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Abstract. This is a tutorial paper on the tool Uppaal. Its goal is to
be a short introduction on the flavor of timed automata implemented in
the tool, to present its interface, and to explain how to use the tool. The
contribution of the paper is to provide reference examples and modeling
patterns.

1 Introduction

Uppaal is a toolbox for verification of real-time systems jointly developed by
Uppsala University and Aalborg University. It has been applied successfully in
case studies ranging from communication protocols to multimedia applications
[30, 48, 22, 21, 29, 37, 47, 38, 27]. The tool is designed to verify systems that can
be modelled as networks of timed automata extended with integer variables,
structured data types, and channel synchronisation.

The first version of Uppaal was released in 1995 [45]. Since then it has been
in constant development [19, 5, 11, 10, 24, 25]. Experiments and improvements in-
clude data structures [46], partial order reduction [18], symmetry reduction [31],
a distributed version of Uppaal [15, 9], guided and minimal cost reachability
[13, 44, 14], work on UML Statecharts [26], acceleration techniques [32], and new
data structures and memory reductions [16, 12]. Uppaal has also generated re-
lated Ph.D. theses [43, 50, 39, 49, 17, 23, 28, 8]. The tool is now mature with its
current version 3.4.6. It features a Java user interface and a verification engine
written in C++ . It is freely available at http://www.uppaal.com/.

This tutorial covers networks of timed automata and the flavor of timed
automata used in Uppaal in section 2. The tool itself is described in section 3,
and two extensive examples are covered in sections 4 and 5. Finally section 6
introduces 7 common modelling patterns often used with Uppaal.

2 Timed Automata in Uppaal

The model-checker Uppaal is based on the theory of timed automata [4, 36]
and its modelling language offers additional features such as bounded integer
variables and urgency. The query language of Uppaal, used to specify properties
to be checked, is a subset of CTL (computation tree logic) [33, 3]. In this section
we present the modelling and the query languages of Uppaal and we give an
intuitive explanation of time in timed automata.



2.1 The Modelling Language

Networks of Timed Automata A timed automaton is a finite-state machine
extended with clock variables. It uses a dense-time model where a clock variable
evaluates to a real number. All the clocks progress synchronously. In Uppaal,
a system is modelled as a network of several such timed automata in parallel.
The model is further extended with bounded discrete variables that are part of
the state. These variables are used as in programming languages: they are read,
written, and are subject to common arithmetic operations. A state of the system
is defined by the locations of all automata, the clock constraints, and the values
of the discrete variables. Every automaton may fire an edge (sometimes mis-
leadingly called a transition) separately or synchronise with another automaton,
which leads to a new state.

Figure 1(a) shows a timed automaton modelling a simple lamp. The lamp
has three locations: off, low, and bright. If the user presses a button, i.e.,
synchronises with press?, then the lamp is turned on. If the user presses the
button again, the lamp is turned off. However, if the user is fast and rapidly
presses the button twice, the lamp is turned on and becomes bright. The user
model is shown in Fig. 1(b). The user can press the button randomly at any time
or even not press the button at all. The clock y of the lamp is used to detect if
the user was fast (y < 5) or slow (y >= 5).
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Fig. 1. The simple lamp example.

We give the basic definitions of the syntax and semantics for timed automata.
We use the following notations: C is a set of clocks and B(C) is the set of
conjunctions over simple conditions of the form x ./ c or x − y ./ c, where
x, y ∈ C, c ∈ N and ./∈ {<,≤,=,≥, >}. A timed automaton is a finite directed
graph annotated with conditions over and resets of non-negative real valued
clocks.

Definition 1 (Timed Automaton (TA)). A timed automaton is a tuple

(L, l0, C,A,E, I), where L is a set of locations, l0 ∈ L is the initial location,

C is the set of clocks, A is a set of actions, co-actions and the internal τ -action,

E ⊆ L × A × B(C) × 2C × L is a set of edges between locations with an action,



a guard and a set of clocks to be reset, and I : L → B(C) assigns invariants to

locations. ¤

We now define the semantics of a timed automaton. A clock valuation is a
function u : C → R≥0 from the set of clocks to the non-negative reals. Let R

C

be the set of all clock valuations. Let u0(x) = 0 for all x ∈ C. We will abuse the
notation by considering guards and invariants as sets of clock valuations, writing
u ∈ I(l) to mean that u satisfies I(l).

Definition 2 (Semantics of TA). Let (L, l0, C,A,E, I) be a timed automaton.

The semantics is defined as a labelled transition system 〈S, s0,→〉, where S ⊆ L×
R

C is the set of states, s0 = (l0, u0) is the initial state, and →⊆ S×{R≥0∪A}×S
is the transition relation such that:

– (l, u)
d
−→ (l, u + d) if ∀d′ : 0 ≤ d′ ≤ d =⇒ u + d′ ∈ I(l), and

– (l, u)
a
−→ (l′, u′) if there exists e = (l, a, g, r, l′) ∈ E s.t. u ∈ g,

u′ = [r 7→ 0]u, and u′ ∈ I(l),

where for d ∈ R≥0, u + d maps each clock x in C to the value u(x) + d, and

[r 7→ 0]u denotes the clock valuation which maps each clock in r to 0 and agrees

with u over C \ r. ¤

Timed automata are often composed into a network of timed automata over
a common set of clocks and actions, consisting of n timed automata Ai =
(Li, l

0
i , C,A,Ei, Ii), 1 ≤ i ≤ n. A location vector is a vector l̄ = (l1, . . . , ln).

We compose the invariant functions into a common function over location vec-
tors I(l̄) = ∧iIi(li). We write l̄[l′i/li] to denote the vector where the ith element
li of l̄ is replaced by l′i. In the following we define the semantics of a network of
timed automata.

Definition 3 (Semantics of a network of Timed Automata). Let Ai =
(Li, l

0
i , C,A,Ei, Ii) be a network of n timed automata. Let l̄0 = (l01, . . . , l

0
n) be the

initial location vector. The semantics is defined as a transition system 〈S, s0,→〉,
where S = (L1 × · · · × Ln) × R

C is the set of states, s0 = (l̄0, u0) is the initial

state, and →⊆ S × S is the transition relation defined by:

– (l̄, u) → (l̄, u + d) if ∀d′ : 0 ≤ d′ ≤ d =⇒ u + d′ ∈ I(l̄).

– (l̄, u) → (l̄[l′i/li], u
′) if there exists li

τgr
−−→ l′i s.t. u ∈ g,

u′ = [r 7→ 0]u and u′ ∈ I(l̄).

– (l̄, u) → (l̄[l′j/lj , l
′
i/li], u

′) if there exist li
c?giri
−−−−→ l′i and

lj
c!gjrj

−−−−→ l′j s.t. u ∈ (gi ∧ gj), u′ = [ri ∪ rj 7→ 0]u and u′ ∈ I(l̄). ¤

As an example of the semantics, the lamp in Fig. 1 may have the follow-
ing states (we skip the user): (Lamp.off, y = 0) → (Lamp.off, y = 3) →
(Lamp.low, y = 0) → (Lamp.low, y = 0.5) → (Lamp.bright, y = 0.5) →
(Lamp.bright, y = 1000) . . .



Timed Automata in Uppaal The Uppaal modelling language extends timed
automata with the following additional features:

Templates automata are defined with a set of parameters that can be of any
type (e.g., int, chan). These parameters are substituted for a given argument
in the process declaration.

Constants are declared as const name value. Constants by definition cannot
be modified and must have an integer value.

Bounded integer variables are declared as int[min,max] name, where min

and max are the lower and upper bound, respectively. Guards, invariants, and
assignments may contain expressions ranging over bounded integer variables.
The bounds are checked upon verification and violating a bound leads to an
invalid state that is discarded (at run-time). If the bounds are omitted, the
default range of -32768 to 32768 is used.

Binary synchronisation channels are declared as chan c. An edge labelled
with c! synchronises with another labelled c?. A synchronisation pair is
chosen non-deterministically if several combinations are enabled.

Broadcast channels are declared as broadcast chan c. In a broadcast syn-
chronisation one sender c! can synchronise with an arbitrary number of
receivers c?. Any receiver than can synchronise in the current state must do
so. If there are no receivers, then the sender can still execute the c! action,
i.e. broadcast sending is never blocking.

Urgent synchronisation channels are decalred by prefixing the channel decla-
ration with the keyword urgent. Delays must not occur if a synchronisation
transition on an urgent channel is enabled. Edges using urgent channels for
synchronisation cannot have time constraints, i.e., no clock guards.

Urgent locations are semantically equivalent to adding an extra clock x, that
is reset on all incomming edges, and having an invariant x<=0 on the location.
Hence, time is not allowed to pass when the system is in an urgent location.

Committed locations are even more restrictive on the execution than urgent
locations. A state is committed if any of the locations in the state is commit-
ted. A committed state cannot delay and the next transition must involve
an outgoing edge of at least one of the committed locations.

Arrays are allowed for clocks, channels, constants and integer variables. They
are defined by appending a size to the variable name, e.g. chan c[4]; clock

a[2]; int[3,5] u[7];.
Initialisers are used to initialise integer variables and arrays of integer vari-

ables. For instance, int i := 2; or int i[3] := {1, 2, 3};.

Expressions in Uppaal Expressions in Uppaal range over clocks and integer
variables. The BNF is given in Fig. 2. Expressions are used with the following
labels:

Guard A guard is a particular expression satisfying the following conditions:
it is side-effect free; it evaluates to a boolean; only clocks, integer variables,
and constants are referenced (or arrays of these types); clocks and clock



differences are only compared to integer expressions; guards over clocks are
essentially conjunctions (disjunctions are allowed over integer conditions).

Synchronisation A synchronisation label is either on the form Expression!
or Expression? or is an empty label. The expression must be side-effect free,
evaluate to a channel, and only refer to integers, constants and channels.

Assignment An assignment label is a comma separated list of expressions with
a side-effect; expressions must only refer to clocks, integer variables, and
constants and only assign integer values to clocks.

Invariant An invariant is an expression that satisfies the following conditions: it
is side-effect free; only clock, integer variables, and constants are referenced;
it is a conjunction of conditions of the form x<e or x<=e where x is a clock
reference and e evaluates to an integer.

Expression → ID | NAT
| Expression ’[’ Expression ’]’

| ’(’ Expression ’)’

| Expression ’++’ | ’++’ Expression
| Expression ’--’ | ’--’ Expression
| Expression AssignOp Expression
| UnaryOp Expression
| Expression BinaryOp Expression
| Expression ’?’ Expression ’:’ Expression
| Expression ’.’ ID

UnaryOp → ’-’ | ’!’ | ’not’
BinaryOp → ’<’ | ’<=’ | ’==’ | ’!=’ | ’>=’ | ’>’

| ’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’&’
| ’|’ | ’^’ | ’<<’ | ’>>’ | ’&&’ | ’||’
| ’<?’ | ’>?’ | ’and’ | ’or’ | ’imply’

AssignOp → ’:=’ | ’+=’ | ’-=’ | ’*=’ | ’/=’ | ’%=’
| ’|=’ | ’&=’ | ’^=’ | ’<<=’ | ’>>=’

Fig. 2. Syntax of expressions in BNF.

2.2 The Query Language

The main purpose of a model checker is verify the model w.r.t. a requirement
specification. Like the model, the requirement specification must be expressed
in a formally well-defined and machine readable language. Several such logics
exist in the scientific literature, and Uppaal uses a simplified version of CTL.
Like in CTL, the query language consists of path formulae and state formulae.1

State formulae describe individual states, whereas path formulae quantify over
paths or traces of the model. Path formulae can be classified into reachability,
safety and liveness. Figure 3 illustrates the different path formulae supported by
Uppaal. Each type is described below.

1 In contrast to CTL, Uppaal does not allow nesting of path formulae.
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Fig. 3. Path formulae supported in Uppaal. The filled states are those for which a
given state formulae φ holds. Bold edges are used to show the paths the formulae
evaluate on.

State Formulae A state formula is an expression (see Fig. 2) that can be
evaluated for a state without looking at the behaviour of the model. For instance,
this could be a simple expression, like i == 7, that is true in a state whenever
i equals 7. The syntax of state formulae is a superset of that of guards, i.e., a
state formula is a side-effect free expression, but in contrast to guards, the use
of disjunctions is not restricted. It is also possible to test whether a particular
process is in a given location using an expression on the form P.l, where P is a
process and l is a location.

In Uppaal, deadlock is expressed using a special state formula (although
this is not strictly a state formula). The formula simply consists of the keyword
deadlock and is satisfied for all deadlock states. A state is a deadlock state if
there are no outgoing action transitions neither from the state itself or any of
its delay successors. Due to current limitations in Uppaal, the deadlock state
formula can only be used with reachability and invariantly path formulae (see
below).

Reachability Properties Reachability properties are the simplest form of
properties. They ask whether a given state formula, ϕ, possibly can be satisfied
by any reachable state. Another way of stating this is: Does there exist a path
starting at the initial state, such that ϕ is eventually satisfied along that path.

Reachability properties are often used while designing a model to perform
sanity checks. For instance, when creating a model of a communication protocol
involving a sender and a receiver, it makes sense to ask whether it is possible
for the sender to send a message at all or whether a message can possibly be
received. These properties do not by themselves guarantee the correctness of the



protocol (i.e. that any message is eventually delivered), but they validate the
basic behaviour of the model.

We express that some state satisfying ϕ should be reachable using the path
formula E3 ϕ. In Uppaal, we write this property using the syntax E<> ϕ.

Safety Properties Safety properties are on the form: “something bad will never
happen”. For instance, in a model of a nuclear power plant, a safety property
might be, that the operating temperature is always (invariantly) under a certain
threshold, or that a meltdown never occurs. A variation of this property is that
“something will possibly never happen”. For instance when playing a game, a
safe state is one in which we can still win the game, hence we will possibly not
loose.

In Uppaal these properties are formulated positively, e.g., something good
is invariantly true. Let ϕ be a state formulae. We express that ϕ should be true
in all reachable states with the path formulae A¤ ϕ,2 whereas E¤ ϕ says that
there should exist a maximal path such that ϕ is always true.3 In Uppaal we
write A[] ϕ and E[] ϕ, respectively.

Liveness Properties Liveness properties are of the form: something will even-
tually happen, e.g. when pressing the on button of the remote control of the
television, then eventually the television should turn on. Or in a model of a
communication protocol, any message that has been sent should eventually be
received.

In its simple form, liveness is expressed with the path formula A3 ϕ, mean-
ing ϕ is eventually satisfied.4 The more useful form is the leads to or response

property, written ϕ Ã ψ which is read as whenever ϕ is satisfied, then eventu-
ally ψ will be satisfied, e.g. whenever a message is sent, then eventually it will
be received.5 In Uppaal these properties are written as A<> ϕ and ϕ --> ψ,
respectively.

2.3 Understanding Time

Invariants and Guards Uppaal uses a continuous time model. We illustrate
the concept of time with a simple example that makes use of an observer. Nor-
mally an observer is an add-on automaton in charge of detecting events without
changing the observed system. In our case the clock reset (x:=0) is delegated to
the observer for illustration purposes.

Figure 4 shows the first model with its observer. We have two automata
in parallel. The first automaton has a self-loop guarded by x>=2, x being a

2 Notice that A¤ ϕ = ¬E3 ¬ϕ
3 A maximal path is a path that is either infinite or where the last state has no

outgoing transitions.
4 Notice that A3 ϕ = ¬E¤ ¬ϕ.
5 Experts in CTL will recognise that ϕ Ã ψ is equivalent to A¤ (ϕ =⇒ A3 ψ)
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(a) Test. (b) Observer. (c) Behaviour: one possible run.

Fig. 4. First example with an observer.

clock, that synchronises on the channel reset with the second automaton. The
second automaton, the observer, detects when the self loop edge is taken with
the location taken and then has an edge going back to idle that resets the
clock x. We moved the reset of x from the self loop to the observer only to test
what happens on the transition before the reset. Notice that the location taken

is committed (marked c) to avoid delay in that location.
The following properties can be verified in Uppaal (see section 3 for an

overview of the interface). Assuming we name the observer automaton Obs, we
have:

– A[] Obs.taken imply x>=2 : all resets off x will happen when x is above
2. This query means that for all reachable states, being in the location
Obs.taken implies that x>=2.

– E<> Obs.idle and x>3 : this property requires, that it is possible to reacha
state where Obs is in the location idle and x is bigger than 3. Essentially we
check that we delay at least 3 time units between resets. The result would
have been the same for larger values like 30000, since there are no invariants
in this model.

We update the first model and add an invariant to the location loop, as shown
in Fig. 5. The invariant is a progress condition: the system is not allowed to stay
in the state more than 3 time units, so that the transition has to be taken and
the clock reset in our example. Now the clock x has 3 as an upper bound. The
following properties hold:

– A[] Obs.taken imply (x>=2 and x<=3) shows that the transition is taken
when x is between 2 and 3, i.e., after a delay between 2 and 3.

– E<> Obs.idle and x>2 : it is possible to take the transition when x is be-
tween 2 and 3. The upper bound 3 is checked with the next property.

– A[] Obs.idle imply x<=3 : to show that the upper bound is respected.

The former property E<> Obs.idle and x>3 no longer holds.
Now, if we remove the invariant and change the guard to x>=2 and x<=3,

you may think that it is the same as before, but it is not! The system has no
progress condition, just a new condition on the guard. Figure 6 shows what
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(a) Test. (b) Updated behaviour with an invariant.

Fig. 5. Updated example with an invariant. The observer is the same as in Fig. 4 and
is not shown here.

happens: the system may take the same transitions as before, but deadlock may
also occur. The system may be stuck if it does not take the transition after 3 time
units. In fact, the system fails the property A[] not deadlock. The property
A[] Obs.idle imply x<=3 does not hold any longer and the deadlock can also
be illustrated by the property A[] x>3 imply not Obs.taken, i.e., after 3 time
units, the transition is not taken any more.

loop
x>=2 && x<=3
reset!
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(a) Test. (b) Updated behaviour with a guard and no invariant.

Fig. 6. Updated example with a guard and no invariant.

Committed and Urgent Locations There are three different types of loca-
tions in Uppaal: normal locations with or without invariants (e.g., x<=3 in the
previous example), urgent locations, and committed locations. Figure 7 shows 3
automata to illustrate the difference. The location marked u is urgent and the
one marked c is committed. The clocks are local to the automata, i.e., x in P0

is different from x in P1.
To understand the difference between normal locations and urgent locations,

we can observe that the following properties hold:

– E<> P0.S1 and P0.x>0 : it is possible to wait in S1 of P0.
– A[] P1.S1 imply P1.x==0 : it is not possible to wait in S1 of P1.
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Fig. 7. Automata in parallel with normal, urgent and commit states. The clocks are
local, i.e., P0.x and P1.x are two different clocks.

An urgent location is equivalent to a location with incoming edges reseting a
designated clock y and labelled with the invariant y<=0. Time may not progress
in an urgent state, but interleavings with normal states are allowed.

A committed location is more restrictive: in all the states where P2.S1 is
active (in our example), the only possible transition is the one that fires the
edge outgoing from P2.S1. A state having a committed location active is said to
be committed: delay is not allowed and the committed location must be left in
the successor state (or one of the committed locations if there are several ones).

3 Overview of the Uppaal Toolkit

Uppaal uses a client-server architecture, splitting the tool into a graphical user
interface and a model checking engine. The user interface, or client, is imple-
mented in Java and the engine, or server, is compiled for different platforms
(Linux, Windows, Solaris).6 As the names suggest, these two components may
be run on different machines as they communicate with each other via TCP/IP.
There is also a stand-alone version of the engine that can be used on the com-
mand line.

3.1 The Java Client

The idea behind the tool is to model a system with timed automata using a
graphical editor, simulate it to validate that it behaves as intended, and finally
to verify that it is correct with respect to a set of properties. The graphical
interface (GUI) of the Java client reflects this idea and is divided into three main
parts: the editor, the simulator, and the verifier, accessible via three “tabs”.

6 A version for Mac OS X is in preparation.



Fig. 8. The train automaton of the train gate example. The select button is activated
in the tool-bar. In this mode the user can move locations and edges or edit labels.
The other modes are for adding locations, edges, and vertexes on edges (called nails).
A new location has no name by default. Two text fields allow the user to define the
template name and its parameters. Useful trick: The middle mouse button is a shortcut
for adding new elements, i.e. pressing it on the the canvas, a location, or edge adds a
new location, edge, or nail, respectively.

The Editor A system is defined as a network of timed automata, called pro-
cesses in the tool, put in parallel. A process is instantiated from a parameterized
template. The editor is divided into two parts: a tree pane to access the different
templates and declarations and a drawing canvas/text editor. Figure 8 shows
the editor with the train gate example of section 4. Locations are labeled with
names and invariants and edges are labeled with guard conditions (e.g., e==id),
synchronizations (e.g., go?), and assignments (e.g., x:=0).

The tree on the left hand side gives access to different parts of the system
description:

Global declaration Contains global integer variables, clocks, synchronization
channels, and constants.

Templates Train, Gate, and IntQueue are different parameterized timed au-
tomata. A template may have local declarations of variables, channels, and
constants.



Fig. 9. The different local and global declarations of the train gate example. We su-
perpose several screen-shots of the tool to show the declarations in a compact manner.

Process assignments Templates are instantiated into processes. The process
assignment section contains declarations for these instances.

System definition The list of processes in the system.

The syntax used in the labels and the declarations is described in the help
system of the tool. The local and global declarations are shown in Fig. 9. The
graphical syntax is directly inspired from the description of timed automata in
section 2.

The Simulator The simulator can be used in three ways: the user can run the
system manually and choose which transitions to take, the random mode can
be toggled to let the system run on its own, or the user can go through a trace
(saved or imported from the verifier) to see how certain states are reachable.
Figure 10 shows the simulator. It is divided into four parts:

The control part is used to choose and fire enabled transitions, go through a
trace, and toggle the random simulation.

The variable view shows the values of the integer variables and the clock con-
straints. Uppaal does not show concrete states with actual values for the
clocks. Since there are infinitely many of such states, Uppaal instead shows
sets of concrete states known as symbolic states. All concrete states in a sym-
bolic state share the same location vector and the same values for discrete
variables. The possible values of the clocks is described by a set of con-
straints. The clock validation in the symbolic state are exactly those that
satisfy all constraints.



Fig. 10. View of the simulator tab for the train gate example. The interpretation
of the constraint system in the variable panel depends on whether a transition in the
transition panel is selected or not. If no transition is selected, then the constrain system
shows all possible clock valuations that can be reached along the path. If a transition
is selected, then only those clock valuations from which the transition can be taken
are shown. Keyboard bindings for navigating the simulator without the mouse can be
found in the integrated help system.

The system view shows all instantiated automata and active locations of the
current state.

The message sequence chart shows the synchronizations between the differ-
ent processes as well as the active locations at every step.

The Verifier The verifier “tab” is shown in Fig. 11. Properties are selectable in
the Overview list. The user may model-check one or several properties,7 insert
or remove properties, and toggle the view to see the properties or the comments
in the list. When a property is selected, it is possible to edit its definition (e.g.,
E<> Train1.Cross and Train2.Stop . . . ) or comments to document what the
property means informally. The Status panel at the bottom shows the commu-
nication with the server.

When trace generation is enabled and the model-checker finds a trace, the
user is asked if she wants to import it into the simulator. Satisfied properties are
marked green and violated ones red. In case either an over approximation or an
under approximation has been selected in the options menu, then it may happen

7 several properties only if no trace is to be generated.



Fig. 11. View of the verification tab for the train gate example.

that the verification is inconclusive with the approximation used. In that case
the properties are marked yellow.

3.2 The Stand-alone Verifier

When running large verification tasks, it is often cumbersome to execute these
from inside the GUI. For such situations, the stand-alone command line verifier
called verifyta is more appropriate. It also makes it easy to run the verification
on a remote UNIX machine with memory to spare. It accepts command line
arguments for all options available in the GUI, see Table 1.

4 Example 1: The Train Gate

4.1 Description

The train gate example is distributed with Uppaal. It is a railway control system
which controls access to a bridge for several trains. The bridge is a critical shared
resource that may be accessed only by one train at a time. The system is defined
as a number of trains (assume 4 for this example) and a controller. A train
can not be stopped instantly and restarting also takes time. Therefor, there are
timing constraints on the trains before entering the bridge. When approaching,
a train sends a appr! signal. Thereafter, it has 10 time units to receive a stop
signal. This allows it to stop safely before the bridge. After these 10 time units,



Table 1. Options of verifyta and the corresponding options in the GUI. Defaults of
verifyta are shown in boldface.

State Space Representation

-C DBM

Use DBMs rather than a minimal constrain graph [46] in the state represen-
tation used to store reachable states. This increases the memory usage (more
so in models with many clocks), but is often faster.

-A Over approximation

Use convex hull over-approximation [7]. For timed systems, this can drastically
increase verification speed. For untimed systems, this has no effect.

-Z Under approximation

Use bit-state hashing under-approximation. This reduces memory consump-
tion to a more of less fixed amount. The precision of the approximation is
controlled by changing the hash table size. Known as super-trace in [34, 35].

-T Reuse

Speed up verification by reusing the generated state-space when possible. For
some combinations of properties this option can possibly lead to a larger state-
space representation, thus nullifying the speedup.

-U When representing states with minimal constraint graphs, this option changes
how states are compared. It reduces the memory consumption at the expense
of a more time consuming comparison operator. The reduced memory usage
might cancel out the overhead. In the GUI, this is always on.

-H Change the size of hash tables used during verification. Can give a speedup
for large systems.

State Space Reduction

-S0 None

Store all reachable states. Uses most memory, but avoids that any state is
explored more than once.

-S1 Conservative

Store all non-committed states. Less memory when committed locations are
used, and for most models states are only explored once.

-S2 Aggressive

Try hard to reduce the number of states stored. Uses much less memory, but
might take much more time. Do not combine this option with depth first
search, as the running time increases drastically.

Search Order
-b Breadth First

Search the state space using a breadth first strategy.
-d Depth First

Search the state space using a depth first strategy.

Trace Options

-t0 Some Trace

Generate some diagnostic trace.
-t1 Shortest Trace

Generate the shortest (in number of steps) trace.
-t2 Fastest Trace

Generate the fastest (smallest time delay) trace.
-f Write traces to XTR trace files (which can be read by the GUI).
-y By default concrete traces (showing both delay and control transitions) are

produced. This option produces symbolic traces like those shown in the GUI.
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Fig. 12. Train gate example: train4 is about to cross the bridge, train3 is stopped,
train2 was ordered to stop and is stopping. Train1 is approaching and sends an appr!
signal to the controller that sends back a stop! signal. The different sections have timing
constraints (10, 10, between 3 and 5).

it takes further 10 time units to reach the bridge if the train is not stopped. If a
train is stopped, it resumes its course when the controller sends a go! signal to
it after a previous train has left the bridge and sent a leave! signal. Figures 12
and 13 show two situations.

4.2 Modelling in Uppaal

The model of the train gate has three templates:

Train is the model of a train, shown in Fig. 8.
Gate is the model of the gate controller, shown in Fig. 14.
IntQueue is the model of the queue of the controller, shown in Fig. 15. It is

simpler to separate the queue from the controller, which makes it easier to
get the model right.

The Template of the Train The template in Fig. 8 has five locations: Safe,
Appr, Stop, Start, and Cross. The initial location is Safe, which corresponds
to a train not approaching yet. The location has no invariant, which means
that a train may stay in this location an unlimited amount of time. When a
train is approaching, it synchronises with the controller. This is done by the
channel synchronisation appr! on the transition to Appr. The controller has a
corresponding appr?. The clock x is reset and the parameterised variable e is set
to the identity of this train. This variable is used by the queue and the controller
to know which train is allowed to continue or which trains must be stopped and
later restarted.

The location Appr has the invariant x ≤ 20, which has the effect that the
location must be left within 20 time units. The two outgoing transitions are
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Fig. 13. Now train4 has crossed the bridge and sends a leave! signal. The controller
can now let train3 cross the bridge with a go! signal. Train2 is now waiting and train1
is stopping.

guarded by the constraints x ≤ 10 and x ≥ 10, which corresponds to the two
sections before the bridge: can be stopped and can not be stopped. At exactly
10, both transitions are enabled, which allows us to take into account any race
conditions if there is one. If the train can be stopped (x ≤ 10) then the transition
to the location Stop is taken, otherwise the train goes to location Cross. The
transition to Stop is also guarded by the condition e == id and is synchronised
with stop?. When the controller decides to stop a train, it decides which one
(sets e) and synchronises with stop!.

The location Stop has no invariant: a train may be stopped for an unlimited
amount of time. It waits for the synchronisation go?. The guard e == id ensures
that the right train is restarted. The model is simplified here compared to the
version described in [51], namely the slowdown phase is not modelled explicitly.
We can assume that a train may receive a go? synchronisation even when it is
not stopped completely, which will give a non-deterministic restarting time.

The location Start has the invariant x ≤ 15 and its outgoing transition
has the constraint x ≥ 7. This means that a train is restarted and reaches the
crossing section between 7 and 15 time units non-deterministically.

The location Cross is similar to Start in the sense that it is left between 3
and 5 time units after entering it.

The Template of the Gate The gate controller in Fig. 14 synchronises with
the queue and the trains. Some of its locations do not have names. Typically,
they are committed locations (marked with a c).

The controller starts in the Free location (i.e., the bridge is free), where
it tests the queue to see if it is empty or not. If the queue is empty then the
controller waits for approaching trains (next location) with the appr? synchro-
nisation. When a train is approaching, it is added to the queue with the add!

synchronisation. If the queue is not empty, then the first train on the queue (read
by hd!) is restarted with the go! synchronisation.
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Fig. 14. Gate automaton of the train gate.

In the Occ location, the controller essentially waits for the running train
to leave the bridge (leave?). If other trains are approaching (appr?), they are
stopped (stop!) and added to the queue (add!). When a train leaves the bridge,
the controller removes it from the queue with the rem? synchronisation.

The Template of the Queue The queue in Fig. 15 has essentially one location
Start where it is waiting for commands from the controller. The Shiftdown

location is used to compute a shift of the queue (necessary when the front element
is removed). This template uses an array of integers and handles it as a FIFO
queue.

4.3 Verification

We check simple reachability, safety, and liveness properties, and for absence of
deadlock. The simple reachability properties check if a given location is reach-
able:

– E<> Gate.Occ: the gate can receive and store messages from approaching
trains in the queue.

– E<> Train1.Cross: train 1 can cross the bridge. We check similar properties
for the other trains.

– E<> Train1.Cross and Train2.Stop: train 1 can be crossing the bridge
while train 2 is waiting to cross. We check for similar properties for the
other trains.

– E<> Train1.Cross && Train2.Stop && Train3.Stop && Train4.Stop is
similar to the previous property, with all the other trains waiting to cross
the bridge. We have similar properties for the other trains.
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list[len]:=e,
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e:=list[0]
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Fig. 15. Queue automaton of the train gate. The template is parameterised with
int[0,n] e.

The following safety properties must hold for all reachable states:

– A[] Train1.Cross+Train2.Cross+Train3.Cross+Train4.Cross<=1. There is not
more than one train crossing the bridge at any time. This expression uses
the fact that Train1.Cross evaluates to true or false, i.e., 1 or 0.

– A[] Queue.list[N-1] == 0: there can never be N elements in the queue,
i.e., the array will never overflow. Actually, the model defines N as the num-
ber of trains + 1 to check for this property. It is possible to use a queue
length matching the number of trains and check for this property instead:
A[] (Gate.add1 or Gate.add2) imply Queue.len < N-1 where the loca-
tions add1 and add2 are the only locations in the model from which add! is
possible.

The liveness properties are of the form Train1.Appr --> Train1.Cross:
whenever train 1 approaches the bridge, it will eventually cross, and similarly
for the other trains. Finally, to check that the system is deadlock-free, we verify
the property A[] not deadlock.

Suppose that we made a mistake in the queue, namely we wrote e:=list[1]
in the template IntQueue instead of e:=list[0] when reading the head on the
transition synchronised with hd?. We could have been confused when thinking
in terms of indexes. It is interesting to note that the properties still hold, except
the liveness ones. The verification gives a counter-example showing what may
happen: a train may cross the bridge but the next trains will have to stop. When
the queue is shifted the train that starts again is never the first one, thus the
train at the head of the queue is stuck and can never cross the bridge.



5 Example 2: Fischer’s Protocol

5.1 Description

Fischer’s protocol is a well-known mutual exclusion protocol designed for n pro-
cesses. It is a timed protocol where the concurrent processes check for both a
delay and their turn to enter the critical section using a shared variable id.

5.2 Modelling in Uppaal

The automaton of the protocol is given in Fig. 16. Starting from the initial
location (marked with a double circle), processes go to a request location, req,
if id==0, which checks that it is the turn for no process to enter the critical
section. Processes stay non-deterministically between 0 and k time units in req,
and then go to the wait location and set id to their process ID (pid). There it
must wait at least k time units, x>k, k being a constant (2 here), before entering
the critical section CS if it is its turn, id==pid. The protocol is based on the fact
that after (strict) k time units with id different from 0, all the processes that
want to enter the critical section are waiting to enter the critical section as well,
but only one has the right ID. Upon exiting the critical section, processes reset
id to allow other processes to enter CS. When processes are waiting, they may
retry when another process exits CS by returning to req.

wait

req
x<=k

cs

id== 0 x:= 0

x<=k

x:= 0,
id:= pid id== 0

x:= 0

x>k, id==pid

id:= 0

Fig. 16. Template of Fischer’s protocol. The parameter of the template is const pid.
The template has the local declarations clock x; const k 2;.

5.3 Verification

The safety property of the protocol is to check for mutual exclusion of the loca-
tion CS: A[] P1.cs + P2.cs + P3.cs + P4.cs <= 1. This property uses the
trick that these tests evaluate to true or false, i.e., 0 or 1. We check that the
system is deadlock-free with the property A[] not deadlock.



The liveness properties are of the form P1.req --> P1.wait and similarly
for the other processes. They check that whenever a process tries to enter the
critical section, it will always eventually enter the waiting location. Intuitively,
the reader would also expect the property P1.req --> P1.cs that similarly
states that the critical section is eventually reachable. However, this property
is violated. The interpretation is that the process is allowed to stay in wait for
ever, thus there is a way to avoid the critical section.

Now, if we try to fix the model and add the invariant x <= 2*k to the
wait location, the property P1.req --> P1.cs still does not hold because it is
possible to reach a deadlock state where P1.wait is active, thus there is a path
that does not lead to the critical section. The deadlock is as follows: P1.wait
with 0 ≤ x ≤ 2 and P4.wait with 2 ≤ x ≤ 4. Delay is forbidden in this state,
due to the invariant on P4.wait and P4.wait can not be left because id == 1.

6 Modelling Patterns

In this section we present a number of useful modelling patterns for Uppaal.
A modelling pattern is a form of designing a model with a clearly stated intent,
motivation and structure. We observe that most of our Uppaal models use one
or more of the following patterns and we propose that these patterns are imitated
when designing new models.

6.1 Variable Reduction

Intent
To reduce the size of the state space by explicitly resetting variables when they
are not used, thus speeding up the verification.

Motivation
Although variables are persistent, it is sometimes clear from the way a model
behaves, that the value of a variable does not matter in certain states, i.e., it is
clear that two states that only differ in the values of such variables are in fact
bisimilar. Resetting these variables to a known value will make these two states
identical, thus reducing the state space.

Structure
The pattern is most easily applied to local variables. Basically, a variable v is
called inactive in a location l, if along all paths starting from l, v will be reset
before it will be used. If a variable v is inactive in location v, one should reset v
to the initial value on all incoming edges of l.

The exception to this rule is when v is inactive in all source locations of the
incoming edges to l. In this case, v has already been reset, and there is no need
to reset it again. The pattern is also applicable to shared variables, although it
can be harder to recognise the locations in which the variable will be inactive.
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Fig. 17. The model of the queue in the train gate example uses active variable reduction
twice. Both cases are on the edge from Shiftdown to Start: The freed element in the
queue is reset to the initial value and so is the counter variable i.

For clocks, Uppaal automatically performs the analysis described above.
This process is called active clock reduction. In some situations this analysis
may fail, since Uppaal does not take the values of non-clock variables into
account when analysing the activeness. In those situations, it might speed up
the verification, if the clocks are reset to zero when it becomes inactive. A similar
problem arises if you use arrays of clocks and use integer variables to index into
those arrays. Then Uppaal will only be able to make a coarse approximation
of when clocks in the array will be tested and reset, often causing the complete
array to be marked active at all times. Manually resetting the clocks might speed
up verification.

Sample
The queue of the train gate example presented earlier in this tutorial uses the
active variable pattern twice, see Fig. 17: When an element is removed, all the
remaining elements of the list are shifted by one position. At the end of the loop
in the Shiftdown location, the counter variable i is reset to 0, since its value is
no longer of importance. Also the freed up element list[i] in the list is reset
to zero, since its value will never be used again. For this example, the speedup
in verification gained by using this pattern is approximately a factor of 5.

Known Uses
The pattern is used in most models of some complexity.



6.2 Synchronous Value Passing

Intent
To synchronously pass data between processes.

Motivation
Consider a model of a wireless network, where nodes in the network are modelled
as processes. Neighbouring nodes must communicate to exchange, e.g., routing
information. Assuming that the communication delay is insignificant, the hand-
shake can be modelled as synchronisation via channels, but any data exchange
must be modelled by other means.

The general idea is that a sender and a receiver synchronise over shared
binary channels and exchange data via shared variables. Since Uppaal evaluates
the assignment of the sending synchronisation first, the sender can assign a value
to the shared variable which the receiver can then access directly.

Structure
There are four variations of the value passing pattern, see Fig. 18. They differ
in whether data is passed one-way or two-way and whether the synchronisation
is unconditional or conditional. In one-way value passing a value is transfered
from one process to another, whereas two-way value passing transfers a value in
each direction. In unconditional value passing, the receiver does not block the
communication, whereas conditional value passing allows the receiver to reject
the synchronisation based on the data that was passed.
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Fig. 18. The are essentially four combinations of conditional, uncoditional, one-way
and two-way synchronous value passing.



In all four cases, the data is passed via the globally declared shared variable
var and synchronisation is achieved via the global channels c and d. Each process
has local variables in and out. Although communication via channels is always
synchronous, we refer to a c! as a send-action and c? as a receive-action. Notice
that the variable reduction pattern is used to reset the shared variable when it
is no longer needed.

In one-way value passing only a single channel c and a shared variable var

is required. The sender writes the data to the shared variable and performs a
send-action. The receiver performs the co-action, thereby synchronising with the
sender. Since the update on the edge with send-action is always evaluated before
the update of the edge with the receive-action, the receiver can access the data
written by the sender in the same transition. In the conditional case, the receiver
can block the synchronisation according to some predicate cond(in) involving
the value passed by the sender. The intuitive placement of this predicate is on
the guard of the receiving edge. Unfortunately, this will not work as expected,
since the guards of the edges are evaluated before the updates are executed, i.e.,
before the receiver has access to the value. The solution is to place the predicate
on the invariant of the target location.

Two-way value passing can be modelled with two one-way value passing pat-
tern with intermediate committed locations. The committed locations enforce
that the synchronisation is atomic. Notice the use of two channels: Although
not strictly necessary in the two-process case, the two channel encoding scales
to the case with many processes that non-deterministically choose to synchro-
nise. In the conditional case each process has a predicate involving the value
passed by the other process. The predicates are placed on the invariants of the
committed locations and therefore assignment to the shared variable in the sec-
ond process must be moved to the first edge. It might be tempting to encoding
conditional two-way value passing directly with two one-way conditional value
passing pattern, i.e., to place the predicate of the first process on the third
location. Unfortunately, this will introduce spurious deadlocks into the model.

If the above asymmetric encoding of two-way value passing is undesirable, the
symmetric encoding in Fig. 19 can be used instead. Basically, a process can non-
deterministically choose to act as either the sender or the receiver. Like before,
committed locations guarantee atomicity. If the synchronisation is conditional,
the predicates are placed on the committed locations to avoid deadlocks. Notice
that the symmetric encoding is more expensive: Even though the two paths lead
to the same result, two extra successors will be generated.

Sample
The train gate example of this tutorial uses synchronous one-way unconditional
value passing between the trains and the gate, and between the gate and the
queue. In fact, the value passing actually happens between the trains and the
queue and the gate only act as a mediator to decouple the trains from the queue.

Known Uses
Lamport’s Distributed Leader Election Protocol. Nodes in this leader election
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Fig. 19. In contast to the two-way encoding shown in Fig 18, this encoding is symmetric
in the sense that both automata use the exact same encoding. The symmetry comes
at the cost of a slightly larger state space.

protocol broadcast topology information to surrounding nodes. The communi-
cation is not instantaneous, so an intermediate process is used to model the
message. The nodes and the message exchange data via synchronous one-way
unconditional value passing.

Lynch’s Distributed Clock Synchronisation Protocol. This distributed protocol
synchronises drifting clocks of nodes in a network. There is a fair amount of
non-determinism on when exactly the clocks are synchronised, since the proto-
col only required this to happen within some time window. When two nodes
synchronise non-deterministically, both need to know the other nodes identity.
As an extra constraint, the synchronisation should only happen if it has not
happened before in the current cycle. Here the asymmetric two-way conditional
value passing pattern is used. The asymmetric pattern suffices since each node
has been split into two processes, one of them being dedicated to synchronising
with the neighbours.

6.3 Atomicity

Intent
To reduce the size of the state space by reducing interleaving using committed
locations, thus speeding up the verification.

Motivation
Uppaal uses an asynchronous execution model, i.e., edges from different au-
tomata can interleave, and Uppaal will explore all possible interleavings. Partial
order reduction is an automatic technique for eliminating unnecessary interleav-
ings, but Uppaal does not support partial order reduction. In many situations,
unnecessary interleavings can be identified and eliminated by making part of the
model execute in atomic steps.

Structure
Committed locations are the key to achieving atomicity. When any of the pro-
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Fig. 20. When removing the front element from the queue, all other elements must
be shifted down. This is done in the loop in the Shiftdown location. To avoid unnec-
essary interleavings, the location is marked committed. Notice that the edge entering
Shiftdown synchronises over the rem channel. It is important that target locations of
edges synchronising over rem in other processes are not marked committed.

cesses is in a committed location, then time cannot pass and at least one of
these processes must take part in the next transition. Notice that this does not
rule out interleaving when several processes are in a committed location. On the
other hand, if only one process is in a committed location, then that process
must take part in the next transition. Therefore, several edges can be executed
atomically by marking intermediate locations as committed and avoiding syn-
chronisations with other processes in the part that must be executed atomically,
thus guaranteeing that the process is the only one in a committed location.

Sample
The pattern is used in the Queue process of the train gate example, see Fig. 20.

Known Uses
Encoding of control structure A very common use is when encoding control struc-
tures (like the encoding of a for-loop used in the IntQueue process of the train-
gate example): In these cases the interleaving semantics is often undesirable.

Multi-casting Another common use is for complex synchronisation patterns. The
standard synchronisation mechanism in Uppaal only supports binary or broad-
cast synchronisation, but by using committed locations it is possible to atomi-
cally synchronise with several processes. One example of this is in the train-gate
example: Here the Gate process acts as a mediator between the trains and the
queue, first synchronising with one and then the other – using an intermediate
committed location to ensure atomicity.



6.4 Urgent Edges

Intent
To guarantee that an edge is taken without delay as soon as it becomes enabled.

Motivation
Uppaal provides urgent locations as a means of saying that a location must
be left without delay. Uppaal provides urgent channels as a means of saying
that a synchronisation must be executed as soon as the guards of the edges
involved are enabled. There is no way of directly expressing that an edge without
synchronisation should be taken without delay. This pattern provides a way of
encoding this behaviour.

Structure
The encoding of urgent edges introduces an extra process with a single location
and a self loop (see Fig. 21 left). The self loop synchronises on the urgent channel
go. An edge can now be made urgent by performing the complimentary action
(see Fig. 21 right). The edge can have discrete guards and arbitrary updates,
but no guards over clocks.

go!
‚

‚

‚

‚

‚

go?

Fig. 21. Encoding of urgent edges. The go channel is declared urgent.

Sample
This pattern is used in a model of a box sorting plant (see http://www.cs.auc.
dk/~behrmann/esv03/exercises/index.html#sorter): Boxes are moved on a
belt, registered at a sensor station and then sorted by a sorting station (a piston
that can kick some of the boxes of the belt). Since it takes some time to move
the boxes from the sensor station to the sorting station, a timer process is used
to delay the sorting action. Figure 22 shows the timer (this is obviously not the
only encoding of a timer – this particular encoding happens to match the one
used in the control program of the plant). The timer is activated by setting a
shared variable active to true. The timer should then move urgently from the
passive location to the wait location. This is achieved by synchronising over
the urgent channel go.
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x<=ctime
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x==ctime eject! active:=false

active==true go?

Fig. 22. Sample of a timer using an urgent edge during activation.

6.5 Timers

Intent
To emulate a timer where, in principle, time decreases until it reaches zero, at
which point the timer is said to time-out.

Motivation
Although clocks are powerful enough to model timing mechanisms, some systems
are more naturally modelled using timers, in particular event based models. In
such models, a timer is started, may be restarted, and counts down until a
time-out event is generated.

Structure
The pattern gives an equivalent of a timer object mapped on a process in Up-

paal. We define the following operations for a timer object t:

– void set(TO): this function starts or restarts the timer with a time-out
value of TO. The timer will count down for TO time units. TO is an integer.

– bool expired(): this function returns true if the timer has expired, false

otherwise. When the timer has not been started yet, it is said to have expired.
This function may be called at any time to test the timer.

We map the above defined timer as a process in Uppaal. When a timer t is to
be used in the model, its functions are mapped as follows:

– t.set(v) where v is an integer variable is mapped to the synchronisation
set! and the assignment value := v, where the channel set and the integer
value are the parameters of the timer template.

– t.expired() is mapped to the guard value == 0, where value is a param-
eter of the timer template.

As a variant of this basic timer model, it is possible to generate a time-out
synchronisation, urgent or not depending on the needs, by using the pattern to
encode urgent edges shown in Fig. 21. If the time-out value is a constant, we can
optimise the coding to:

– t.set() (no argument since the time-out is a constant) is mapped to set!.
– t.expired() is mapped to active == false where active is a parameter

of the template.
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(a) Timer with variable time-out. (b) Timer with constant time-out.

Fig. 23. Template of the timer pattern. Template (a) has int value; chan set as
parameters and template (b) has bool active; chan set; const TO as parameters.
Both templates have the local declaration clock x.

The templates are shown in Fig. 23. The two states correspond to the timer hav-
ing expired (timer inactive) and waiting to time-out (timer active). The template
(a) makes use of a feature of Uppaal to mix integers and clocks in clock con-
straints. The constraint is dynamic and depends on the value of the integer.
When returning to the state Expired, the timer resets its value, which has the
effect to (1) use variable reduction (see pattern 6.1) and (2) to provide a simple
way to test for a time-out. The template (b) is simpler in the sense that a con-
stant is used in the clock constraints. Testing for the time-out is equivalent to
test on the boolean variable active.

Known Uses
A variation of the timer pattern is used in the box sorting machine of the previous
pattern (for educational purposes reconstructed in Lego): A timer is activated
when a colored brick passes a light sensor. When the timer times out a piston
kicks the brick from the transport belt.

6.6 Bounded Liveness Checking

Intent
To check bounded liveness properties, i.e., properties that are guaranteed not
only to hold eventually but within some specified upper time-bound. Time-
bounded liveness properties are essentially safety properties and hence often
computationally easier to verify. Thus moving from (unconditional) liveness
properties to a time-bounded versions will not only provide additional infor-
mation — i.e., if one can provide a valid bound — but will also lead to more
efficient verification.

Motivation
For real-time systems general liveness properties are often not sufficiently ex-
pressive to ensure correctness: the fact that a particular property is guaranteed
to hold eventually is inadequate in case hard real-time deadlines must be ob-
served. What is really needed is to establish that the property in question will
hold within a certain upper time-limit.



Structure
We consider two variations of the pattern for a time-bounded leads-to operator
ϕ ;≤t ψ expressing that whenever the state property ϕ holds then the state
property ψ must hold within at most t time-units thereafter.

In the first version of the pattern we use a simple reduction for unbounded
leadsto. First the model under investigation is extended with an additional clock
z which is reset whenever ϕ starts to hold. The time-bounded leads-to property
ϕ ;≤t ψ is now simply obtained by verifying ϕ ; (ψ ∧ z ≤ t).

In the second — and more efficient version — of the pattern we use the
method proposed in [47] in which time-bounded leads-to properties are reduced
to simple safety properties. First the model under investigation is extended with
a boolean variable b and an additional clock z. The boolean variable b must be
initialised to false. Whenever ϕ starts to hold b is set to true and the clock z
is reset. When ψ commences to hold b is set to false. Thus the truth-value of b
indicates whether there is an obligation of ψ to hold in the future and z measures
the accumulated time since this unfulfilled obligation started. The time-bounded
leads-to property ϕ ;≤t ψ is simply obtained by verifying the safety property
A2(b =⇒ z ≤ t).

A third method not reported is based on augmenting the model under inves-
tigation with a so-called test-automata, see [2, 1].

We have deliberately been somewhat vague about the exact nature of the
required augmentation of the model. The most simple case is when the (state)
properties ϕ and ψ are simple locations l and l′ of component automata. In this
simple case the settings of z and b are to be added as assignments of the edges
entering l and l′.

Sample
In the train gate example presented earlier in this tutorial a natural requirement
is that a train is granted access to the crossing within a certain upper time-
bound (say 100) after having signalled that it is approaching. In fact, not only is
the gate responsible for avoiding collisions on the crossing but also for ensuring
a fair and timely handling of requests. In Fig. 24 the Train template has been
augmented with a local boolean b and a local clock z. b (to be initialised to 0) is
set to 1 on the transition to location Appr and set to 0 on the two transitions to
Cross. The clock z is reset on the transition to Appr. On the augmented model we
now check the safety property A[](Train1.b==1 imply Train1.z<=100) which
establishes that the bounded liveness property holds for Train1. In fact — due
to obvious symmetries in the model — it suffices to establish the property for
one train, Train1 say. In this case it would have been advantageous for Train1
to be singleton template in order to avoid augmenting all trains. In particular,
the state-space will be substantially smaller in this way.

Known Uses
Almost any real-time system will have a number of liveness properties where
information as to the time-bounds is vital for the correctness of the systems. The
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Fig. 24. The Train-Gate augmented to enable time-bounded liveness checking.

Gearbox Controller of [47] offers an excellent example where a long list of time-
bounded liveness properties are directly obtained from requirements specified by
the company Mecel AB.

6.7 Abstraction and Simulation

Intent
The goal of abstraction is to replace the problem of verifying a very large, in-
feasible concrete system with a smaller, and hopefully feasible abstract system.
In particular, the method could be applied in a compositional manner to sub-
systems, i.e., various concrete subsystems are replaced by suitable abstractions,
and the verification effort is conducted on the composition of these abstract
subsystems.

Motivation
Despite enormous improvement in the verification capabilities of Uppaal over
the past years — and undoubtedly also for the years to come — state-space ex-
plosion is an ever existing problem that will be solved by algorithmic advances.8

However, in verifying specific properties of a systems it is often only part of the
behaviour of the various components which is relevant. Often the designer will
have a good intuition about what these relevant parts are, in which case (s)he is
able to provide abstractions for the various components, which are still concrete
enough that the given property holds, yet are abstract (and small) enough that
the verification effort becomes feasible. To give a sound methodology two re-
quirements should be satisfied. Firstly, the notion of abstraction applied should

8 unless we succeed in showing P=PSPACE



preserve the properties of interest, i.e., once a property has been shown to hold
for the abstraction it should be guaranteed to also hold for the concrete system.
Secondly, the abstraction relation should be preserved under composition of sys-
tems. In [40, 39] we have put forward the notion of (ready) timed simulation
preserving safety properties while being a pre-congruence w.r.t. composition.
Moreover, for (suggested) abstractions being deterministic and with no inter-
nal transitions, timed simulation may be established using simple reachability
checking (and hence by using Uppaal).

Structure
Let A be a timed automaton suggested as an abstraction for some (sub)system
S (possibly a network of timed automata). We assume that A is deterministic
(i.e., no location with outgoing edges having overlapping guards) and without
any internal transitions. For simplicity we shall assume all channels to be non-
urgent and no shared variables exist between S and the remaining system. The
extension of the technique to allow for urgency and shared variables can be found
in [40]. To show that A is indeed an abstraction of S in the sense that A (ready)
timed simulates S a test-automata TA is constructed in the following manner:
TA has A as a skeleton but with the direction of actions (input/output) reversed.
A distinguished new location bad is added and from all locations l and all actions
a an a-labelled edge from l to bad is inserted with guard ¬(g1 ∨ . . . ∨ gn) where
g1 . . . gn is the full set of guards of a-labelled edges out of l in the skeleton. Now
S is (ready) timed simulated by A — and hence A is a valid abstraction of S
— precisely if the location bad is unreachable in the composite system S‖TA.
Essentially, TA observes that all behaviour of S is matchable by A.

Sample
Consider the Uppaal model in Fig. 25 consisting of a Sender a Receiver and
four pipelining processes Pi. Each pipeline process Pi has the obligation of re-
acting to a stimulus from its predecessor on channel ai and pass it on to its
successor on channel ai+1. A local clock is used to model that each pipeline
process adds a minimum delay of 2. After having completed the passing on, the
pipeline process engages in some internal computation (the small cycle S2, S3,
S4). Now assume that we want to verify that the Receiver will have received
its stimulus no sooner than after 8 time-units, or in general 2n in a system with
n pipeline processes. Obviously, the system we are looking at is subject to an
enormous state-space explosion when we increase the number of pipeline ele-
ments. However, for establishing the property in question we need only little
information about the various subsystems. For P1‖P2 we essentially only need
to know that the time from reacting to the initial stimulus from the Sender to
passing this stimulus on to P3 is at least 4. We do not need to worry about the
internal computation nor the precise moment in time when the stimulus was
passed from P1 to P2. In particular we should be able to replace P1‖P2 with the
much simpler automaton P1P2. To show that this is a valid substitution we sim-
ply show that the BAD location is unreachable for the system P1‖P2‖TestP1P2,
where TestP1P2 is the test automaton for P1P2. A similar abstraction P3P4 may
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Fig. 25. A small pipelining system.
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Fig. 26. A suggested abstraction and its test automaton.

obviously be given for the subsystem P3‖P4 and the desired property may now be
established for the “much” simpler system P1P2‖P3P4, rather than the original
system.

Known Uses
The described technique can be found in full details in the Ph.D. thesis of Jensen
[39]. In [40] the technique has been successfully applied to the verification of a
protocol for controlling the switching between power on/off states in audio/video
components described in [42].

7 Conclusion

Uppaal is a research tool available for free at http://www.uppaal.com/ that
features an intuitive graphical interface. It has been ported to different platforms
and it is in constant development. There are different development branches and
tools that make use of Uppaal:

Cost–UPPAAL supports cost annotations of the model and can do minimal
cost reachability analysis [44]. This version also has features for guiding



the search. This version can be downloaded from http://www.cs.auc.dk/

~behrmann/_guiding/.
Distributed–UPPAAL runs on multi-processors and clusters using the com-

bined memory and CPU capacity of the system [15, 9].
T–UPPAAL test case generator for black-box conformance testing, see http:

//www.cs.auc.dk/~marius/tuppaal/.
Times is a tool set for modelling, schedulability analysis, and synthesis of (op-

timal) schedules and executable code. The verification uses Uppaal [6].

On-going work on the model-checker includes support for hierarchical timed
automata, symmetry reduction, UCode (Uppaal code, large subset of C), im-
proved memory management, etc. The tool has been successfully applied to case
studies ranging from communication protocols to multimedia applications:

Bang & Olufsen audio/video protocol. An error trace with more than 2000
transition steps was found [30].

TDMA Protocol Start-Up Mechanism was verified in [48].
Bounded retransmission protocol over a lossy channels was verified in [22].
Lip synchronization algorithm was verified in [21].
Power-down controller in an audio/video component was designed and ver-

ified in collaboration with Bang & Olufsen in [29].
Guided synthesis of control programs for a steel production plant was done

in [37]. The final control programs were compiled to run on a lego model of
the real plant.

Gearbox controller was formally designed and analysed in [47].
Lego Mindstorm programs written in “Not Quite C” have been verified in [38].
Field bus protocol was modelled and analysed in [27].

Uppaal is also used in a number of courses on real-time systems and formal
verification:

– http://user.it.uu.se/~paupet/#teaching

Real-time and formal method courses at Uppsala University.
– http://csd.informatik.uni-oldenburg.de/teaching/fp_realzeitsys_

ws0001/result/eindex.html

Practical course “Real-Time Systems” at the University of Oldenburg.
– http://fmt.cs.utwente.nl/courses/systemvalidation/

System Validation (using Model Checking) at the University of Twente.
– http://www.cs.auc.dk/~behrmann/esv03/

Embedded Systems Validation at Aalborg University.
– http://www.cs.auc.dk/~kgl/TOV04/Plan.html

Test and Verification at Aalborg University.
– http://www.seas.upenn.edu/~pappasg/EE601/F03/

Hybrid Systems at the University of Pennsylvania.
– http://www.it.uu.se/edu/course/homepage/proalgebra

Process Algebra at Uppsala University.
– http://www.cs.auc.dk/~luca/SV/

Semantics and Verification.



– http://www.cs.depaul.edu/programs/courses.asp?subject=SE&courseid=533

Software Validation and Verification at DePaul University.
– http://www.cs.bham.ac.uk/~mzk/courses/SafetyCrit/

Safety Critical Systems and Software Reliability at the University of Birm-
ingham.

– http://fmt.cs.utwente.nl/courses/sysontomg/

Systeem-ontwikkelomgevingen at the University of Twente.

Finally the following books have parts devoted to Uppaal:

– Concepts, Algorithms and Tools for Model-Checking [41]: Lecture notes in
its current form. It treats both Spin and Uppaal.

– Systems and Software Verification: Model-checking Techniques and Tools [20]:
This book identifies 6 important tools and has a chapter on Uppaal.
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26. Alexandre David, M. Oliver Möller, and Wang Yi. Formal verification of UML
statecharts with real-time extensions. In Ralf-Detlef Kutsche and Herbert We-
ber, editors, Fundamental Approaches to Software Engineering, 5th International
Conference, FASE 2002, volume 2306 of LNCS, pages 218–232. Springer–Verlag,
2002.

27. Alexandre David and Wang Yi. Modelling and analysis of a commercial field bus
protocol. In Proceedings of the 12th Euromicro Conference on Real Time Systems,
pages 165–172. IEEE Computer Society, 2000.

28. Elena Fersman. A Generic Approach to Schedulability Analysis of Real-Time Sys-
tems. PhD thesis, Uppsala University, November 2003.

29. Klaus Havelund, Kim G. Larsen, and Arne Skou. Formal verification of a
power controller using the real-time model checker uppaal. 5th Interna-
tional AMAST Workshop on Real-Time and Probabilistic Systems, available at
http://www.uppaal.co m, 1999.

30. Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal modelling
and analysis of an audio/video protocol: An industrial case study using uppaal.
In Proceedings of the 18th IEEE Real-Time Systems Symposium, pages 2–13, De-
cember 1997.

31. M. Hendriks, G. Behrmann, K.G. Larsen, P. Niebert, and F.W. Vaandrager.
Adding symmetry reduction to uppaal. In Proceedings First International Work-
shop on Formal Modeling and Analysis of Timed Systems (FORMATS 2003), vol-
ume 2791 of Lecture Notes in Computer Science, 2003.

32. Martijn Hendriks and Kim G. Larsen. Exact acceleration of real-time model check-
ing. In E. Asarin, O. Maler, and S. Yovine, editors, Electronic Notes in Theoretical
Computer Science, volume 65. Elsevier Science Publishers, April 2002.

33. Thomas A. Henzinger. Symbolic model checking for real-time systems. Information
and Computation, 111:193–244, 1994.

34. Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,
1991.

35. Gerard J. Holzmann. An analysis of bitstate hashing. Formal Methods in System
Design, 13:289–307, 1998.

36. John E. Hopcroft and Jeffrey D. Ullman. Introduction of Automata Theory, Lan-
guages, and Computation. Addison Wesley, 2001.

37. Thomas Hune, Kim G. Larsen, and Paul Pettersson. Guided synthesis of control
programs using uppaal. In Ten H. Lai, editor, Proc. of the IEEE ICDCS In-
ternational Workshop on Distributed Systems Verification and Validation, pages
E15–E22. IEEE Computer Society Press, April 2000.

38. Torsten K. Iversen, K̊are J. Kristoffersen, Kim G. Larsen, Morten Laursen, Rune G.
Madsen, Steffen K. Mortensen, Paul Pettersson, and Chris B. Thomasen. Model-
checking real-time control programs — Verifying LEGO mindstorms systems using
uppaal. In Proc. of 12th Euromicro Conference on Real-Time Systems, pages 147–
155. IEEE Computer Society Press, June 2000.

39. Henrik Ejersbo Jensen. Abstraction-Based Verification of Distributed Systems. PhD
thesis, Aalborg University, June 1999.



40. Henrik Ejersbo Jensen, Kim Guldstrand Larsen, and Arne Skou. Scaling up uppaal
automatic verification of real-time systems using compositionality and abstraction.
In Mathai Joseph, editor, Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems, 6th International Symposium, FTRTFT 2000, volume 1926 of Lecture Notes
in Computer Science, pages 19–20. Springer–Verlag, 2000.

41. Joost-Pieter Katoen. Concepts, Algorithms, and Tools for Model Checking.
http://www.it-c.dk/people/hra/mcpa/katoen.ps, 1999.

42. Arne Skou Klaus Havelund, Kim Guldstrand Larsen. Formal verification of a
power controller using the real-time model checker Uppaal. In 5th Int. AMAST
Workshop on Real-Time and Probabilistic Systems, volume 1601 of Lecture Notes
in Computer Science, pages 277–298. Springer–Verlag, 1999.

43. K̊are J. Kristoffersen. Compositional Verification of Concur-
rent Systems. PhD thesis, Aalborg University, August 1998.
http://www.itu.dk/people/kjk/publications.html.

44. Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune,
Paul Pettersson, and Judi Romijn. As cheap as possible: Efficient cost-optimal
reachability for priced timed automata. In G. Berry, H. Comon, and A. Finkel,
editors, Proceedings of CAV 2001, number 2102 in Lecture Notes in Computer
Science, pages 493–505. Springer–Verlag, 2001.

45. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Int. Journal
on Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

46. Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. Efficient verifi-
cation of real-time systems: Compact data structures and state-space reduction.
In Proc. of the 18th IEEE Real-Time Systems Symposium, pages 14–24. IEEE
Computer Society Press, December 1997.

47. Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal design and analysis of a
gearbox controller. Springer International Journal of Software Tools for Technology
Transfer (STTT), 3(3):353–368, 2001.
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