
Model-based Framework for Schedulability

Analysis Using Uppaal 4.1

Alexandre David Jacob Illum Kim G. Larsen
Arne Skou

Center For Embedded Software Systems
Department of Computer Science

Aalborg Univeristy
Denmark

January 12, 2009

1 Introduction

Embedded systems involve the monitoring and control of complex physical
processes using applications running on dedicated execution platforms in a
resource constrained manner in terms of for example memory, processing
power, bandwidth, energy consumption, as well as timing behavior.

Viewing the application as a collection of (interdependent tasks) various
scheduling principles may be applied to coordinate the execution of tasks in
order to ensure orderly and efficient usage of resources. Based on the physical
process to be controlled, timing deadlines may be required for the individual
tasks as well as the overall system. The challenge of schedulability analysis
is now concerned with guaranteeing that the applied scheduling principle(s)
ensure that the timining deadlines are met.

For single processor systems, industrial applied schedulability analysis
tools include Sys Corporation, and RapidRMA from TriPacific based on Rate
Monotonic Analysis. More recently SymTA/S has emerged as an efficient tool
for system-level performance and timing analysis based on formal scheduling
analysis techniques and symbolic simulation. These tools benefit from great
succes in real-time scheduling theories; results that were developed in the

1

1970ies and the 1980ies, and are now well-established. However these theories
and tools have become seriously challenged by the rapid increase in the use
of multi-cores and multiprocessor system-on-chips (MPSoC).

To overcome the limitation to single-processor architectures, applications
of simulation have been pursued, including – in the case of MPSoC – the
ARTS framework (based on SystemC) [19, 20], the Daedaleus simulation
tool [22] and Design-Trotter [21].

Though extremely useful for early design exploration by providing very
adequate performance estimates for example memory usage and energy con-
sumption as well as options for parallelizations, the use of simulation makes
the schedulability analysis provided by these tools unreliable: though no
deadline-violation may be revealed after (even extensive) simulation, there is
no guarantee that this will never occur in the future. For systems with hard
real-time requirements this is not satisfactory.

During recent years the use of real-time model checking has become an
attractive and maturing approach to schedulability analysis providing abso-
lute guarantees: if after model checking no violations of deadlines have been
found, then it is guaranteed that no violations will occur during execution.
In this approach, the (multiprocessor) execution platform, the tasks, the in-
terdependencies between tasks, their execution times, and mapping to the
platform are modeled as timed automata [3] allowing efficient tools such as
Uppaal [24] to verify schedulability using model checking.

The tool TIMES [4] has been pioneering this approach, providing a rather
expressive task-model called time-triggered architecture (TTA) allowing for
complex task-arrival patterns, and using the verifition engine of Uppaal to
verify schedulability. However, so far the tool only supports single-processor
scheduling and limited dependencies between tasks. Other schedulability
frameworks using timed automata as a modeling formalism and Uppaal as
a backend include [8, 10, 11, 14, 23]. Also, related to schedulability analysis,
a number of real-time operating systems (RTOS) have been formalized and
analysed using Uppaal, [13, 17].

The MOVES analysis framework [16] presented in a different chapter of
this book is closely related to the present chapter. Whereas the chapter
on MOVES reports on the ability to apply Uppaal to verify properties
and schedulability of embedded systems through a number of (realistic size)
examples, we provide in this chapter a detailed – and compared with [5]
alternative – account on how to model multiprocessor scheduling scenarios
most efficiently, by making full use of the modeling formalism of Uppaal.

2

The chapter offers a Uppaal modeling framework (download from [12]), that
may be instantiated to suit a variety of scheduling scenarios, and that can
be easily extended. In particular, the framework includes:

• A rich collection of attributes for tasks, including: off-set, best and
worst case execution times, minimum and maximum interarrival time,
deadlines, and task priorities.

• Task dependencies.

• Assignment of resources, for example processors or busses, to tasks.

• Scheduling policies including First-In First-Out (FIFO), Earliest Dead-
line First (EDF), and Fixed Priority Scheduling (FPS).

• Possible preemption of resources.

The combination of task dependencies, execution time uncertainty and
preemption makes schedulability of the above framework undecidable [18].
However, the recent support for stopwatch automata [9] in Uppaal leads
to an efficient approximate analysis that has proved adequate on several
concrete instances as demonstrated in [16].

The outline of the remainder of the chapter is as follows: In Section 2, we
show the formalism of Uppaal by the use of an example. In Section 3, we give
an introduction to the types of schedulability problems that can be analyzed
using the framework presented in Section 4. Following the framework, in
Section 5 we show how to instantiate the framework for a number of different
schedulability problems by way of an example system. Finally, we conclude
the paper in Section 6.

2 UPPAAL And Its Formalism

In this section, we provide an introductory description of the Uppaal mod-
eling language.

2.1 Modelling Language

The tool Uppaal is designed for design, simulation, and verification of real-
time systems that can be modeled as networks of timed automata [2] ex-
tended with integer variables and richer user-defined data types. A timed

3

automaton is a finite-state machine extended with clock variables. The tool
uses a dense time model of time so clock variables evaluate to real numbers.
All the clocks progress synchronously.

We use in this section the train-gate example (distributed with the tool).
It is a railway system that controls access to a bridge. The bridge has only
one track and a gate controller ensures that at most one approaching train
is granted access to this track. Stopping and restarting a train takes time.
Figure 1 shows the model of a train in the editor of Uppaal. When a train
is approaching (Appr), it can be stopped before 10 time units otherwise it
is too late and the train must cross the bridge (Cross). When it is stopped
(Stop), it must be restarted (Start) before crossing the bridge.

Figure 1: View of the train template in the editor.

The timing constraints associated with the locations are invariants. They
give a bound on how long these locations can be active: A train can stay
in Appr at most 20 time units and then must leave this location. Edges be-
tween locations have guards (x<=10) to constrain when they can be taken,
synchronizations (stop[id]?) for communication, and updates (x=0 to reset
the clock x). Automata communicate with each other by means of chan-
nels. Here we have an array of channels and every train has its own id. The
gate automaton selects a train and synchronizes with it with stop[id]!. In

4

Listing 1: Global declarations for the train-gate model.

1 const int N = 6; // Number of trains
2 typedef int [0,N−1] id t;
3 chan appr[N], stop[N], leave [N];
4 urgent chan go[N];

Uppaal it is possible to declare arrays of clocks or any other type. Chan-
nels can be declared to be urgent to prevent delays if a synchronization is
possible, or broadcast to achieve broadcast synchronization instead of hand-
shake. Listing 1 shows the global declaration of the model with the channel
declarations. A constant is declared to size the model to the desired number
of trains. The train model here is in fact a template for trains. Trains are
instantiated with a given id. In this case, having in the system declaration
system Gate, Train; will instantiate an automaton for the Gate controller
and all the possible trains ranging over their missing argument types. This is
the auto-instantiation feature. It is possible to give specific argument values
too. The type id t is a user-defined type declared in listing 1. Uppaal

supports more complex user-defined types such as structures. It is possible
to combine arrays, structures, bounded integers, channels, and clocks.

Figure 2 shows the simulator with the Gate automaton. On the mes-
sage sequence chart the different synchronizations between the automata are
shown. The automaton has two main locations where the bridge is free or
occupied. When a train is approaching it synchronizes with the gate and
with a function call it is queued by the gate. If more trains are approaching
then they are queued and stopped. Queuing followed by stopping is atomic,
which is modeled by marking the location committed. Such a location forbids
interleaving with other automata when it is active. A location can be marked
urgent to mean that time cannot delay while it is active. After this, the gate
dequeues a train and leaves it to cross the bridge. After that it will try to
dequeue more trains and restart them with go[front()]!. Here a function
call is used to return the front of the queue. The Gate “picks” a train with
the select statement e:id t. This allows the modeller to scale the model
with the number of trains while still keeping the automaton compact. List-
ing 2 gives the complete local declarations of the Gate automaton. Uppaal

supports C-like syntax that allows us to implement a queue here. One of the
locations of the gate is marked “C”.

5

Listing 2: Local declarations of the Gate template.

1 id t list [N+1];
2 int [0,N] len ;
3

4 void enqueue(id t element) // Put an element at the end of the queue
5 {
6 list [len++] = element;
7 }
8

9 void dequeue() // Remove the front element of the queue
10 {
11 int i = 0;
12 len −= 1;
13 while (i < len)
14 {
15 list [i] = list [i + 1];
16 i++;
17 }
18 list [i] = 0;
19 }
20

21 id t front () // Returns the front element of the queue
22 {
23 return list [0];
24 }
25

26 id t tail () // Returns the last element of the queue
27 {
28 return list [len − 1];
29 }

6

Figure 2: View of a simulation of the train-gate model showing the gate and
one train.

Another feature of the language is the scalar type to define scalar sets.
When these sets are used, the model checker takes advantage of their symme-
try. Different variants of Uppaal exist to other specific problem domains.
Uppaal-TIGA, [6, 15], is based on timed game automata and is targeted
towards code synthesis. Uppaal-CORA, [7, 25] is designed for cost-optimal
reachability analysis. Uppaal-PRO extends timed automata with probabil-
ities.

Further features of Uppaal include meta variables which can be used to
store value such as regular variables, however, meta variables are not included
in the state inclusion check when doing model checking. That is, two states
are considered identical if all but the meta variables agree. Meta variables
are declared using the ‘meta’ keyword (meta int i).

Finally, Uppaal (as of version 4.1) supports stopwatches. Stopwatches
are like clock variables, however, the progress of stopwatches can be set to
either zero or one in automata locations, which is specified as an invariant
(x’==0 for clock x). When analyzing models using stopwatches, Uppaal

computes a finite overapproximation of the state space and is, thus, guar-
anteed to terminate even though the model checking problem for stopwatch

7

automata is, in general, undecidable. Checking properties such as avoidance
of deadlocks can be meaningful for stopwatch automata, since if the overap-
proximation does not have a deadlock then neither will the real system. In
Section 4, stopwatches are used to model preemptive schedulability problems
using Uppaal.

2.2 Specification Language

The specification language of Uppaal is a subset of timed computation tree
logic, [1] (TCTL). The following properties are supported: (i) A[] φ, (ii)
E<> φ, (iii) A<> φ, (iv) E[] φ, and (v) φ −− > ψ, where φ and ψ are
state predicates. The safety property (i) specifies that φ must be satisfied
for all states. The reachability property (ii) specifies that there exists a path
on which a state satisfies φ. The reachability property (iii) specifies that for
all path there must be a state that satisfies φ. The liveness property (iv)
specifies that there is a path on which all states satisfy φ. The “leads-to”
property (v) specifies that whenever a state satisfying φ is reached then for
all subsequent paths a state satisfying ψ is reached. In addition, Uppaal

can check for deadlocks with the property A[] not deadlock.

3 Schedulability Problems

At the core of any schedulability problem are the notions of tasks and re-
sources. Tasks are jobs that require the usage of resources for a given duration
after which tasks are considered done/completed. The added constraints to
this basic setup is what defines a specific schedulability problem. In this
section, we define a range of classical schedulability problems.

3.1 Tasks

A schedulability problem always consists of a finite set of tasks that we
consistently will refer to as T = t1, t2, ..., tn. Each task has a number of
attributes that we refer to by the following functions:

• initial offset: T → N

Time offset for initial release of task.

8

• bcet: T → N≥0

Best case execution time of task.

• wcet: T → N≥0

Worst case execution time of task.

• min period: T → N

Minimum time between task releases.

• max period: T → N

Maximum time between task releases.

• offset: The time offset into every period, before the task is released.

• deadline: T → N≥0

The number of time units within which a task must finish execution
after its release. Often, the deadline coincides with the period.

• priority: Task priority.

These attributes are subject to the obvious constraints that bcet (t) ≤
wcet(t) ≤ deadline(t) ≤ min period(t) ≤ max period(t). The periods
are ignored if the task is non-periodic.

The interpretation of these attributes is that a given task ti cannot exe-
cute for the first offset (ti) time units and should hereafter execute exactly
once in every period of period (ti) time units. Each such execution has a
duration in the interval [bcet (ti),wcet (ti)]. The reason why tasks have a
duration interval instead of a specific duration is that tasks are often com-
plex operations that need to be executed and the specific computation of a
task depends on conditionals, loops, etc. and can vary between invocations.
Furthermore, for multi-processor scheduling, considering only worst-case ex-
ecution times are not is insufficient as deadline violations can result from
certain tasks exhibiting best-case behavior.

We say that a task t is ready (to execute) at time τ iff:

1. τ ≥initial offset(t)

2. t has not executed in the given period dictated by τ .

3. All other constraints on t are satisfied. See 3.2 for a discussion on task
constraints.

9

3.2 Task Dependencies

Task execution is often not just constrained by periods, but also by in-
terdependencies among tasks., for example because one task requires data
that is computed by other tasks. Such dependencies among a set of tasks
T = t1, t2, ..., tn are modelled as a directed acyclic graph (V,E) where tasks
are nodes (i.e., V = T) and dependencies are directed edges between nodes.
That is, and edge (ti, tj) ∈ E from task ti to task tj indicates that task tj
cannot begin execution until ti has completed execution.

3.3 Resources

Resources are the elements that execute tasks. Each resource uses a scheduler
to determine which task gets executed on a given resource at any point in
time. Resources are limited by only allowing the execution of a single task
at any given time.

Tasks are a priori assigned to resources. For a set of resources R =
r1, ..., rk and a set of tasks T = t1, ..., tn, we capture with the function assign

: T → R.
In a real-time system, resources function as different types of processors,

communication busses, etc. Combined with task graphs we can use tasks
and resources to emulate complex systems with such task interdependency
on different processors. For example, if we want to model two tasks ti and tj
with dependency ti → tj , but the tasks are executed on different processors
and tj needs the results of ti to be communication across a data bus, we
introduce an auxiliary task tic that requires the bus resource and update the
dependencies to ti → tic → tj . We illustrate this concept in ... ??

3.3.1 Scheduling Policies

In order for a resource to determine which task to execute and which tasks
to hold, a resource applies a certain scheduling policy implemented in a
scheduler. Scheduling strategies vary greatly in complexity depending on the
constraints of the schedulability problem. In this section we discuss a subset
of scheduling policies for which we have included models in our scheduling
framework.

• First-In First-Out (FIFO) Ready tasks are added to a queue in the
order they become ready.

10

• Earliest Deadline first (EDF) Ready tasks are added to a sorted
list and executed in the order of earliest deadline.

• Fixed Priority Scheduling (FPS) Each task is given an extra at-
tribute, priority, and ready tasks are executed according to the high-
est priority.

Schedulers operate in such a manner that resources are never idle while
there are ready tasks assigned to them. That is, as soon a task has finished
execution a new task is set for execution.

3.3.2 Preemption

Resources come in two shapes, preemptive and non-preemptive. A non-
preemptive resource means that once a task has been assigned to execute
on a given resource, that task will run until completion before another task
is assigned to the resource. Preemption means that a task assigned to a
resource can be temporarily halted from execution if the scheduler decides
to assign another task to the resource. We say that the first task has been
preempted. A preempted task can later resume execution for the remainder
of its duration.

Preemption allows for greater responsiveness to tasks that are close to
missing their deadline, but that flexibility is on behalf of increased complexity
of the schedulability analysis. The framework we define in the following
section will include a model for schedulability analysis with preemption.

3.4 Schedulability

Now, we define what it means for a system to be schedulable. A system of
tasks with constraints and resources with scheduling policies is said to be
schedulable if no execution satisfying the constraints of the system violates
a deadline.

4 Framework Model in Uppaal

In this section, we will describe our Uppaal framework for analyzing the
scheduling problems defined in Section 3. The framework is constructed

11

such that a model of a particular scheduling problem consists of three differ-
ent timed automata templates: A generic task template, a generic resource
template, and a scheduling policy model for each applied policy. We will
describe the templates in this order.

4.1 Modeling Idea

In order to best explain the framework models, we will provide an abstract
scheduling model that will serve as a base for the framework models. The
abstract scheduling model is based on the basic scheduling model defined
in [7].

a.)

Error

Done

Ready

Waiting

time >= Deadline

finished[id]?

ready[resource]!

b.)
InUse

x <= UseTime

Idle

x == UseTime

finished[task]! ready[id]?

x = 0

Figure 3: Abstract task and resource models.

This model, depicted in Figure 3 naturally divides the scheduling problem
into tasks (Figure 3a) and resources (Figure 3b). Each task and resource has
a unique identifier (id). Initially tasks are Waiting and when a task is ready
to execute, this is signaled to the resource, to which the task is assigned,
using the channel ready, indexed with the appropriate resource id (i.e., the
variable resource). This moves the task to Ready where it remains until either
the deadline has passed, in which case the task moves to Error, or it receives
a signal that execution is complete via the channel finished indexed with the
task id, in which case the task moves to Done.

Resources have two locations Idle and InUse indicating the state of the
resource. Resources move from Idle to InUse upon a ready signal from a
task, and return to Idle after the appropriate execution time. Resources
signal that the task has finished execution using finish, indexed with the
appropriate task.

With this model, schedulability can be verified with the following CTL
query:

12

A[] forall(i : task id) not Task(i).Error

That is, is it always the case that on all execution paths no task will ever be
in the Error location?

This is the base of the framework model introduced in the following sec-
tions. The added complexity of these models is because of the handling of
preemption, periods, and different scheduling policies. Before introducing
the models, we will introduce some of the basic data structures used in the
code.

4.2 Data Structures

For each scheduling problem with tasks T = t0, ..., tn and resources R =
r0, ..., rk we define the following data types for convenience.

t id: Task ids ranging from 0 to n.

r id: Resource ids ranging from 0 to k.

time t: Integer value between zero and the largest period among all tasks.

Having established the above data types we can move to more complex
data types such as the data structure representing a task, which is called
task t and depicted in Listing 3. In other words, the task data structure
holds all task attributes defined in Section 3.1. Note that the priority is
given by pri as ‘priority’ is a reserved keyword in Uppaal.

To specify a set of tasks, we create a global array called task of type task t
with one entry per task. The index of the array is the unique task identifier.
See Section 5 for an example of task instantiation.

The final data structure is buffer t which is the central data structure
of the resource template. Each resource has a buffer that keeps track of
the tasks ready to execute on a given resource and is sorted according to
the respective scheduling policy. The buffer element is defined in Listing 4.
Resource buffers are held in a global array called buffer with one index per
resource.

The above data structures serve a the foundation of the template models
defined in the following sections.

13

Listing 3: Task structure

1 typedef struct {
2 time t initial offset ;
3 time t min period;
4 time t max period;
5 time t offset ;
6 time t deadline ;
7 time t bcet;
8 time t wcet;
9 r id resource ;

10 int pri ;
11 } task t ;

Listing 4: Resource buffer.

1 typedef struct {
2 int [0,Tasks] length ;
3 t id element[Tasks];
4 } buffer t ;

14

4.3 Task Template

The task template serves as a model for both periodic and non-periodic tasks.
The type of scheduling problem at hand is specified using the global Boolean
parameter Periodic. This variable is tested in the task template to guarantee
that tasks observe correct periodic or non-periodic behavior.

ready_task = id

completed()

finished[id]!

ready[resource()]!

time[id] > deadline()

time[id] = 0, x = 0,
new_period()

x >= BCET()

dependencies_met()

time[id] >= minPeriod()

Ready

PeriodDone

WaitingOffset

x’ == 0
WaitingDepedency

Error

Done

Initial

time[id] == initialOffset()

x’ == 0 &&
time[id] <= maxPeriod()

x’ == isRunning() &&
x <= WCET()

x’ == 0 &&
time[id] <= initialOffset()

x’ == 0 Periodic

x’ == 0 &&
time[id] <= offset()

!Periodic

time[id] == offset()

Figure 4: Task template. Takes argument id of type t id.

The task template, depicted in Figure 4, takes a single parameter, namely
the task id, which is used to index the task array. The basic structure of a
task consists of five locations named:

• Initial (initial): The task is waiting for the initial offset time to
elapse.

• Waiting: The task is waiting for certain conditions in order to be ready
to execute. This location is actual split into two location representing

15

Listing 5: Function to determine clock rate of the x clock of a given task.

1 int [0,1] isRunning() { return (buffer [resource ()]. element[0] == id? 1 : 0);}

whether the task is waiting for the period offset to have elapsed or
some other user-defined requirement. We return to the latter later in
this section.

• Ready: The task is either executing or waiting to execute in the buffer
of the respective resource.

• Error: The task did not manage to complete execution before the
deadline.

• Done: The task has successfully completed execution within its dead-
line. This location is split into two locations. Which one of the two
Done locations is used depends on whether the scheduling problem i
periodic or not. In case the problem is non-periodic the done location
is final, otherwise the done location is a holding location waiting for
the next period.

For every task attribute, we define a local function to access that at-
tribute in the global task array. That is, the function resource() returns
task[id].resource, BCET() returns task[id].bcet, etc.

Each task uses two clock variables called time and x, where time represents
the time since the beginning of the current period, and x represents how long
the task has executed in the current period. The variable x is a local variable
whereas time is global and, thus, indexed by the task id. As we are using
stopwatch automata, note that the progress rate of x is set to zero in all but
the Ready location. In Ready, the rate is determining whether the task is
currently executing on the given resource. This is checked using the local
function isRunning() defined in Listing 5.

On the other hand, time is always running and reset at every period, so
that when time exceeds the deadline, the task can move to Error.

Upon entering Ready, the task updates the variable ready task with the
task id to indicate which task has signaled to the given resource. The resource
utilizes this id when inserting the task in the queue for execution. We return
to this in Section 4.4.

16

To allow for problem specific requirements, such as individual task con-
straints, the task template includes the following three functions new period,
dependencies met, and completed. These functions can be used for a va-
riety of problem specific purposes, the most obvious of which is the task
graph dependency definition. How to model task graphs is illustrated below.
new period is executed on the edges leading into Waiting and used for up-
dating data structures indicating that the task is beginning a new period,
dependencies met is tested in the guard leading from WaitingDependency to
Ready, and completed is executed on the edge exiting Ready towards either
Done location.

4.3.1 Modelling Task Graphs

To model task graphs using the customizable functions described above, we
first need a global data structure to hold the task graph itself. In Listing 6,
the task graph is modeled using a square Boolean dependency matrix where
entry (i, j) dictates whether task i depends on task j. In the sample, we have
four tasks t0, ..., t3 where task 0 depends on task 1 which depends on task 2
which depends on task 3.

Furthermore, we a have a Boolean array variable complete that determines
whether a given task has finished execution. It is the responsibility of every
function to reset the corresponding entry of this array in every period. In
Listing 6, this is handled in the local task function new period. The value of
complete is set to true when a task finishes execution in the completed function
call. Finally, tasks cannot enter the Ready location from WaitingDependency

until the function dependencies met evaluates to true. This function simply
iterates the corresponding row of the task graph matrix and asserts that if
the task depends on another task, the entry of the complete array for that
task must be true.

With these steps, we have successfully modelled a task graph using our
framework.

Note that extra care must be taken about specifying task periods when
using task dependencies, as the meaning of a dependency can become unclear
if the task periods are out of sync. The above handling of task graphs reset
the complete variable on every new period, which is safe if dependent tasks
have the same period, but not necessarily so if the tasks do not. Thus, a
good rule of thumb is to only specify task dependencies between tasks that
have identical periods and no non-determinism on periods.

17

Listing 6: Modelling Task Graphs

1 //Global declaration
2 const bool TaskGraph[Tasks][Tasks] = {
3 {0,1,0,0},
4 {0,0,1,0},
5 {0,0,0,1},
6 {0,0,0,0}
7 };
8 bool complete[Tasks];
9

10 //Task local declaration
11 void new period() {
12 complete[id] = false ;
13 }
14

15 bool dependencies met() {
16 return forall (j : t id) TaskGraph[id][j] imply complete[j];
17 }
18

19 void completed() {
20 complete[id] = true;
21 }

18

4.4 Resource Template

The resource template described in this section is identical for both pre-
emptive and non-preemptive schedulers. The resource model is depicted in
Figure 5 and the main difference from this model and the idea described in
Section 4.1 is that the resource template does not include a clock. All timing
is handled solely by the tasks.

ready[id]?

ready[id]?

finished[front()]?

insert_task[policy]!

inserted? empty()

!empty()

Idle

InUse

removeTask()

empty()

!empty()

insert_at(0,ready_task,id)

setParams(ready_task,id,preemptive)

Figure 5: Resource. Takes arguments id of type r id, preempt of type bool,
and policy of type policy t.

A resource takes three input parameters which are the resource id (id),
a Boolean preempt to indicate whether the resource is preemptive, and a
scheduling policy of integer type policy t.

The template has the two main locations Idle and InUse to indicate the
status of the resource. Idle resources are waiting for tasks to signal that they
are ready via the ready channel of the resource. Upon receiving such a signal
from either Idle or InUse, the resource will place the task at the front of
its buffer if the buffer is empty. Emptiness is tested with the local function
empty that reads the length of the respective buffer. Inserting a task in the
buffer is done via the global insert at function defined in Listing 7 and takes
as argument a position, a task id, and a resource id. The inserting procedure
moves all tasks in the buffer from the insert position one position back (lines
3-5) and then inserts the task at the desired position, and finally, updates
the length of the buffer.

In case there is at least one element in the resource buffer already, the

19

Listing 7: Insert a task in the buffer of a resource at a given position.

1 void insert at (int [0,Tasks] pos, t id tid , r id rid) {
2 int i ;
3 for(i = buffer [rid]. length ; i > pos; i−−) {
4 buffer [rid]. element[i] = buffer [rid]. element[i−1];
5 }
6 buffer [rid]. element[pos] = tid;
7 buffer [rid]. length++;
8 }

scheduling principle determines where in the buffer to place the ready task.
Each scheduling principle is a separate model that is ‘activated’ by synchro-
nization over the channel insert task indexed which the scheduling policy.
The scheduling policy needs information about the task, the resource, and
whether the resource is preemptive in order to make the decision of where to
place the incoming task in the buffer. This information is transferred via the
setParams function that copies this information to meta variables that can
be read by the scheduler. We return to this in Section 4.5.

The resource remains in the committed location waiting for the signal
inserted indicating that the task has been inserted in the resource buffer ac-
cording to scheduling policy. The waiting location is committed to guarantee
that all task insertion processes should take place as an atomic operation. If
a scheduling policy does not adhere to this constraint, the system deadlocks.

Upon inserting the task in the buffer according to the scheduling policy,
the resource moves to the InUse location. The resource remains there until
either the running task signals completion of execution through finished or an-
other task signals that it is ready. In the latter case, the resource repeats the
insertion process described above. In the former case, the resource removes
the task from its buffer with the local function removeTask (see Listing 8).
Depending on whether the resource buffer is empty the resource returns to
either Idle or InUse.

The above resource template can be used to model different types of
resources and supports an easy manner to implement specialized scheduling
policies with minimal overhead. In the following section we describe how to
model three types of scheduling policies in our framework.

20

Listing 8: Remove the front task from the resource buffer of the given re-
source.

1 void removeTask() {
2 int i = 0;
3 buffer [id]. length−−;
4 do {
5 buffer [id]. element[i] = buffer [id]. element[i+1];
6 i++;
7 } while (i < buffer [id]. length);
8 buffer [id]. element[buffer [id]. length] = 0;
9 }

4.5 Scheduling Policies

In this section, we describe models for three types of scheduling policies:
FIFO, FPS, and EDF. Common to all scheduling principles in our framework
is that the scheduling policy is only called if there is at least one element in
the resource buffer already. This precondition is guaranteed by the resource
template by not calling the scheduling policy when the resource buffer is
empty and instead inserting the ready task at the front of the buffer.

The parameters transferred to the scheduling policies via setParams func-
tion are stored in a struct meta variable called param. This way, the param-
eters are accessible to the scheduling policies without increasing the state
space as meta variables are ignored for state comparison. The parameters
are availble to the policy via param.task, param.prempt, and param.resource,
respectively.

4.5.1 First-In First-Out

First-in first-out is the simplest scheduling policy as tasks are simply put
into the resource buffer in the order in which they arrive. This implies that
FIFO scheduling disregards whether the resource is preemptive or not. The
model for the FIFO policy is depicted in Figure 6 where insertion of the task
is handled on the edge synchronizing on insert task.

21

insert_task[FIFO]?

insert_at(buffer[param.resource].length,
	param.task,
	param.resource)

inserted!

Figure 6: FIFO scheduling policy.

Listing 9: Function for task insertion according tho FPS.

1 void insert task in buffer () {
2 t id t = param.task;
3 r id r = param.resource;
4 int place = (param.preempt ? 0 : 1);
5 int i ;
6 while(place<buffer[r]. length &&
7 task [buffer [r]. element[place]]. pri>=task[t]. pri){
8 place++;
9 }

10 insert at (place , t , r);
11 }

4.5.2 Fixed Priority

The FPS scheduling policy model is similar to that of FIFO in structure, ex-
cept that the task insertion is handled by the function call insert task in buffer
(Listing 9) instead of a call to insert task. The function iterates (lines 6-8)
through the resource buffer and compares the priority of the incoming task
with the tasks in the buffer and sets a local variable place such that the in-
coming task has lower priority than all tasks in front of it and higher priority
than all tasks behind it. In case the incoming task has the lowest priority
of all tasks in the buffer, the iteration is terminated by reaching the end of
the buffer and inserts the task here. Obviously, this method requires the
buffer to be sorted. However, as the method is used for all insertion, except
the first, the buffer remains sorted. When the place of insertion has been
established, the task is inserted using the insert at function call (line 9).

22

Note in Listing 9 that preemption is handled in line 4 where the first
assumed place of the incoming task is either the first buffer entry, in case of
preemption, or the second index, in case of no preemption. This code utilizes
the precondition that the buffer has at least one element when the function
is called.

4.5.3 Earliest Deadline First

The two scheduling policies above do not, in principle, need separate models
as task insertion can be handled by a simple function call. However, because
of Uppaal modeling language constraints, scheduling policies such as EDF
cannot be handled in our framework as a simple function call, but need to
implement the insertion as a model. The problem lies in that to determine
how far a task, i, is from its deadline, we need to look at the difference
between task[i].deadline and time[i]. Uppaal does not allow such comparison
in function calls as it requires operations on the clock zone data structure.
However, Uppaal does allow such comparisons in guard expression and,
thus, in order to find the position of an incoming task in a resource buffer we
need to iterate through the buffer as model transitions comparing deadlines
using guards.

In order to compare whether an incoming task i has earlier deadline than
a buffered task j, we need to check the following:

task[i].deadline-time[i] < task[j].deadline - time[j]
⇔ time[i] -task[i].deadline > time[j] - task[j].deadline

Note that Uppaal only allows subtraction of constants from clock values
and not the reverse, hence the rewriting of the expression.

For convenience, we introduce a number of local variables and functions
for the EDF model as defined in Listing 10. These are variables to hold the
parameters that are transferred from the resource, a function readParameters
to set the values of the local variables, and function resetVars to reset the
variables after task insertion to minimize the search space.

Figure 7 depicts the model for EDF task insertion. Initially, the model
reads the parameters and sets the initial assumed place variable of insertion
according to whether the calling resource is preemptive or not (same as for
FPS). Now, the deadline of the incoming task is compared to the deadline of
the task at place. If place is either past the last element in the buffer or the
incoming task has an earlier deadline than the task at place, the incoming

23

Listing 10: Local variables and function for the EDF scheduling policy.

1 int [0,Tasks] place ;
2 t id tid ;
3 r id rid ;
4 bool preempt;
5 void readParameters() {
6 tid = param.task; rid = param.resource; preempt = param.preempt;
7 }
8 void resetVars () { place = tid = rid = 0; }

task is inserted at this place in the buffer with a call to the global function
insert at. Otherwise, place is incremented and the deadline check is performed
again. Note that this is nothing more than a model implementation of a
regular while-loop as used for FPS.

insert_task[EDF]?

inserted!

readParameters(),
place = (preempt ? 0 : 1)

place == buffer[rid].length ||
time[tid]−task[tid].deadline >
time[buffer[rid].element[place]] − task[buffer[rid].element[place]].deadline

place < buffer[rid].length &&
time[tid]−task[tid].deadline <=
time[buffer[rid].element[place]] − task[buffer[rid].element[place]].deadline

insert_at(place,tid,rid)

resetVars()

place++

Figure 7: EDF scheduling policy

This concludes our model framework for schedulability analysis and in the
following section we proceed by showing how to instantiate the framework
and formulate schedulability queries.

24

Listing 11: Local variables and function for the EDF scheduling policy.

1 const bool Periodic = .. ; // Periodic Scheduling?
2 const int Tasks = .. ; // Number of tasks
3 const int Procs = .. ; // Number of resources
4 const int MaxTime = .. ; // Maximum time constant
5 const task t task [Tasks] = { ... };

Listing 12: Local variables and function for the EDF scheduling policy.

1 P1 = Resource(0, true/ false , EDF/FPS/FIFO);
2 P2 = Resource(1, true/ false , EDF/FPS/FIFO);
3 ...
4 system Task, P1, P2, ... , Policy EDF, Policy FPS, Policy FIFO;

5 Framework Instantiation

In this section, we focus on instantiating our scheduling framework for stan-
dard scheduling problems. Instantiation requires data entry in the global
declaration as well as in the system definition. The data needed in the global
declaration is shown in Listing 11.

For a particular scheduling problem, the user needs to specify whether it
is a periodic scheduling problem, how many tasks and resources there are,
the maximum time constant for all tasks,1 and the task attributes.

When defining the system, the user needs to specify the properties of the
different resources, that is, preemption and scheduling policy.

In Listing 12, we show a sample system declaration with a number of
resources (P1, P2,...). When declaring the actual system with the system
keyword, all defined resources should be included with a single copy of each
used scheduling policy. Note that all tasks are included with the single Task
instantiation. This is because the parameter space of tasks are bound by the
t id type, so if no parameter is used, Uppaal instantiates a copy of a task
for every possible id.

1Used for Uppaal state footprint reduction.

25

5.1 Schedulability Query

For any given scheduling problem, the schedulability of checking whether all
tasks always meet their respective deadlines can be stated as in Section 4.1:

A[] forall (i : t id) not Task(i).Error

In other words: “Does it hold for all paths that no task is ever in the
Error location?”. Note that Uppaal using stopwatches creates an over-
approximation of the state space meaning that if the above query is satisfi-
able, it is guaranteed that the system i schedulable under all circumstances.
However, if the query is not satisfiable, this means that a counter-example
has been established in the over-approximation. However, the system may
still be schedulable since the counter-example is not necessary a feasible run
of the original system.

5.2 Example Framework Instantiation

In this section, we provide a sample periodic schedulability problem and
illustrate how to instantiate our framework for this problem. Parts of the
schedulability problem is depicted in Figure 8 (left). It is a simple system
with four tasks T = t0, ..., t3 and two resources P0 and P1 and with task
dependencies given as a task graph. As indicated by dashed lines in the
figure, tasks t0 and t1 are assigned to P0 and tasks t2 and t3 are assigned to
P1.

t0

t1

P1

t3

t2 t0

t1

t4

P1

t3

t2
Bus

P0 P0

Figure 8: Sample schedulability problem.

Note that task t3 depends on task t0, but the tasks are assigned to different
resources. This is a common scheduling situation and, usually, requires the

26

communication of data between resources using a transport medium such
as a data bus. The communication of data takes time, but does not block
either of the resources. In our framework, such a scenario can be modelled
as illustrated in Figure8 (right) introducing a new task t4 that requires a
new resource Bus. The task t4 is inserted into the task graph such that t4
depends on t0 and t3 depends on t4. We assume for the reasons explained
in Section 3.2 that all tasks have fixed and identical periods. Thus, the
attributes of t4 should be set such that:

• initial offset(t4) = initial offset(t0)

• bcet(t4): Specific to the bus.

• wcet(t4): Specific to the bus.

• min period(t4) = min period(t0) Given our assumption about iden-
tical periods, the minimum and maximum periods are equal and the
same for all tasks.

• max period(t4) = min period(t4)

• offset (t4) = 0. Offset not needed as task release is determined by
completion of t0.

• deadline(t4) = min period(t4). Could be tightened with respect to
the deadline of t3 and xcet(t4).

• priority(t4) = 0. Irrelevant as the bus is a FIFO resource.

The Bus resource will be modelled as a non-preemptive FIFO resource to
mimic the behavior of a data bus. Assuming some specific best-case and
worst-case execution times, periods, deadlines, etc., the schedulability prob-
lem described above can be instantiated as show in Listing 13.

Note in Listing 13 that the three tasks that depend on other tasks have
been given an offset of one. This is for convenience, at it is the responsibility
of individual tasks to reset their own entry in complete. Upon start of a
new period without the offset, task t1 could signal ready to the resource
while reading an old value of complete for task t0 before t0 resets the value.
Another way to handle this when all dependent tasks have the same fixed
periods would be to let any task reset all values to complete when starting a
new period. However, there is no general good way of handling this problem
and it is left to the modeler to prevent unwanted situations.

27

Listing 13: Modelling Task Graphs

1 //Global Declaration
2 const bool Periodic = true;
3 const int MaxTime = 20;
4 const int Tasks = 5; // Number of tasks
5 const int Procs = 3; // Number of resources
6

7 const task t task [Tasks] = {
8 {0,20,20,0,20,4,7,0,1},
9 {0,20,20,1,20,8,12,0,1},

10 {0,20,20,0,20,10,12,1,1},
11 {0,20,20,1,20,6,7,1,1},
12 {0,20,20,1,20,5,5,2,1}
13 };
14

15 const bool Depend[Tasks][Tasks] = { // Task graph
16 {0,0,0,0,0},
17 {1,0,0,0,0},
18 {0,0,0,0,0},
19 {0,0,1,0,1},
20 {1,0,0,0,0}
21 };
22

23 //System Declaration
24 P0 = Resource(0,true,FPS);
25 P1 = Resource(1,true,FPS);
26 Bus = Resource(2,false ,FIFO);
27

28 system Task, P0, P1, Bus, Policy FPS, Policy FIFO;

28

6 Conclusion

We have provided a framework allowing the modeling and analysis of a variety
of schedulability scenarios. In particular, our framework supports multi-
processor systems, rich task models with timing uncertainties in arrival- and
execution- times, possible dependencies, a range of scheduling policies, and
possible preemption of resources. The support of approximate analysis of
stopwatch automata in Uppaal 4.1 is key to the successful schedulability
analysis.

Furthermore, the uncertainty on the periods used in our framework could
be generalized to more general task arrival where a separate process deter-
mines the arrival of tasks. Such situations can be modeled using the structure
of our framework by letting the starting of periods be dictated through chan-
nel synchronization with the model controlling arrival times. Even with such
liberty, the overapproximation is still finite and termination is guaranteed.

The scheduling framework provided in this paper is structured such that
adaptation can be made to accommodate other scheduling polices and inter-
task constraints. The former can be achieved by adding another policy model
similarly to the three built-in policies FIFO, FPS, and EDF. The latter is
achieved through the use of the function calls new period, dependencies met,
and completed.

References

[1] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for
real-time systems. In Proc. 5th IEEE Symposium on Logic in Computer
Science (LICS’90), pages 414–425. IEEE Computer Society Press, 1990.

[2] Rajeev Alur and David Dill. Automata for modeling real-time systems.
In Proc. 17th International Colloquium on Automata, Languages and
Programming (ICALP’90), volume 443 of Lecture Notes in Computer
Science, pages 322–335. Springer, 1990.

[3] Rajeev Alur and David Dill. A theory of timed automata. Theoretical
Computer Science (TCS), 126(2):183–235, 1994.

[4] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. Times - a tool for modelling and implementation of em-
bedded systems. In Joost-Pieter Katoen and Perdita Stevens, editors,

29

TACAS, volume 2280 of Lecture Notes in Computer Science, pages 460–
464. Springer, 2002.

[5] Jan Madsen Aske Brekling, Michael R Hansen. Models and formal ver-
ification of multiprocessor system-on-chips. The journal of Logic and
Algebraic Programming, 77(1):1–19, 2008.

[6] Gerd Behrmann, Agnes Cougnard, Alexandre David, Emmanuel Fleury,
and Didier Larsen, Kim G.and Lime. Uppaal tiga: Time for playing
games! In To appear in proc. of Computer Aided Verification (CAV’07),
2007.

[7] Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal
scheduling using priced timed automata. ACM SIGMETRICS Perform.
Eval. Rev., 32(4):34–40, 2005.

[8] Thomas Bœgholm, Henrik Kragh-Hansen, Petur Olsen, Bent Thomsen,
and Kim G. Larsen. Model-based schedulability analysis of safety critical
hard real-time java programs. In JTRES ’08: Proceedings of the 6th
international workshop on Java technologies for real-time and embedded
systems, pages 106–114, New York, NY, USA, 2008. ACM.

[9] Franck Cassez and Kim Guldstrand Larsen. The impressive power of
stopwatches. In Catuscia Palamidesi, editor, 11th International Confer-
ence on Concurrency Theory, (CONCUR’2000), number 1877 in Lecture
Notes in Computer Science, pages 138–152, University Park, P.A., USA,
July 2000. Springer-Verlag.

[10] Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi.
Schedulability analysis of fixed-priority systems using timed automata.
Theor. Comput. Sci., 354(2):301–317, 2006.

[11] Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata with
asynchronous processes: schedulability and decidability. In In Proceed-
ings of TACAS 2002, pages 67–82. Springer-Verlag, 2002.

[12] UPPAAL Scheduling Framework
. http://www.uppaal.com/SchedulingFramework, Jan. 2009.

[13] K. Godary, I. Augé-Blum, and A. Mignotte. Sdl and timed petri nets
versus uppaal for the validation of embedded architecture in automotive.

30

http://www.uppaal.com/SchedulingFramework

In Forum on specification and Design Language (FDL’04), Lille, France,
September 2004.

[14] Nan Guan, Zonghua Gu, Qingxu Deng, Shuaihong Gao, and Gu Yu.
Exact schedulability analysis for static-priority global multiprocessor
scheduling using model-checking. In Software Technologies for Embed-
ded and Ubiquitous Systems, Lecture Notes in Computer Science, pages
263–272. Springer, 2007.

[15] Uppaal Tiga Homepage. http://www.cs.aau.dk/~adavid/tiga, 2006.

[16] Aske Brekling Jan Madsen, Michael R. Hansen. A modelling and anal-
ysis framework for embedded systems. In this book.

[17] Jan Krakora and Zdenek Hanzalek. Timed automata approach to CAN
verification. INCOM, 2004.

[18] Pavel Krcál and Wang Yi. Decidable and undecidable problems in
schedulability analysis using timed automata. In Kurt Jensen and An-
dreas Podelski, editors, TACAS, volume 2988 of Lecture Notes in Com-
puter Science, pages 236–250. Springer, 2004.

[19] J. Madsen, K. Virk, and M. J. Gonzalez. A systemC-based abstract
real-time operating system model for multiprocessor system-on-chip. In
Multiprocessor System-on-Chip. Morgan Kaufmann, 2004.

[20] S. Mahadevan, M. Storgaard, J. Madsen, and K. M. Virk. Arts: A
system-level framework for modeling MPSoC components and analysis
of their causality. In 13th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE Computer Society, sep 2005.

[21] Yannick Le Moullec, Jean-Philippe Diguet, Nader Ben Amor, Thierry
Gourdeaux, and Jean Luc Philippe. Algorithmic-level specification and
characterization of embedded multimedia applications with design trot-
ter. VLSI Signal Processing, 42(2):185–208, 2006.

[22] Hristo Nikolov, Mark Thompson, Todor Stefanov, Andy D. Pimentel,
Simon Polstra, R. Bose, Claudiu Zissulescu, and Ed F. Deprettere.
Daedalus: toward composable multimedia MPSoC design. In Limor
Fix, editor, DAC, pages 574–579. ACM, 2008.

31

http://www.cs.aau.dk/~adavid/tiga

[23] H. Sun. Timing constraints validation using uppaal: Schedulability anal-
ysis. In DIPES ’00: Proceedings of the IFIP WG10.3/WG10.4/WG10.5
International Workshop on Distributed and Parallel Embedded Systems,
pages 161–172, Deventer, The Netherlands, The Netherlands, 2001.
Kluwer, B.V.

[24] UPPAAL. http://www.uppaal.com, Jan. 2005.

[25] UPPAAL CORA. http://www.cs.aau.dk/~behrmann/cora/, January
2006.

32

http://www.uppaal.com
http://www.cs.aau.dk/~behrmann/cora/

	Introduction
	UPPAAL And Its Formalism
	Modelling Language
	Specification Language

	Schedulability Problems
	Tasks
	Task Dependencies
	Resources
	Scheduling Policies
	Preemption

	Schedulability

	Framework Model in Uppaal
	Modeling Idea
	Data Structures
	Task Template
	Modelling Task Graphs

	Resource Template
	Scheduling Policies
	First-In First-Out
	Fixed Priority
	Earliest Deadline First

	Framework Instantiation
	Schedulability Query
	Example Framework Instantiation

	Conclusion

