. Gerard J. Holzmann. On limits and possibilities of automated protocol
analysis. In Proc. 7th IFIP WG 6.1 Int. Workshop on Protocol Specifi-
cation, Testing, and Verification, pages 137–161, 1987.

Hun00. Thomas S. Hune. Modeling a language for embedded systems in timed
automata. Technical Report RS-00-17, BRICS, Basic Research in com-
puter Science, August 2000. 26 pp. Earlier version entitled Modelling a
Real-Time Language appeared in FMICS99, pages 259–282.

IKL+00. Torsten K. Iversen, K̊are J. Kristoffersen, Kim G. Larsen, Morten
Laursen, Rune G. Madsen, Steffen K. Mortensen, Paul Pettersson, and
Chris B. Thomasen. Model-Checking Real-Time Control Programs —
Verifying LEGO Mindstorms Systems Using uppaal. In Proc. of 12th
Euromicro Conference on Real-Time Systems, pages 147–155. IEEE Com-
puter Society Press, June 2000.

JLS00. Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou. Scaling up Uppaal
- automatic verification of real-time systems using compositionality and
abstraction. In Proceedings of FTRTFT 2000, volume 1926 of Lecture
Notes in Computer Science, pages 19–30, 2000.

Jon83. C. Jones. Tentative steps toward a development method for interfering
programs. ACM Transactions on Programming Languages and Systems,
5(4):596–620, 1983.

Lam87. Leslie Lamport. A Fast Mutual Exclusion Algorithm. ACM Trans. on
Computer Systems, 5(1):1–11, February 1987. Also appeared as SRC
Research Report 7.

LLPY97. Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Effi-
cient Verification of Real-Time Systems: Compact Data Structures and
State-Space Reduction. In Proc. of the 18th IEEE Real-Time Systems
Symposium, pages 14–24. IEEE Computer Society Press, December 1997.

LLPY02. Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Compact
data structure and state-space reduction for model-checking real-time
systems. Real-Time Systems - the International Journal of Time-Critical
Computing Systems, 2002. To appear – accepted for publication.

LP97. Henrik Lönn and Paul Pettersson. Formal Verification of a TDMA Pro-
tocol Startup Mechanism. In Proc. of the Pacific Rim Int. Symp. on
Fault-Tolerant Systems, pages 235–242, December 1997.

LPY95. Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Sym-
bolic Model-Checking of Real-Time Systems. In Proc. of the 16th IEEE
Real-Time Systems Symposium, pages 76–87. IEEE Computer Society
Press, December 1995.

LPY97. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
October 1997.

LWYP99. Kim G. Larsen, Carsten Weise, Wang Yi, and Justin Pearson. Clock
Difference Diagrams. Nordic Journal of Computing, 6(3):271–298, 1999.

Mil89. R. Milner. Communication and Concurrency. Prentice Hall, Englewood
Cliffs, 1989.

MLAH99a. J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference
decision diagrams. In Proceedings 13th International Conference on Com-
puter Science Logic, volume 1683 of Lecture Notes in Computer Science,
pages 111–125, Madrid, Spain, September 1999.

22 Gerd Behrmann et al.

MLAH99b. J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Fully sym-
bolic model checking of timed systems using difference decision diagrams.
In Proceedings First International Workshop on Symbolic Model Check-
ing, volume 23-2 of Electronic Notes in Theoretical Computer Science,
Trento, Italy, July 1999.

OG76. S. Owicki and D. Gries. An Axiomatic Proof Technique for Parallel
Programs I. Acta Informatica, 6(4):319–340, 1976.

Pet99. Paul Pettersson. Modelling and Analysis of Real-Time Systems Using
Timed Automata: Theory and Practice. PhD thesis, Department of Com-
puter Systems, Uppsala University, February 1999.

PS80. Wolfgang J. Paul and Janos Simon. Decision Trees and Random
Access Machines. In Logic and Algorithmic, volume 30 of Monogra-
phie de L’Enseignement Mathématique, pages 331–340. L’Enseignement
Mathématique, Université de Genève, 1980.

Rok93. Tomas Gerhard Rokicki. Representing and Modeling Digital Circuits.
PhD thesis, Stanford University, 1993.

SS01. D.P.L. Simons and M.I.A. Stoelinga. Mechanical verification of the IEEE
1394a root contention protocol using Uppaal2k. Springer International
Journal of Software Tools for Technology Transfer, 2001.

ST98. Karsten Strehl and Lothar Thiele. Symbolic Model Checking of Pro-
cess Networks Using Interval Diagram Techniques. In Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD-98), pages 686–692, 1998.

WT95. Howard Wong-Toi. Symbolic Approximations for Verifying Real-Time
Systems. PhD thesis, Standford University, 1995.

	1 Introduction
	2 Preliminaries
	3 Symbolic Datastructures
	4 Compact Representation of States
	5 Passed and Waiting List Unification
	6 Parallel and Distributed Reachability Checking
	7 Accelerating Cycles
	8 Abstraction and Compositionality
	9 Conclusion
	References

