
Thomas Chatain, Alexandre David,
and Kim G. Larsen

Playing Games with Timed Games

Research Report LSV-08-34

December 2008

Playing Games with Timed Games

Thomas Chatain1, Alexandre David2, and Kim G. Larsen3

1 LSV, ENS Cachan, CNRS, INRIA, France
chatain@lsv.ens-cachan.fr

2 Department of Computer Science, Aalborg University, Denmark
{kgl,adavid}@cs.aau.dk

Abstract. In this paper we focus on property-preserving preorders
between timed game automata and their application to control of par-
tially observable systems. Following the example of timed simulation
between timed automata, we define timed alternating simulation as a
preorder between timed game automata, which preserves controllability.
We define a method to reduce the timed alternating simulation prob-
lem to a safety game. We show how timed alternating simulation can be
used to control efficiently a partially observable system. This method is
illustrated by a generic case study.

1 Introduction

Since the introduction of timed automata [3] the technology and tool support
[15,7,6] for model-checking and analysis of timed automata based formalisms
have reached a level mature enough for industrial applications as witness by
a large and growing number of case studies. Most recently, efficient on-the-fly
algorithms for solving reachability and safety games based on timed game auto-
mata have been put forward [8] and made available within the tool Uppaal-

Tiga. The tool has been recently used in an industrial case study [14] with
the company Skov A/S for synthesizing climate control programs to be used in
modern pig and poultry stables. Also Uppaal-Tiga is currently being used for
autonomous robot control [1].

Despite this success, the state-space explosion problem is a reality preventing
the tools to scale up to arbitrarily large and complex systems. What is needed
are complementary techniques allowing for the verification and analysis efforts
to be carried out on suitable abstractions.

Assume that S is a timed (game) automaton, and assume that φ is a property
to be established (solved) for S. Now S may be a timed automaton too complex
for our verification tool to settle the property φ, or S may be a timed game auto-
maton with a number of unobservable features that can not be exploited in any
realizable strategy for solving the game. The goal of abstraction is to replace the
complex (or unobservable) model S with an abstract timed (game) automaton
A being smaller in size, less complex and fully observable. This method requires
the user not only to supply the abstraction but also to argue that the abstraction
is correct in the sense that all relevant properties established (controllable) for

A also hold (are controllable) for S; i.e. it should be established that S ≤ A for
some property-preserving relationship ≤ between timed (game) automata.

The possible choices for the preorder ≤ obviously depend heavily on the
class of properties to be preserved as well as the underlying modelling formal-
ism. In this paper we introduce the logic ATCTL being a universal fragment of
the real-time logic TCTL [2] (with propositions both on states and events). We
introduce the notions of strong and weak3 alternating timed simulation between
timed game automat. These relations are proved to preserve controllability with
respect to ATCTL. As main results of the paper we show how strong and weak
timed alternating simulation problems may be reduced to safety games for suit-
ably constructed “products” of timed game automata. These constructions allow
the use of Uppaal-Tiga to provide direct tool support for checking preorders
between timed game automata.

Finally, we show how timed alternating simulation can be used to control
efficiently a partially observable system. This method is illustrated by a generic
case study: we apply our construction for timed alternating simulation to syn-
thesize control programs for a scenario where the move of a box on a conveyor
belt is partially observable. We compare experimental results obtained by two
different methods for this problem, one method using our weak alternating timed
simulation preorder.

Related work. Decidability for timed (bi)simulation between timed automata
was given in [9] using a “product” region construction. This technique provided
the computational basis of the tool Epsilon [10]. In [17] a zone-based algorithm
for checking (weak) timed bisimulation – and hence not suffering the region-
explosion in Epsilon – was proposed though never implemented in any tool.

For fully observable and deterministic abstract models timed simulation may
be reduced to a reachability problem of S in the context of a suitably constructed
testing automaton monitoring that the behavior exhibited is within the bounds
of A [13].

Alternating temporal logics were introduced in [4] and alternating simulation
between finite-state systems was introduced in [5]. In this paper we offer – to
our knowledge – the first timed extension of alternating simulation.

The application of our method using weak alternating simulation for the
problem of timed control under partial observability improves the direct method
proposed in [11] to solve the same problem.

Overview of the paper. In Section 2 we present the models of timed automata
and timed game automata as well as the logic ATCTL. In Section 3 we define
strong and weak alternating timed simulation preorders. We prove that they
preserve controllability with respect to ATCTL, and propose encodings of the
strong and weak alternating simulation problems as safety games. In Section 4

3 weak in the sense that models may contain internal transitions, to be treated as
unobservable by the preorder.

2

we recall the basic definitions and results from [11] about timed control under
partial observability and we show how timed alternating simulation can be used
to control efficiently a partially observable system. This method is illustrated by
a generic case study: we apply our construction for timed alternating simulation
to synthesize control programs for a case-study under partial observability.

2 Timed Games and Preliminaries

2.1 Timed Automata

Let X be a finite set of real-valued variables called clocks. We note C(X) the
set of constraints ϕ generated by the grammar: ϕ ::= x ∼ k | x − y ∼ k | ϕ ∧ ϕ
where k ∈ Z, x, y ∈ X and ∼ ∈ {<,≤,=, >,≥}. B(X) is the subset of C(X) that
uses only rectangular constraints of the form x ∼ k. A valuation of the variables
in X is a mapping v : X '→ R≥0. We write 0 for the valuation that assigns 0 to
each clock. For Y ⊆ X, we denote by v[Y] the valuation assigning 0 (resp. v(x))
for any x ∈ Y (resp. x ∈ X \ Y). We denote v + δ for δ ∈ R≥0 the valuation s.t.
for all x ∈ X, (v + δ)(x) = v(x) + δ. For g ∈ C(X) and v ∈ RX

≥0, we write v |= g

if v satisfies g and [[g]] denotes the set of valuations {v ∈ RX
≥0 | v |= g}.

Definition 1 (Timed Automaton [3]). A Timed Automaton (TA) is a tuple
A = (L, l0,Σ, X,E, Inv) where L is a finite set of locations, l0 ∈ L is the initial
location, Σ is the set of actions, X is a finite set of real-valued clocks, Inv : L →
B(X) associates to each location its invariant and E ⊆ L×B(X)×Σ × 2X ×L
is a finite set of transitions, where t = (l, g, a,R, l′) ∈ E represents a transition
from the location l to l′, labeled by a, with the guard g, that resets the clocks in
R. One special label τ is used to code the fact that a transition is not observable.

A state of a TA is a pair (l, v) ∈ L × RX
≥0 that consists of a discrete part

and a valuation of the clocks. From a state (l, v) ∈ L × RX
≥0 s.t. v |= Inv(l),

a TA can either let time progress or do a discrete transition and reach a new
state. This is defined by the transition relation −→ built as follows: for a ∈ Σ,

(l, v)
a

−−→ (l′, v′) if there exists a transition l
g,a,Y

−−−−−→ l′ in E s.t. v |= g, v′ = v[Y]

and v′ |= Inv(l′); for δ ≥ 0, (l, v)
δ

−−→ (l, v′) if v′ = v + δ and v, v′ ∈ [[Inv(l)]].
Thus the semantics of a TA is the labeled transition system SA = (Q, q0,−→)
where Q = L × RX

≥0, q0 = (l0,0) and the set of labels is Σ ∪ R≥0. A run of
a timed automaton A is a sequence (δ1, t1, δ2, t2, . . .) of alternating time and
discrete transitions in SA. We use Runs((l, v), A) for the set of runs that start in
(l, v). We write Runs(A) for Runs((l0,0), A). If ρ is a finite run we denote last(ρ)
the last state of the run and Duration(ρ) the total elapsed time all along the run.

Assumptions. We assume that: 1) every infinite run contains infinitely many
observable transitions; 2) from every state, either a delay action with positive
duration or a controllable action can occur.

3

Definition 2 (observation). We define inductively the observation associated
to a run ρ as the (possibly infinite) word Obs(ρ) over the alphabet Σ ∪ R such
that:

– Obs(ε) = ε, where ε denotes the empty word;
– Obs(δ) = δ;

– Obs((δ, t)) =

{

ε if λ(t) = τ
(δ,λ(t)) otherwise;

– Obs((δ1, t1, δ2, t2) · ρ) =

{

Obs((δ1 + δ2, t2) · ρ) if λ(t1) = τ
(δ1,λ(t1)) · Obs((δ2, t2) · ρ) otherwise.

2.2 ATCTL

In this article, we consider a universal fragment of the real-time logic TCTL [2]
with propositions both on states and actions.

Definition 3 (ATCTL). A formula of ATCTL is either A φ1 U φ2 or A φ1 W
φ2, where A denotes the quantifier “for all path” and U (resp. W) denotes the
temporal operator “until” (resp. “weak until”), the φi’s are pairs (φs

i ,φ
λ
i) and

φs
i (resp. φλ

i) is a set of states (resp. observable actions).

A run ρ of a timed automaton A satisfies φ1 U φ2 iff there exists a prefix ρ′

of ρ such that: 1) only actions of φλ
1 occur in ρ′ and 2) all the states reached

during the execution of ρ′ are in φs
1 ∪ φ

s
2 and 3) either last(ρ′) ∈ φs

2 or the last
action of ρ′ is in φλ

2 . Then we write ρ |= φ1 U φ2.
A run ρ of a timed automaton A satisfies φ1W φ2 iff either it satisfies φ1U φ2

or only actions of φλ
1 occur in ρ and all the states reached during the execution

of ρ are in φs
1. Then we write ρ |= φ1 W φ2.

When all the runs of a timed automaton A satisfy a property φ, we write
A |= A φ.

We define also the fragment ATCTLλ of ATCTL where only actions are
considered: the formulas of ATCTLλ are only the formulas A φ1Uφ2 and A φ1W
φ2 where φs

1 = L × RX
≥0 and φs

2 = ∅.

2.3 Timed Games

Definition 4 (Timed Game Automaton [16]). A Timed Game Automaton
(TGA) G is a timed automaton with its set of transitions E partitioned into
controllable (Ec) and uncontrollable (Eu) actions. We assume that a control-
lable transition and an uncontrollable transition never share the same observable
label. In addition, invariants are restricted to Inv : L → B′(X) where B′ is the
subset of B using constraints of the form x ≤ k.

Given a TGA G and a control property φ ≡ A φ1 U φ2 (resp. A φ1 W φ2)
of ATCTL, the reachability (resp. safety) control problem consists in finding a
strategy f for the controller such that all the runs of G supervised by f satisfy
the formula. By “the game (G,φ)” we refer to the control problem for G and φ.

4

The formal definition of the control problems is based on the definitions of
strategies and outcomes. In any given situation, the strategies suggest to do a
particular action after a given delay. A strategy [16] is described by a function
that during the course of the game constantly gives information as to what the
players want to do, under the form of a pair (δ, e) ∈ (R≥0 × E) ∪ {(∞,⊥)}.
(∞,⊥) means that the strategy wants to delay forever.

The environment has priority when choosing its actions: if the controller and
the environment want to play at the same time, the environment actually plays.
In addition, the environment can decide not to take action if an invariant requires
to leave a state and the controller can do so.

Assumption. A pathological case remains in states where an invariant expires
and no controllable transition is possible and there is a possible uncontrollable
transition. It seems natural to force an uncontrollable action to occur in this
case, but allowing this situation would make the development of this paper
much more tricky. In order to preserve readability of the paper we consider only
models where this pathological case does not occur.

Definition 5 (Strategies). Let G = (L, l0,Σ, X,E, Inv) be a TGA. A strategy
over G for the controller (resp. the environment) is a function f from the set of
runs Runs((l0,0), G) to (R≥0 ×Ec) ∪ {(∞,⊥)} (resp. (R≥0 ×Eu) ∪ {(∞,⊥)}).

We denote (δ(ρ), e(ρ))
def

= f(ρ) and we require that for every run ρ leading to a
state q,

– if δ(ρ) = 0 then the transition e(ρ) is possible from q.
– for all δ′ ≤ δ(ρ), waiting δ′ time units after ρ is possible and the augmented

run ρ′ satisfies: f(ρ′) = (δ(ρ) − δ′, e(ρ)).

Furthermore, the controller is forced to play if an invariant expires, (and, by
assumption it can always play). This can be specified as follows: if no positive
delay is possible from q, then the strategy of the controller satisfies δ(ρ) = 0.

The restricted behavior of a TGA G when the controller plays a strategy fc

and the opponent plays a strategy fu is defined by the notion of outcome [12].

Definition 6 (Outcome4). Let G = (L, l0, Σ, X,E, Inv) be a TGA and fc,
resp. fu, a strategy over G for the controller, resp. the environment. The out-
come Outcome(q, fc, fu) from q in G is the (possibly infinite) maximal run

ρ = (ρ0, . . . , ρi, . . .) such that for every i ∈ N (or 0 ≤ i < |ρ|
2

for finite runs),

– ρ2i = min{δc(ρ0, . . . , ρ2i−1), δu(ρ0, . . . , ρ2i−1)}

– ρ2i+1 =

{

eu(ρ0, . . . , ρ2i) if δu(ρ0, . . . , ρ2i) = 0
ec(ρ0, . . . , ρ2i) otherwise

A strategy fc for the controller is winning in the game (A,A φ) if for every
fu, Outcome(q0, fc, fu) satisfies φ. We say that a formula φ is controllable in
A, and we write A |= c : A φ, if there exists a winning strategy for the game
(A,A φ).

4 Unlike other papers, we define here one single maximal run for each (q, fc, fu) instead
of the set of possible runs for (q, fc).

5

3 Playing Games with Timed Games

In this section we let A and B be two timed game automata. We want to find
conditions that ensure that any property of ATCTLλ that is controllable in B
is also controllable in A.

In the context of model-checking, simulation relations allow us to verify some
properties of a concrete model using a more abstract version of the model, after
checking that the abstract model (weakly) simulates the concrete one.

Here we are considering the more general problem of controller synthesis:
some actions are controllable (the models A and B are TGA) and we want
to use an abstraction of the model to build controllers for some properties of
the concrete model. For this we define two alternating simulation relations (a
strong one ≤sa and a weak one ≤wa), such that if A ≤sa B or A ≤wa B, then any
property of ATCTLλ that is controllable in B is also controllable in A. Moreover,
the (weak) alternating simulation relation can be used to build the controller (or
the winning strategy) for A.

3.1 Strong Alternating Simulation

In this section we assume that all the transitions of the timed games are observ-
able.

We define alternating simulation relations as relations R between the states
of A and those of B such that if (qA, qB) ∈ R, then every property that is con-
trollable in B from qB is also controllable in A from qA. Thus every controllable
transition that can be taken from qB must be matched by an equally labeled
controllable transition from qA. And on the other hand, every uncontrollable
transition in A tends to make A harder to control than B; then we require that
it is matched by an equally labeled uncontrollable transition in B.

How to handle the progress of time? Concerning the progress of time, it is neces-
sary to check that if the controller of B is able to avoid playing any action during
a given delay, then the controller of A is able to do the same. To understand why
this is required, think of a control property where the goal is simply to reach a
given time without playing any observable action, unless the environment plays
an uncontrollable action. If the controller of B is able to wait, then it has a
winning strategy for this property. So the controller of A must be able to win
too.

Symmetrically, we should in principle check that if the environment of A is
able to avoid playing any action during a given delay, then the environment of
B is able to do the same. Actually this property does not need to be checked
since, by assumption, the environments are never forced to play.

Definition 7 (strong alternating simulation). A strong alternating simu-
lation relation between two TGAs A and B is a relation R ⊆ QA×QB such that
(q0A, q0B) ∈ R and for every (qA, qB) ∈ R:

– (qB
a
−→c q′B) =⇒ ∃q′A (qA

a
−→c q′A ∧ (q′A, q′B) ∈ R)

6

– (qA
a
−→u q′A) =⇒ ∃q′B (qB

a
−→u q′B ∧ (q′A, q′B) ∈ R)

– (qB
δ
−→ q′B) =⇒ ∃q′A (qA

δ
−→ q′A ∧ (q′A, q′B) ∈ R)

We write A ≤sa B if there exists a strong alternating simulation relation between
A and B.

Theorem 1. If A and B are two timed games such that A ≤sa B, then for every
formula A φ ∈ ATCTLλ, if B |= c : A φ, then A |= c : A φ.

Proof outline. We show how to build a winning strategy fc
A for the controller in

A from a winning strategy fc
B for the controller in B using the relation R. The

strategy fc
A that we build is such that for every strategy fu

A for the environment
in A, there exists a strategy fu

B (that we build also from fu
A using R) such that

the outcome of fu
A and fc

A in A matches the outcome of fu
B and fc

B in B (w.r.t.
the observations) and one can play the two games simultaneously such that all
along the plays the current state qA in A is related by R to the current state qB

in B.
The strategy fc

A is built by playing a fake game in B that imitates (w.r.t R)
the game in A.

– When the environment of A plays a transition, play an equally labeled un-
controllable transition in the fake game B such that the states in A and B
are still related by R.

– When the controller of A plays an observable transition, play an equally
labeled controllable transition in the fake game B such that the states in A
and B are still related by R.

– Otherwise let time elapse in B as it elapses in A.

The rest of the proof consists in showing that the strategy fc
A is well defined,

i.e. the required actions are possible. This is done by induction on the length of
the finite runs of the games. 23

3.2 Strong Alternating Simulation as a Timed Game

In this section we show how to build a timed game Gamesa(A,B) such that
A ≤sa B iff the controller has a winning strategy. For simplicity we assume that
A and B share no clock, h is a free clock, and the labels used by controllable
transitions of one timed game are not used by any uncontrollable transition of
the other timed game.

Intuition Behind the Construction of Gamesa(A, B). In order to check
the existence of a strong alternating simulation relation between A and B, we
build a game which consists in simulating the timed games A and B simultan-
eously, with the idea that at each time they are in states qA and qB such that
(qA, qB) ∈ R if there exists an alternating simulation relation R between A and
B. More precisely, the controller of Gamesa(A,B) tries to keep the games A and
B in states qA and qB such that (qA, qB) ∈ R.

7

On the other hand, the environment of Gamesa(A,B) tries to show that
this is not always possible. For this it shows that one of the implications in
Definition 7 does not hold from the current pair of states (qA, qB). The way of
doing this depends on the kind of implication that is considered.

– For the first two implications, the technique is the following: the environment
plays one transition corresponding to the left hand side of the implication,
and challenges the controller of Gamesa(A,B) to play a transition corres-
ponding to the right hand side, that imitates the transition played by the
environment of Gamesa(A,B). Therefore all the controllable transitions of A
and the uncontrollable transitions of B become controllable in Gamesa(A,B);
and the uncontrollable transitions of A and the controllable transitions of
B become uncontrollable in Gamesa(A,B). We use the labels to show which
transitions are controllable (c) and uncontrollable (u).

The idea is to use a variable la to store the action of the last transition
played by A, when A has played and B has not imitated it yet. As soon
as the action of A has been imitated by B, la is set to the value τ . As we
did not present a model with variables in this article, we define the TGA by
duplicating the states according to the possible values for la.

But because we are considering a real-time context, we want to check that
the actions are immediately imitated. Moreover the game must be played
such that every play corresponds to valid runs of A and B. This implies that
the time constraints of A and B are satisfied. For this reason we keep the
clocks of A and B and we add one clock h (assumed to be different from those
in A and B). h is used to check that the actions are immediately imitated:
when the environment of Gamesa(A,B) plays, h is reset, and as soon as
h > 0 and la 4= τ (i.e. the controller of Gamesa(A,B) has not played), the
controller of Gamesa(A,B) loses.

– Finally, when the environment wants to show that the third implication of
Definition 7 does not hold, it simply waits until the invariant of qA expires. Of
course, during this time, the invariant of qB must hold. This amounts to check
that for every play, the corresponding runs of A and B respect the invariants
of the models. Copying simply the invariants in the game would not give
the expected result: when an invariant of A expires, the environment would
have the freedom of forcing the controller to take a transition of B, which
is not what we want. Thus we choose another solution: all the invariants
are removed from the model; but the winning condition takes them into
account, so that if the invariant of A (resp. B) is not satisfied, then the
controller (resp. the environment) loses the game (see InvsatA and InvsatB

in the control property).

Definition 8 (Gamesa(A, B)). The TGA of Gamesa(A,B) is defined as
(L, l0, {u, c}, X,E, Inv) where L = LA × LB × (Σ ∪ {τ}), l0 = (l0A, l0B , τ),
X = XA ∪ XB ∪ {h}, Inv = true and

8

E = {((lA, lB , τ), g, u,R ∪ {h}, (l′A, lB , a)) | (lA, g, a,R, l′A) ∈ Eu
A}

∪ {((lA, lB , τ), g, u,R ∪ {h}, (lA, l′B , a)) | (lB , g, a,R, l′B) ∈ Ec
B}

∪ {((lA, lB , a), g, c, R, (l′A, lB , τ)) | (lA, g, a,R, l′A) ∈ Ec
A}

∪ {((lA, lB , a), g, c, R, (lA, l′B , τ)) | (lB , g, a,R, l′B) ∈ Eu
B}

If the current state of Gamesa(A,B) is denoted ((lA, lB , la), v), the control prop-
erty is the following.

A

{

InvsatA

∧ la 4= τ =⇒ v(h) = 0

}

W

{

¬InvsatB

∧ la 4= τ =⇒ v(h) = 0

}

Theorem 2. A ≤sa B iff B has a winning strategy in the timed game
Gamesa(A,B).

Proof outline. In this proof we show how to build a weak simulation relation
from a winning strategy and vice versa. The relation is built as the set of pairs
((lA, v|XA

), (lB , v|XB
)) where ((lA, lB , τ), v) is reachable in the game controlled

by the winning strategy. On the other hand, the winning strategy is defined from
a relation R as: from state ((lA, lB , a), v) with a 4= τ , take a transition labeled by
a which leads to a state ((lA, l′B), v′) with ((lA, v′

|XA
), (l′B , v′

|XB
)) ∈ R; otherwise,

wait. 23

3.3 Weak Alternating Simulation

As it is often the case that only observable actions are of interest, we define a
weak relation where only the observable behavior of the automata is taken into
account.

We present here a simple version of weak alternating simulation, where the
use of unobservable controllable transitions of A and unobservable uncontrollable
transitions of B is restricted. Other choices are possible, but they usually make
the definition of weak alternating simulation and/or its coding as a timed game
very tricky.5

Definition 9 (weak alternating simulation). A weak alternating simulation
relation between two TGAs A and B is a relation R ⊆ QA × QB such that
(q0A, q0B) ∈ R and for every (qA, qB) ∈ R:

– (qB
a
−→c q′B) =⇒ ∃q′A (qA

a
−→c q′A ∧ (q′A, q′B) ∈ R)

– (qA
a
−→u q′A) =⇒ ∃q′B (qB

a
−→u q′B ∧ (q′A, q′B) ∈ R)

– (qB
δ
−→ q′B) =⇒ ∃q′B (qA

δ
−→ q′A ∧ (q′A, q′B) ∈ R)

5 For example, simply allowing an observable controllable transition
a

−→ to be imitated
by a sequence made of an unobservable controllable transition

τ

−→ followed by a
controllable

a

−→ poses the following problem: we must check that the environment
has no possible action from the intermediate state, so that it cannot prevent the
second action from occurring.

9

z=0a

L2

z>=1

b
L1

x=0 y=0
a

L5

L4

y>=1

x<=2

bL3

Fig. 1. Two timed game automata, where the transitions labeled by a are uncontrol-
lable.

– (qB
τ
−→c q′B) =⇒

{

(qA, q′B) ∈ R

∨ ∃q′A (qA
τ
−→c q′A ∧ (q′A, q′B) ∈ R)

– (qA
τ
−→u q′A) =⇒

{

(q′A, qB) ∈ R

∨ ∃q′B (qB
τ
−→u q′B ∧ (q′A, q′B) ∈ R)

We write A ≤wa B if there exists a weak alternating simulation relation between
A and B.

Remark that weak alternating simulation is larger than strong alternating
simulation and that if A and B are fully observable, then weak alternating
simulation and strong alternating simulation coincide.

In Fig. 1 we show two timed game automata (denote A the one on the left and
B the one on the right), where the transitions labeled by a are uncontrollable.
The other transitions are controllable, some labeled by b, some unobservable. We
have A ≤wa B. Intuitively, the reason is that the controller has “more freedom”
in A than in B, because only one action b is possible in B; but the environment
of B can always imitate the actions of the environment of A.

Theorem 3. If A and B are two timed games such that A ≤wa B, then for
every formula A φ ∈ ATCTLλ, if B |= c : A φ, then A |= c : A φ.

We skip the proofs about weak alternating simulation as they are very similar
to those about strong alternating simulation, athough a few extra cases have to
be handled.

3.4 Weak Alternating Simulation as a Timed Game

In this section we adapt the contruction of Section 3.2 to the case of weak altern-
ating simulation. The symbols τc and τu are used to code the situations where
an unobservable action has been done by the environment of Gamewa(A,B).
This action corresponds either to an unobservable uncontrollable action of A (in
which case the symbol τu is used), or to an unobservable controllable action of
B (in which case the symbol τc is used. As well as in the coding of strong altern-
ating simulation, the symbol τ codes the situations where all the uncontrollable
actions of A and all the controllable actions of B have been imitated.

The transitions of Gamewa(A,B) (see the construction of E in Definition 10)
are:

10

– those corresponding to the observable transitions (lines 1 to 4), which are
similar to those in Definition 8;

– the unobservable transitions played by the environment of Gamewa(A,B)
(lines 5 and 6);

– the transitions that the controller of Gamewa(A,B) takes after the envir-
onment has played an unobservable transition (lines 7 to 10). They are of
two kinds, corresponding to the disjunctions that appear at the right of the
last two implications in Definition 9: the controller of Gamewa(A,B) has the
choice to take zero or one unobservable action.

Definition 10 (Gamewa(A, B)). The TGA of Gamewa(A,B) is defined as
(L, l0, {u, c}, X,E, Inv) where L = LA ×LB × (Σ∪{τc, τu, τ}), l0 = (l0A, l0B , τ),
X = XA ∪ XB ∪ {h}, Inv = true and

E = {((lA, lB , τ), g, u,R ∪ {h}, (l′A, lB , a)) | (lA, g, a,R, l′A) ∈ Eu
A ∧ a 4= τ}

∪ {((lA, lB , τ), g, u,R ∪ {h}, (lA, l′B , a)) | (lB , g, a,R, l′B) ∈ Ec
B ∧ a 4= τ}

∪ {((lA, lB , a), g, c, R, (l′A, lB , τ)) | (lA, g, a,R, l′A) ∈ Ec
A ∧ a 4= τ}

∪ {((lA, lB , a), g, c, R, (lA, l′B , τ)) | (lB , g, a,R, l′B) ∈ Eu
B ∧ a 4= τ}

∪ {((lA, lB , τ), g, u,R ∪ {h}, (l′A, lB , τu)) | (lA, g, τ, R, l′A) ∈ Eu
A}

∪ {((lA, lB , τ), g, u,R ∪ {h}, (lA, l′B , τc)) | (lB , g, τ, R, l′B) ∈ Ec
B}

∪ {((lA, lB , τc), g, c, R, (l′A, lB , τ)) | (lA, g, τ, R, l′A) ∈ Ec
A}

∪ {((lA, lB , τu), g, c, R, (lA, l′B , τ)) | (lB , g, τ, R, l′B) ∈ Eu
B}

∪ {((lA, lB , τc), true, c, ∅, (lA, lB , τ)) | lA ∈ LA ∧ lB ∈ LB}
∪ {((lA, lB , τu), true, c, ∅, (lA, lB , τ)) | lA ∈ LA ∧ lB ∈ LB}

The control property is exactly the same as the one of Definition 8.

Theorem 4. A ≤wa B iff B has a winning strategy in the timed game
Gamewa(A,B).

4 Timed Control under Partial Observability

In [11] we gave an on-the-fly algorithm to solve the problem of timed controllab-
ility under partial observability. In such games, a controller has only imperfect or
partial information on the state of the system (that includes the environment).
This imperfect information is given in terms of a finite number of observations on
the state of the system. The controller can only use such observations to distin-
guish states and base its strategy on. In addition, we are considering the general
approach where the controller and the environment are competing for actions
precisely like the timed games as defined in Section 2. Observation changes are
triggered only by either a discrete action or the first point after a delay when
entering a different time constrained observation.

The timed game structure we consider for playing such games is the previous
timed game automata but extended by a finite set P of pairs (K,ϕ) where K ⊆ L
and ϕ ∈ B(X), called observable predicates. We consider only timed bounded
timed automata where clock values are all bounded by a natural number M in
practice.

11

This two-player game is played as follows: Player 1 (the controller) commits
to a choice of action σ. Then

1. if σ is a discrete action, player 2 (the environment) can choose to play any
of its actions or σ or let time elapse as long as σ is not enabled and as long
as the observation does not change;

2. if σ is the delay action, player 2 can choose to play its any of its actions or
let time pass as long as the observation does not change;

3. player 1 gets back its turn and can choose another action as soon as the
observation changes.

According to these rules, a controllable action is “played” until the obser-
vation changes. In fact, it is also possible that the chosen action is not even
played. Therefor are interested for strategies for the controller where the actions
are changed only when the observation changes. Such strategies are called obser-
vation based stuttering invariant strategies (OBSI). A winning OBSI strategy is
such that it leads to a winning observation whatever the environment chooses.
The winning condition is given as a particular observation. The algorithm presen-
ted in [11] that solves this problem is based on constructing sets of symbolic
states (l̄, Z) with l̄ being the discrete part and Z a zone.

The important point in the exploration algorithm to consider here (to explain
the experimental results) is that the exploration is done by computing successors
of sets of such states according to a given action σ until the current observation
changes as the rules dictate. The resulting space-space is partitioned by the com-
binations of the observations (exponential), the number of sets of symbolic states
is exponential in function of the number of symbolic states, and the number of
states is itself exponential in the number of clocks.

4.1 Example of Use of Alternating Simulation for Timed Control
under Partial Observability

x := 0,
pos++

x := 0
pos < N LoseReady

Win

x >= N+3

x <= 1
x > 0

x >= N+3 Lose

Win

x > N+1

Fig. 2. Concrete model of a box (left) and abstract model (right).

In this case-study, a box is placed on a moving conveyor belt to reach a place
where it will be filled. The box has to go through a number of steps, that is
a parameter N in the model. Each step takes a variable duration (0 to 1 time

12

unit); consequently, the exact time when the box arrives in the state Ready is
unknown. And the box might stay only N + 3 time units in the state Ready.

Thus the challenge for the controller is to fill the box while it is in the state
Ready. This would be easy if the controller observes the progress of the box on
the conveyor belt. But we assume precisely that this is not the case. Then the
controller has to fill the box at a time where it is sure that the box is in the state
Ready, however the box has progressed on the conveyor belt.

Figure 2 (left part) shows a model of the system as a timed game automaton.
The loop represents the progress on the conveyor belt, incrementing the variable
pos, which represents the position on the belt.

Now, using the control formula: c : A ♦Win (where ♦ is the temporal op-
erator “eventually”, ♦φ is a shorthand for true U φ), Uppaal-Tiga allows us
to generate a controller which will fill the box while it is in the state Ready.
However, the strategy synthesized will be based on full information, including
the position of the box on the conveyor belt. In our context, this information is
not available for the controller.

We therefore introduce a fully observable, abstract model, shown in Figure 2
(right part). Again we use Uppaal-Tiga to check for controllability. To guar-
antee that the strategy obtained from this abstract model also correctly controls
our original concrete model we use Uppaal-Tiga to establish a weak, timed
alternating simulation between the two models using the technique presented
in Section 3. Actually, in order to treat this case-study, we had to use a more
general simulation relation than the one presented in this paper: indeed, the
abstract model does not fit the requirement that a controllable transition can
fire when an invariant expires. This case can be handled, but it introduces quite
tricky constructions that we did not want to detail in this paper.

4.2 Experimental Results

We compare two methods for checking the controllability of our property. Table 1
shows the number of explored symbolic states and the execution time obtained
experimentally. The first method is based on our simulation technique. The
second method uses an implementation in Ruby of the algorithm presented in
[11] that solves directly the control problem under partial observability. Beyond
the fact that the Ruby code is interpreted and slow, we see clearly that its
execution time grows as an exponential of N . In contrast the time required for
checking the simulation relation using Uppaal-Tiga is quadratic. The number
of symbolic states explored by our simulation-based method is linear, while the
dirst method for partial observability explores a quadratic number of sets of
symbolic states.

We can give the following explanations. We note that in our example we
have the following observation on a clock y that belongs to the controller: y ∈
[0, 1). This has the effect of cutting zones down to regions in practice. We have
the worst case for zone-based exploration. In addition, we have to consider the
combinations of those regions that can define different sets of symbolic states,
which is exponential. This exponential shows up only in time and not in space.

13

simulation
N symbolic states time (in seconds)
100 1006 0.3
200 2006 0.9
300 3006 2.0
400 4006 3.5
500 5006 5.4
600 6006 7.7
700 7006 10.4
800 8006 13.6
900 9006 17.1
1000 10006 21.1

partial observability
N sets of symbolic states time (in seconds)
1 83 0.5
2 160 1.8
3 274 4.8
4 421 10.3
5 625 21.9
6 864 42
7 1162 77
8 1491 172
9 1961 244
10 2486 415

Table 1. Experimental results

This is due to on-the-fly inclusion checks that remove sets, hence they do not
appear at the end. We note that the inclusion check between two sets of states
is more complex than ordinary inclusion check between two zones and is done
in this prototype by checking inclusion between all pairs of zones, one zone for
each set. This adds a polynomial time in function of the number of zones. This
behaviour is similar to determinization of non-deterministic automata that can
give such combinatorial blow-ups.

5 Conclusion

We have defined strong and weak alternating timed simulation between timed
game automata and shown that these relations preserve controllability w.r.t.
ATCTLλ. Moreover we have proposed a coding of the strong and weak altern-
ating simulation problems as timed games. Any winning strategy of the timed
game can be used to build the weak alternating timed simulation relation and
vice versa.

We have shown how alternating timed simulation relations can be used to
control efficiently partially observable systems. We used our tool Uppaal-Tiga

to solve the timed games generated from a generic case-study.
Though focus in this paper is on timed (weak) alternating simulation pre-

orders the given constructions may be adapted to support the checking of other
timed preorders, including ready simulation preorder and (weak) bisimulation.
Also our constructions were designed so that it is straitforward to adadpt them
to preorders between networks of timed game automata.

References

1. Y. Abdeddäım, E. Asarin, M. Gallien, F. Ingrand, C. Lessire, and M. Sighireanu.
Planning Robust Temporal Plans A Comparison Between CBTP and TGA Ap-
proaches. In Proceedings of the International Conference on Automated Planning

14

and Scheduling International Conference on Automated Planning and Scheduling
(ICAPS’07). AAAI, September 2007.

2. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time. Inf.
Comput., 104(1):2–34, 1993.

3. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

4. R. Alur, Th. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
In FOCS, pages 100–109, 1997.

5. R. Alur, Th. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement
relations. In CONCUR, volume 1466 of LNCS, pages 163–178. Springer, 1998.

6. G. Behrmann, K. G. Larsen, and J. I. Rasmussen. Optimal scheduling using priced
timed automata. SIGMETRICS Performance Evaluation Review, 2005.

7. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: a
model-checking tool for real-time systems. In CAV, volume 1427 of LNCS, pages
546–550, 1998.

8. F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly
algoriths for the analysis of timed games. In CONCUR, volume 3653 of LNCS,
pages 66–80, 2005.

9. K. Cerans. Decidability of bisimulation equivalences for parallel timer processes.
In CAV, volume 663 of LNCS, pages 302–315. Springer, 1992.

10. K. Cerans, J. Chr. Godskesen, and K. G. Larsen. Timed modal specification –
theory and tools. In CAV, volume 697 of LNCS, pages 253–267. Springer, 1993.

11. Alexandre David, Franck Cassez, Kim G. Larsen, Didier Lime, and Jean-François
Raskin. Timed control with observation based and stuttering invariant strategies.
In 5th International Symposium on Automated Technology for Verification and
Analysis (ATVA 2007), Lecture Notes in Computer Science. Springer, 2007.

12. L. De Alfaro, T. A. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-
state games. In CONCUR, volume 2154 of LNCS, pages 536–550. Springer, 2001.

13. H. E. Jensen, K. G. Larsen, and A. Skou. Scaling up Uppaal automatic verification
of real-time systems using compositionality and abstraction. In FTRTFTS, volume
1926 of LNCS, pages 19–30. Springer, 2000.

14. Jan Jakob Jessen, Jacob Illum Rasmussen, Kim G. Larsen, and Alexandre David.
Guided controller synthesis for climate controller using uppaal-tiga. In Proceed-
ings of the 19th International Conference on Formal Modeling and Analysis of
Timed Systems, number 4763 in LNCS, pages 227–240. Springer, 2007.

15. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Journal of Software
Tools for Technology Transfer (STTT), 1(1-2):134–152, 1997.

16. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In STACS, volume 900, pages 229–242. Springer, 1995.

17. C. Weise and D. Lenzkes. Efficient scaling-invariant checking of timed bisimulation.
In STACS, volume 1200 of LNCS, pages 177–188, 1997.

15

