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Abstract. We present a study and a testing framework on black box remote test-

ing of real-time systems using Uppaal-TIGA. One of the essential challenges of

remote testing is the communication latency between the tester and the system

under test (SUT) that may lead to interleaving of inputs and outputs. This af-

fects the generation of inputs for the SUT and the observation of outputs that

may trigger a wrong test verdict. We model the overall test setup using Timed

Input-Output Automata (TIOA) and present an adapted asynchronous semantics

with explicit communication delays. We propose the ∆-testability criterion for

the requirement model where ∆ describes the communication latency. The test

case generation problem is then reduced into a controller synthesis problem. We

use Uppaal-TIGA for this purpose to solve a timed game with partial observabil-

ity between the tester and the communication media together with the SUT. The

objective of the game corresponds to a test purpose.

1 Introduction

This paper deals with black box conformance testing of remote real-time systems. Usu-

ally, conformance black-box testing is an activity where a tester executes selected test

cases on a system (implementation) under test (SUT) and emits a test verdict (pass, fail,

etc.). This verdict indicates the conformance between SUTs and the specification. It is

computed according to the specification and a conformance relation between SUTs and

the specification. Usually, the assumption of zero delay and synchronous communica-

tion between the tester and the SUT is done, but this is not realistic in many situations,

such as network applications, or systems when time matters. In some cases, it may pro-

vide an erroneous verdict, potentially implying catastrophic situations. Our goal is to

study the impact of explicit propagation delays between the implementation and the

tester on test case generation and execution, and to provide a general testing framework

for remote testing of real-time systems modeled with timed automata.

ioco based theory. In the case of untimed systems, the most common approaches are

based on the Labeled Transition Systems (LTS) model, which is used as a semantics for

many standardized languages such as SDL [1] or LOTOS [2]. The ioco relation theory

[3] proposes a complete testing approach for LTS with inputs and outputs, using the

idea that any output of the implementation should be authorized by the specification.

⋆ This work has been partially supported by the French research project ANR VACSIM.



They also introduce the notion of quiescence permitting to consider blocking states as

a special output which should be explicitly specified. A complete framework based on

this theory has been proposed in [4], especially providing the possibility to use Test

Purposes in order to lead the testing process.

Testing with time. The ioco theory has inspired many testing approaches. [5] pro-

poses an extension of the Finite States Machines with Time (TEFSM) and defines

adapted conformance relations. [6], [7] and [8] propose extensions of ioco relation with

time (tioco) including delays in the set of observable actions, leading to infinite sys-

tems. They propose non deterministic test generation algorithms based on Timed In-

put/Output Automata (TIOA). [8] also shows how to use the Uppaal tool suite in order

to generate offline test cases using coverage criteria for timed models. More recently,

[9] proposes a formal framework permitting to use Test Purpose and non-deterministic

Timed Automata thanks to a determinization algorithm.

Remote testing. These works introduce conformance relations and test selection algo-

rithms based on synchronous test execution algorithms. However, in the untimed set-

ting, [10] and [11] point out the fact that synchronous execution of tests cases is not

realistic when there is a significant distance between testers and SUTs. Under this re-

moteness assumption, the adequate communication mode should be asynchronous. [10]

considers that SUTs and testers communicate via input and output queues, and asyn-

chronous points of control of observation (PCOs). [10] also shows that simply using

logical stamps permits to obtain the “same power” of testing than in a synchronous en-

vironment. In a more general way, [12] proposes a study revisiting asynchronous testing

and showing possibilities (or not) to synchronize asynchronous testing.

Usually, the works done on this topic consider this as a “distributed” testing, im-

plying several entities in a “system” of components. In this case, most effort is done

for solving the problem of relative order between events induced by the communication

process without state space explosion. [13] proposes a test generation framework using

several Input Output State Machines (IOSM) and perfect FIFO queues between them.

Then the author uses the Prime Event Structure in order to fix the problems of interleav-

ing in the test generation process. Still using queues, but with Input Output Transition

Systems (IOTS), [11] proposes a method to generate sound test cases with test pur-

poses. They apply a transformation of the test purpose allowing to consider all possible

distortions induced by the queues. The problem of interleaving is also addressed in [14]

where authors focus on testing of concurrent systems. They propose to use Labeled

Event Structures and partial order semantics in order to handle lightly concurrency as-

pects in the conformance relation. [15] proposes to add local clocks in each component

and timestamps directly included in the exchanged messages. They propose different

strategies depending on assumptions regarding how the clocks relate and give adapted

conformance relations.

Contributions. The related works described above provide testing techniques for un-

timed systems. To the best of our knowledge, there is no explicit work that considers

remote testing of timed specifications. Our contribution is two-fold. Firstly and based

on a real example, we show how remote testing can be performed by modelling the

communication channels with processes that delay the actions and synchronize with
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the SUT and its environment. We discuss the drawback of this general approach. Then,

after considering timed asynchronous behaviours, we provide a ∆-testability criterion

ensuring remote testing with the same detecting properties as local one.

The paper is organised as follows. Section 2 recalls well-known concepts of the

model-based testing theory with TIOA. In Section 3, we address the challenges for the

remote testing. We present the disadvantages of using asynchronous timed traces in

general. Asynchronous semantics described the observations of a remote tester. Section

4 relates observed traces with the traces of the implementation. We define the ∆-testable

criterion and present some interesting properties. The remote testing framework with

Uppaal-TIGA is described in Section 5 and it is followed by a case study in Section 6.

2 The tioco-based Testing Theory

The tioco-testing theory is based on the representation of the specifications and the

implementations with deterministic TIOA. Let us now present formal notations and

concepts for the tioco-testing theory that we extend later for remote testing.

Timed word, timed sequence, and timed trace. In the sequel, R≥0 denotes the set of non

negative real-numbers that we will often call delays. A timed word over an alphabet of

actions Γ is an element w = w1 ·w2 · . . . ·wn of (R≥0 ∪Γ )∗. We define w[i] = wi and

w[i..j] = wi ·wi+1 · . . . ·wj−1 ·wj , and |w| = n denotes the length of w. We consider

the causal/dependency relation between the actions in w and we say that wj depends

on wi when i < j and we write wi ≺ρ wj . The timed word w is a timed sequence if

the projection of w over R≥0 is empty or an increasing sequence of real-numbers i.e

∀0 ≤ i ≤ j ≤ |n| such that wi, wj ∈ R≥0, it holds that wi ≤ wj . A timed sequence

is called a timed trace if it is a sequence of timestamped actions followed with a delay

i.e it belongs to (R≥0 × Γ )∗ × R≥0. We will consider that the behaviours of real-time

systems can be described with timed traces. Each delay in a timed sequence refers to

the time that has elapsed since the system started.

2.1 Input/Output Timed Transition Systems (IOTTS)

Definition 1 (IOTTS). An input/output timed transition system (IOTTS) is a tuple S =
〈S, s0, I, O, Λ,M〉 where S is the set of states, s0 is the initial state, I is a finite set

of input actions, O is a finite set of output actions, Λ is a finite set of silent actions,

M ⊆ S × (I ∪ O ∪ Λ ∪ R≥0) × S is the set of moves. We will write s
α
−→ s′ with

α ∈ (I ∪O ∪ Λ ∪ R≥0) to represent a move (s, α, s′) ∈ M .

Moreover, we require the following standard properties for IOTTS : time-Determinism

( if s
d
−→ s′ and s

d
−→ s′′ with d ∈ R≥0, then s′ = s′′) , 0-Delay (s

0
−→ s), additivity (if

s
d
−→ s′ and s′

d′

−→ s′′ with d, d′ ∈ R≥0, then s
d+d′

−−−→ s′′), continuity (if s
d
−→ s′, then for

every d′ and d′′ in R≥0 such that d = d′+d′′, there exists s′′ such that s
d′

−→ s′′
d′′

−→ s′).

We denote by IOTTS(I,O,Λ), the class of IOTTS of which the input actions, the

output actions and the silent actions belong to I , O and Λ, respectively. For S ∈
IOTTS(I,O,Λ), we define Act(S) = I ∪O ∪ Λ.
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Notations. In the sequel we write s
α
−→ with α ∈ Act(S) ∪ R≥0 when there exists

s′ ∈ Q such that s
α
−→ s′. We write s

α1.α2....αn−−−−−−−→ s′ with αi ∈ Act(S) ∪ R≥0 when

there exists s1, s2, . . . sn−1 ∈ S such that s
α1−→ s1

α2−→ s2 → · · · → sn−1
αn−−→ s′.

Executions and timed traces. A run of S starting at s ∈ S, is a finite sequence π =
s.(αi.si)i=1..n ∈ S × ((Act(S) ∪ R≥0) × S)∗ such that s

α1−→ s1 and si
αi−→ si+1.

We denote Runs(s) the set of runs of S starting from s and Runs(S) = Runs(s0). The

execution sequence of π is the sequence Seq(π) = α1.α2. . . . .αn ∈ ((Act(S)∪R≥0)
∗,

and we naturally extend the notation with Seq(s) = {Seq(π) | π ∈ Runs(s)} and

Seq(S) = Seq(s0). As usual, a move s
α
−→ s′ with a ∈ Act(S) means that s′ is reached

when the action a is executed on s (discrete move). A move s
d
−→ s′ with d ∈ R≥0 means

that the state s′ is reached after d time units has elapsed from s; so d is interpreted as

the time distance between s and s′ (time elapse).

The environment cannot observe the executions of silent actions in Λ. Moreover

delays in executions are time distances between states. A timed trace corresponding

to an execution is a timed sequence consisting of time-stamps and visible actions and

such that the time-stamps indicate the dates of occurrences of the actions. Given an

execution sequence ρ = (αi)i=1..n ∈ (Act(S)∪R≥0)
∗, the timed trace associated with

ρ is denoted ttrace(ρ) and it is defined by ttrace(ρ) = obs(0, ρ) where

obs : R≥0 × (I ∪O ∪ Λ ∪ R≥0)
∗ → (R≥0 × (I ∪O))∗ × R≥0

is a function that removes silent action from execution actions and that computes the

date of the occurrence of the input and output actions. We propose the following re-

cursive definition of obs: obs(d, ε) = d with d ∈ R≥0; then obs(d, α.w) equals

obs(d + α,w) if α ∈ R≥0, otherwise it equals obs(d,w) if α ∈ Λ, otherwise it equals

d.α.obs(d,w) if α ∈ (I ∪O).
In the sequel, TTraces(S) = {ttrace(ρ) | ρ ∈ Seq(S)} denotes the set of timed traces

of S . Note that since σ = (δi · ai)i=1..m.δm+1 ∈ TTraces(S) is a timed sequence, it

implies that δi ≤ δi+1 for every i ∈ [1..m]. Given a timed trace σ ∈ (R≥0 × (I ∪
O))∗ × R≥0, we consider as usual the after operator: s after σ = {s′ ∈ S | ∃ρ ∈

Seq(s′) s.t s
ρ
−→ s′∧σ = ttrace(ρ)} represents the set of states that can be reached from

s and after observing the behaviour σ. Then we define elapse(s) = {δ ∈ R≥0 | s
δ
−→}

(Notice that elapse(s) = R≥0 when there is no restriction on the elapse of the time

in s), S after σ = s0 after σ; and out(s) = {a ∈ O | ∃ρ ∈ Seq(s) s.t ttrace(ρ) =
(0 · a) · 0} ∪ elapse(s) denotes the set of delays augmented with the set of outputs that

can be observed from s without any delay, possibly preceded by the execution of silent

actions. Illustrations of all these notations can be found in Example 1.

Complete and deterministic IOTTS. We say that S is deterministic if it has no silent

transition and s′ = s′′ whenever there exists s, α ∈ Act(S), s
α
−→ s′ and s

α
−→ s′′.

IOTTS S is input-complete if all the inputs can be executed (observed) in each state.

2.2 Timed Input/Output Automata (TIOA)

A clock is a real-valued variable. Let X denote a set of clocks. A (clock) valuation over

X is a function v : X → R≥0 that assigns a non negative real value to each clock.
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Fig. 1: Models of one specification and four implementations

The set of valuations over X is denoted by RX
≥0. As usual, we consider two operations

on valuations: the reset of the clocks and the elapse of the time. Given a valuation v,

a real number t ∈ R≥0 and a subset of clocks Y ⊆ X , the valuation v[Y := 0] is

obtained from v by resetting every clock in Y and the valuation v+ t increases by t the

value v(x) of each clock x ∈ X . Formally, v[Y := 0](x) = 0 when x ∈ Y , otherwise

v[Y := 0](x) = v(x); and (v + t)(x) = v(x) + t. The valuation 0 assigns the zero

value to every clock. A clock constraint over X is a boolean combination of equations

of the form n � x where n ∈ Q is a rational number, �∈ {<,>,=,≤,≥} and x ∈ X .

We will denote by C(X) the set of clock constraints over X . The truth value of a clock

constraint is computed w.r.t a valuation and this notion is standard. We say that v ∈ RX
≥0

satisfies g ∈ C(X) and we write v |= g if g evaluates to true w.r.t to v.

Definition 2 (TIOA). A timed input/output automaton (TIOA) is a tuple A = 〈L, ℓ0, I,
O, Λ,X,E〉 where L is a finite set of locations, ℓ0 is the initial location, X is a finite set

of clocks, I is a finite set of input actions, O is a finite set of output actions, Λ is a finite

set of silent actions, E ⊆ L× (C(X)× (I ∪O)× 2X)× L is the set of edges.
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Definition 3 (Semantics of TIOA). Let A = 〈L, ℓ0, I, O, Λ,X,E〉 be a TIOA. The

semantics of A is the IOTTS(I,O, ∅) JAK = 〈SA, s
0
A, I, O, ∅,MA〉 where: SA = L ×

RX
≥0 is the set of states of A, s0A = (ℓ0,0) is the initial state of A, I is the set of inputs

of A, O is the set of outputs of A, MA ⊆ SA × (I ∪ O ∪ R≥0) × SA is the set of

moves of A defined such that: ((ℓ, v), d, (ℓ, v+d)) for every d ∈ R≥0, (ℓ, v) ∈ SA; and

((ℓ, v), a, (ℓ′, v[Y := 0])) whenever (ℓ, g, a, Y, ℓ′) ∈ E and v |= g.

We define TTraces(A) = TTraces(JAK) and A after σ = JAK after σ with σ ∈
TTraces(A).

Deterministic TIOA. We say that A is deterministic if JAK is deterministic. Similarly,

A is input-complete if JAK is input-complete.

Example 1. The TIOA Spec in Fig. 1a is composed of a single clock x, the inputs

are ?a1, ?a2, ?a3 and the outputs are !b1, !b2, !b3, !b4, !b5. The edge ℓ0
x=3,?a1,{x}
−−−−−−−−→ ℓ1

is passed provided that x equals 3, the input ?a1 is received and x set to 0 just after

the passing of the edge. An execution of Spec is π1 = (ℓ0, 0)
0.5
−−→ (ℓ0, 0.5)

2.5
−−→

(ℓ0, 3)
?a1−−→ (ℓ1, 0)

0.7
−−→ (ℓ1, 0.7)

0.3
−−→ (ℓ1, 1)

?a2−−→ (ℓ2, 0)
2
−→ (ℓ2, 2)

1
−→ (ℓ2, 3)

4
−→

(ℓ2, 7)
!b2−−→ (ℓ4, 0)

1
−→ (ℓ4, 1)

!b3−−→ (ℓ5, 0)
1
−→ (ℓ5, 1)

1
−→ (ℓ5, 2)

?a3−−→ (ℓ6, 0), and the

execution sequence associated with π1 is Seq(π1) = 0.5 · 2.5 · ?a1 · 0.7 · 0.3 · ?a2 ·
2 · 1 · 4 · !b2 · 1 · !b3 · 1 · 1 · ?a3 and the associated timed trace is TTraces(Seq(π1)) =
(3 · ?a1) · (4 · ?a2) · (11 · !b2) · (12 · !b3) · (14 · ?a3) ·0. We have that Spec after (3 · ?a1) ·
(4 ·?a2) ·(11 · !b2) ·0 = {(ℓ4, 0)}, Spec after (3 ·?a1) ·(4 ·?a2) ·(10 · !b1) ·0 = {(ℓ3, 0)},

out(Spec after (3 ·?a1) · (4 ·?a2) ·9) = R≥0, out(Spec after (3 ·?a1) · (4 ·?a2) ·10) =
{!b1} ∪ R≥0 and out(Spec after (3 · ?a1) · (4 · ?a2) · 11) = {!b2} ∪ R≥0.

2.3 The Relation tioco and Synchronous Testing

As usual, the SUT is represented with an input-complete TIOA. We recall the tioco

conformance relation definition, a common extension of ioco. In the following, we use

this relation for conformance between the SUT and the specification.

Definition 4 (tioco). Let S and I be in TIOA(I,O) where I is input-complete.

I tioco S iff∀σ ∈ TTraces(S), out(I after σ) ⊆ out(S after σ)

Example 2. Consider Spec and the four implementations depicted in Figure 1. We can

verify that Imp1 conforms with Spec even though Imp1 can receive ?a1 when x = 2.

The same, Imp2 tioco Spec. But Imp3 does not because out(Imp3 after (3·?a1)) =
{!b5} ∪ R≥0 and out(Spec1 after (3·?a1)) = R≥0 and Imp4 does not conform with

Spec because out(Imp4 after (3·?a1) · (4·?a2) · 9) = {!b2} ∪ R≥0 whereas

out(Spec after (3·?a1) · (4·?a2) · 9) = R≥0.

An on-line tester for an SUT simulates the specification either by sending an input to

the SUT or by letting the time elapses, while checking that the outputs emitted by the

SUT are expected. Upon the reception of an unexpected output (outputs that are not

specified or that arrive at bad instants), the tester emits the verdict fail indicating that
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Fig. 2: The modeling pattern and how our example of the light controller is modeled.

the SUT does not conform to the specification. The communications between the tester

and the SUT are synchronous meaning that the tester blocks upon transmitting an input

to (receiving an output from) the implementation. There is no latency. Consequently,

the time instant at which the tester sends available inputs or receives expected outputs

should be exactly those described by the specification. Local and synchronous testers

control the tests i.e each time a tester observes an output, that output depends on all the

inputs it has sent before. The controllability of the test is an important property giving

the possibility to lead the SUT into a particular situation.

3 Introduction to Remote Testing and Challenges

The main idea is that the SUT and the tester are not located at the same site and com-

munications may be delayed. Fig. 2 illustrates our framework for remote testing. The

model is centered around a 2FIFO(⊲⊳,∆) architecture that consists of:

1. One FIFO for each direction of the communication between the SUT and the tester.

2. A communication latency bounded by ∆. The symbol ⊲⊳ stands for either ≤ or =.

3.1 Remote Testing Challenges

Remote test cases are different from the test cases designed for local testers. When the

transmission of an input depends on the reception of an output, a remote tester should

not wait to receive the output before sending the input since there is a latency. The

experimentation with Uppaal-TIGA highlights this point. Let us now consider simple

specification models to provide a theoretical point of view of remote testing.

Example 3. Consider the specification Spec in Fig. 1a and assume that the latency is

exactly 2 time units. If the tester wants that SUT receives a1 at global time 3, it should

send a1 at time 1. When SUT sends b2 at time 11, the tester receives it at time 13. etc. So
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a tester shall observe the timed trace σ′
1 = (1·?a1)·(2·?a2)·(12·?a3)·(13·!b2)·(14·!b3)·0

and the SUT executes the timed trace σ1 = (3·?a1) · (4·?a2) · (11·!b2) · (12·!b3) ·
(14·?a3).0. Note that the outputs !b2 and !b3 follow ?a3 in σ′

1 contrary to the trace

σ1 ∈ TTraces(Spec). This means that the tester does not wait for !b2 and !b3 before

sending ?a3 despite the fact that the SUT sends !b2 and !b3 before receiving ?a3.

Remote testing introduces two news challenges: managing the signal propagation

delay between the tester and the SUT; and managing the input/output interleaving

caused by the asynchronous communication: the actions are not always received in the

order they are transmitted and received.

In the next subsection we study the asynchronous traces and we will study the im-

pact of the propagation delay and the interleaving on the tests cases.

3.2 Testing with Asynchronous Traces

We introduce the asynchronous semantics for TIOA and we present results on using

asynchronous traces for testing. The asynchronous semantics for TIOA takes into ac-

count the queues and the latency; it describes the influence of the latency on the trans-

missions and the receptions of the actions.

Definition 5 (Asynchronous semantics for TIOA). Let A = 〈L, ℓ0, I, O, ∅, X,E〉 be

a TIOA(I,O) with no silent action. Let ⊲⊳∈ {≤,=} and ∆ ∈ N. The asynchronous

semantics for A is an IOTTS(I,O,ΛI∪O),
〈[A]〉⊲⊳∆ = 〈(L×RX

≥0)×(R≥0×(I∪O))∗×(R≥0×(I∪O))∗, (ℓ0,0), I, O, ΛI∪O},M⊲⊳∆〉
where ΛI∪O = {τa | a ∈ I ∪ O} is the set of silent actions. An asynchronous

state is of the form ((ℓ, v), p, q) where p and q are input and output queues respec-

tively. The set of asynchronous moves, M⊲⊳∆ is defined by the following five rules:

((ℓ, v), p, q)
?a
−→ ((ℓ, v), p.(0·?a), q)

(r1)
((ℓ, v), (δ·?a).p, q)

τa−→ ((ℓ′, v[Y := 0]), p, q)

ℓ
g,?a,Y
−−−−→ ℓ′ ∧ v |= g ∧ δ ⊲⊳ ∆

(r2)

((ℓ, v), p, q)
t
−→ ((ℓ, v + t), p+ t, q + t)

(r3)

((ℓ, v), p, (δ·!b).q)
!b
−→ ((ℓ, v), p, q)

δ ⊲⊳ ∆
(r4)

((ℓ, v), p, q)
τb−→ ((ℓ′, v[Y := 0]), p, q.(0·!b))

ℓ
g,!b,Y
−−−−→ ℓ′ ∧ v |= g

(r5)

The rules r1 and r2 (resp r5 and r4) are dual and they correspond to the transmission and

the reception of an input (resp. output). The rule r3 corresponds to the time elapsing.

The time elapsing operation on a queue is defined by ((δ ·a).p)+ t = (δ+ t, a).(p+ t).
Notice that 〈[A]〉⊲⊳∆ is input-complete because the transmissions of the inputs do not

require to check the clock constraints. The receptions of the pending inputs require

to check for the validity of clock constraints. The length of each queue is unbounded.

Based on 〈[A]〉⊲⊳∆, we can define asynchronous runs, asynchronous execution sequences

and asynchronous timed traces in ATTraces⊲⊳∆(A) = TTraces(〈[A]〉⊲⊳∆).

On asynchronous tioco. Given an implementation I and a specification S modelled

with a TIOA(I,O), one could try to adapt the relation tioco based on the asynchronous

semantics. Such an adaptation has been studied in [10] for untimed systems. A quick

adaptation of tioco that we call atioco⊲⊳∆ can be defined as follows:
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I atioco⊲⊳∆ S
iff

∀σ ∈ ATTraces⊲⊳∆(S), out((〈[I]〉⊲⊳∆) after σ) ⊆ out((〈[S]〉⊲⊳∆) after σ).

Designing a remote testing algorithm as a simple adaptation of the local and syn-

chronous testing algorithm with asynchronous traces can be the source of differences

between local testing verdicts and remote testing verdicts. The following example high-

lights three relevant problems: the non preservation of conformance, the permissiveness

and the lack of control during the test.

Permissiveness. The relation atioco⊲⊳∆ is permissive in the way that there exists an im-

plementation I of a specification S , a delay ∆ and ⊲⊳∈ {<=,=} such that ¬(I tioco S)
but I atioco⊲⊳∆ S .

For example, consider Fig. 1 and 2FIFO(=, 2). We check that Imp3 atioco⊲⊳∆ Spec

because out(〈[Imp3]〉
⊲⊳∆ after (1·?a1)·2) = {!b5}∪R≥0 and out(〈[Spec]〉⊲⊳∆ after (1·?a1)·

2) = {!b5} ∪ R≥0. But, as we discussed earlier, ¬(Imp3 tioco Spec).

Non preservation of conformance. The relation atioco⊲⊳∆ does not preserve the con-

formance in the way that there exists an implementation I of a specification S , a delay

∆ and ⊲⊳∈ {<=,=} such that ¬(I atioco⊲⊳∆ S) but I tioco S .

For example, consider Fig. 1 and 2FIFO(=, 2). Because out(〈[Imp1]〉
⊲⊳∆ after (0·?a1)·

1) = {!b2} ∪ R≥0 and out(〈[Spec]〉⊲⊳∆ after (0·?a1) · 1) = R≥0 it comes that

¬(Imp1 atioco⊲⊳∆ Spec). But we can check that Imp1 tioco Spec.

Controllability of the test. We say that a specification is controllable if in the case

a tester observes an input, this means that any output it has sent before has already

been received by the implementation. When performing remote testing, signal prop-

agating delay needs to be managed, especially when the tester sends the inputs early

and receives the outputs lately. An output received after the transmission of an in-

put it does not depend on forces the tester to change the test case it was executing.

For example, consider the specification in Figure 1, and assume that the implemen-

tation is the same as the specification. Also assume that we want to test the path up

to ℓ7 through ℓ6. For that purpose a tester may observe the asynchronous timed trace

σ′
1 = (1·?a1) · (2·?a2) · (12·?a3) · (13·!b2) · (14·!b3) · 0. This trace means that the tester

sends ?a3 before it receives !b3. But, the implementation can change the test purpose

by sending !b4 at the time 13. So a tester should remind that it already has sent ?a3 and

it should pursue the test by following a new trajectory where ?a3 follows !b4.

It is not reasonable that testing verdicts vary depending on the distance and the com-

munication mode between tester and implementation. In order to return correct verdict

whatever the distance and the communication mode, we can equip the implementations

with an additional mechanisms, like logical stamping mechanism [10], that will help

the testers to recover the causal order of the interleaved actions. But, that mechanism

cannot allow the remote testers to control the test.

4 Input/Output Interleaving and ∆-Testability Criterion

Asynchronous timed traces are remote observations of local timed traces executed by

the implementation. The execution order of actions may differ from the observation
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order: this happens when inputs and outputs interleave in the communication chan-

nels. We intend to characterize remote observations that may lead to action interleav-

ing. Thanks to the timing information, we introduce ∆-testable specifications of which

asynchronous traces can be used for remote testing without using costly mechanisms.

4.1 Local Timed Traces and Action-interleaving in Asynchronous Timed Traces

We address the derivation of local timed traces from asynchronous traces. Let S ∈
TIOA(I,O) and let ρ = (αi)i=1..n in Seq(〈[S]〉⊲⊳∆) be an asynchronous execution

sequence. Each occurrence of a silent action τa in an asynchronous execution sequences

can be interpreted as the reception/transmission of input/output a. For ρ[i] = αi ∈
I ∪ O, let us denote by ζρ[i] the unique silent action associated with the visible action

ρ[i], when it exists. Notice that either ρ[i] is an input action and ρ[i] ≺ρ ζρ[i] or ρ[i] is

an output action and ζρ[i] ≺ρ ρ[i]: this is because the actions in a queue are delivered

according to their positions in the queue. Moreover, ζρ[i] ≺ρ ζρ[j] whenever ρ[i], ρ[j]
are both either inputs or outputs and ρ[i] ≺ρ ρ[j]. We say that ρ is regular if for every

ρ[i] ∈ I ∪ O, ζρ[i] exists in ρ. A regular asynchronous timed trace is constructed from

a regular asynchronous execution sequence. The local execution sequence associated

with a regular asynchronous execution sequence ρ = (αi)i=1..n, denoted by apply(ρ),
is the timed word obtained from ρ by deleting the visible actions in I ∪O and replacing

each silent action ζρ[i] (1 ≤ j ≤ n) with the corresponding visible action ρ[i].

Example 4. Let ρ = 1·?a1 · 1·?a2 · 1 · τa1
· 1 · τa2

· 5 · 2 · τb2 · 1 · τb3 · 0·?a3 · 1·!b2 ·
0.6 · 0.4·!b3 · 0 · τa3

be in ATTraces⊲⊳∆(Spec). We have that |ρ| = 22. We have that

ζρ[2] = ρ[6] = τa1
because τa1

corresponds to the remote execution of ?a1 that is

transmitted at the time 1. ζρ[17] = ρ[11] = τb because this occurrence of τb2 corresponds

to the transmission of !b2 and !b2 is observed later at the position 17. We can check that

ζρ[15] = ρ[22] = τa3
. Then apply(ρ) = 1·1·1?a11·?a2·5·2·!b2 ·1·!b3·0·1·0.6·0.4·0·?a3.

We can also compute ttrace(ρ) = (1·?a1) · (2·?a2) · (12·?a3) · (13·!b2) · (14·!b3) ·0 and

ttrace(apply(ρ)) = (3·?a1) · (4·?a2) · (11·!b2) · (12·!b3) · (14·?a3).0. We remark that

?a3 occurs before !b2 in ttrace(ρ) but !b2 occurs before ?a3 in ttrace(apply(ρ)) which

is a timed traces of Spec.

The causal order of the action in an asynchronous timed trace may not be respected

by a remote implementation. The order of execution of two actions may be inverted

by the remote SUT. For example this situation happens in asynchronous sequence ρ

that contains a pattern1 of the form · · · ρ[i] · · · ζρ[j] · · · ζρ[i] · · · ρ[j] · · · where ρ[i] and

ρ[j] are visible actions and i < j. When such a situation happens, we say that ρ is

action-interleaving. For example, ρ presented in Example 4 is action-interleaving.

Definition 6. A regular sequence ρ ∈ Seq(〈[S]〉⊲⊳∆) is action interleaving if there exists

i, j s.t ρ[i] ≺ρ ρ[j] and ζρ[j] ≺ρ ζρ[i].

Proposition 1 states that the causal order of the actions in a non interleaving asyn-

chronous trace is preserved at the implementation site. Let us denote by Projvis(ρ) the

projection of ρ over I ∪ O ∪ R≥0. Given a state s = ((l, v), p, q) of 〈[A]〉⊲⊳∆, let us

denote by p(s) = p and q(s) = q the content of the input and output queues at s.

1 Note that there are three more patterns.
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Proposition 1. Let ρ = (αi)i=1..n in Seq(〈[S]〉⊲⊳∆) be a regular execution sequence. ρ
is not action-interleaving iff Projvis(apply(ρ)) = Projvis(ρ).

Proposition 2. Let ρ = (αi)i=1..n ∈ Seq(〈[S]〉⊲⊳∆) be a regular asynchronous execu-

tion sequence. ρ is action-interleaving iff p(s) and q(s) are non empty for some state s,

some k ≤ n such that s0
ρ[1..k]
−−−−→ s.

4.2 ∆-Testable TIOA

We provide a ∆-testability criterion permitting to test remotely while preserving prop-

erties of local testing. Action-interleaving does not occur in ∆-testable specifications.

Definition 7 (∆-testability). Let A ∈ TIOA(I,O) and σ ∈ TTraces(A) such that

σ = (ti · ai)i=1..n.tn+1. The timed trace σ is ∆-testable if,

– either n = 0,

– or (ti · ai)i=1..n−1 is ∆-testable and an ∈ O,

– or (ti · ai)i=1..n−1 is ∆-testable and if an ∈ I , then for every tb ∈ R≥0, every

b ∈ O, and every k ∈ [1..n− 1] such that !b ∈ out(JAK after σ[1..k] · tb), it holds

that tn − tb > 2∆.

A is ∆-testable if every σ ∈ TTraces(A) is ∆-testable.

Example 5. Spec is 1-testable. Spec is not 2-testable. Indeed, one can consider the sub-

specification rooted at ℓ4. The delay between !b4 and ?a3 equals 1 and it is not greater

than 2 × ∆ = 4. The specification obtained in Fig. 1d that is obtained from Spec by

changing some constants is 2-testable.

The causal order of the observed actions is the same as the causal order of the actions

executed by the remote implementation when the specification is ∆-testable.

Proposition 3. Let A be a TIOA(I,O). If A is ∆-testable then Seq(〈[A]〉⊲⊳∆) contains

no action-interleaving sequence.

Putting Proposition 2 and Proposition 3 together, we get Proposition 4.

Proposition 4. Let A be a TIOA(I,O). Let s, ρ ∈ Seq(〈[A]〉⊲⊳∆) such that s0
ρ
−→ s. A

is ∆-testable iff p(s) is non empty implies q(s) is empty.

According to Proposition 4, ∆-testability implies that at most one queue is non empty

at every reachable state. However, ∆-testability does not guarantee that the sizes of the

queues are bounded. A fast environment can increase the size of the input queue by

sending repetitively the inputs faster than the latency.

We can show that ∆-testable specifications are controllable. Indeed, ∆-testable

specifications have no action-interleaving sequences. Consequently a regular asynchronous

timed trace ρ is such that ρ[i] ≺ρ ρ[j] iff ζρ[i] ≺ρ ζρ[j] for every 1 ≤ i, j ≤ |ρ|. W.l.o.g,

assume that ρ[i] ∈ O and ρ[j] ∈ I . Then, ζρ[i] ≺ρ ρ[i], ρ[j] ≺ρ ζρ[j]. Since the spec-

ification is ∆-testable, the delay between ζρ[i] and ζρ[j] is strictly greater than 2∆. But

since the delay between ρ[k] and ζρ[k] with k ∈ {i, j} is bounded with ∆, we get the
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delay between ρ[i] and ρ[j] is strictly positive. This implies that the output ρ[i] is ob-

served before the input ρ[j]. This means that the outputs transmitted earlier are received

before the transmission of new inputs. Thus, each observed output depends on input

transmitted earlier and the specification is controllable.

In brief, ∆-testability criterion takes advantage of the timing information that are

not available in untimed models. We claim that if the specification is ∆-testable then,

the asynchronous execution of the synthesized test cases is as simple as the synchronous

execution, the tioco conformance is preserved and the tester can control the test.

5 Remote testing Framework with Uppaal-TIGA

In this section we present our general framework using Uppaal-TIGA with partial ob-

servability [16]. We model the SUT, the communication channels, and the actual tester

as a timed game with the twist that only some states or clocks are visible. The tester

changes its states according to the output from the SUT (via the delayed FIFOs) and

the goal is that given a test objective expressed as a formula (using an extra observer

automaton or not), find a strategy using the actions of the tester and a fixed set of ob-

servations to reach that objective. This matches the situation that the tester can only

observe the delayed output from the SUT and cannot see its state. The framework is an

extension of [17].

Modelling Pattern. Fig. 2 presents our modelling pattern. The originality of the model

is how the FIFOs are encoded. We want to transmit a message with optional data with

a delay that may be non-deterministic. In general, this may change the order of the out-

puts of the “FIFO” if the delays overlap. Each cell of the FIFO buffer is modeled as

an automaton with its own identifier (id) as shown in Fig. 2. Only the automaton with

the right identifier that matches the head of the FIFO (a global variable) reacts to the

communication. The head and tail of the FIFOs are simple counters managed by the

automata. Each automaton has its own clock to delay the output of the incoming mes-

sage. We rename the channels to do the delayed transmission. For our light controller

example of Section 6, grasp becomes setGrasp, and release setRelease.

Then we compose the SUT in parallel with the FIFOs and the tester. The tester

automaton is free to generate outputs with possibly some constraints. The next step is

to solve the game to decide which outputs should be generated, and when.

Solving the Game. To generate the test, Uppaal-TIGA solves a two-player game be-

tween the tester and the implementation. The implementation (together with the FIFO)

plays uncontrollable transitions and the tester plays controllable transitions. In addition,

observations together with the test purpose are specified. To play the game an action la-

bel is associated with the transitions and the tester plays one given controllable action

until its observation changes. In the meantime, the implementation can play its uncon-

trollable transitions. It is only when an observation changes that the tester can change its

action. We refer to [16] and [17] for more details. The result is that Uppaal-TIGA will

find a strategy for the tester to fulfil the test purpose under the specified observations iff

there exists such a strategy.
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tailGR==id &&
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(a) Automaton that delays grasp and release.

setLevel?

setLevel?
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Overflow
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tailL=(tailL+1)%
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tailL==id &&
t >= minDelay

headL==id

headL==id

t<=
maxDelay

(b) Automaton that delays level and its

value.

Fig. 3: Automata for the FIFOs.

POCO Conformance. Uppaal Tiga with partial observability [17] assumes pocoP con-

formance relation constructed similarly to tioco, except that in addition to outputs the

observations also contain a partial information about the system state defined by a set

of predicates P . In theory the discrete changes in the partial state observation can be

identified as special outputs and therefore emulated by tioco. In general, pocoP is most

useful to relate to the SUT as a continuous observation of its partial state which might

be difficult to achieve in practice. In this paper we assume that only the state of environ-

ment (the model of test assumptions or a tester) is observable and thus only observable

I/O is communicated with the black-box SUT and media and therefore tioco is sufficient

for our purposes.

6 Light Controller Example

To apply our remote testing framework we consider the example of a light controller [18].

A user can grasp or release a trigger rod. Grasping and holding makes the intensity of

the light vary. Grasping and releasing have the effect of switching off or on to the pre-

vious light level.

Encoding Delayed Communications. We specialize the FIFOs presented in Section 3

to send grasp and release to the SUT, and level together with a value to the tester.

Fig. 3a shows the automaton used to delay grasp and release, and Fig. 3b the one

to delay level with the value of the light level. The pattern for both automata is that

upon synchronization on a given channel, a transition is taken to a state where the

delay occurs and then a renamed output is produced. Data (Fig. 3b) may be stored and

forwarded thanks to a local buffer.

SUT, Tester, and Test Purpose. The light controller has an interface that receives the

grasp and release commands. It controls two components to respectively dimmer or

switch on or off the light. The actual details of the SUT are not important here since

we are doing black-box testing. The internal communication is not visible to the tester

or the FIFOs. The tester is an automaton that can generate grasp or release at any

time. We can constrain the outputs and to illustrate this, we use two types of testers

to generate test strategies. Our testers are shown in Fig. 4a and 4b. They restrict the

tests to one or two grasp and release. The test purpose is a monitor automaton put in

parallel together with the tester automaton to specify interesting sequences of outputs

that we want to observe. Fig. 4c specifies that the light level should increase to its
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crease the intensity of the light.
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Goal

Error
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envLevel != 0 && envLevel != Max

envLevel == 0

envLevel == Max

envLevel < oldLevelenvLevel < Max && envLevel > oldLevel

(d) Test purpose to increase the intensity of the light

and then switch it off.

Fig. 4: Tester and test purpose automata.

maximum level and then decrease monotonically. Fig. 4d specifies that the light level

should increase monotonically to its maximum level and then be switched off.

Playing the Game to Generate Tests. To generate the tests, Uppaal-TIGA solves a two-

player game between the tester and the implementation. In the automata shown for the

tester, purpose, and the FIFO, the uncontrollable transitions played by the implemen-

tation are dashed. The controllable transitions played by the tester are not dashed. In

addition, we need to specify what is observable, which is done together with the formula

giving the test purpose.
We specify the following test purposes:

1. {user.x>=0 && user.x<1} control: A[ forall(s:slot t)

!adapterGR(s).Overflow U user.Released and envLevel==Max ]

2. {user.x>=0 && user.x<2, envLevel==Max, envLevel==0} control:

A[ !purpose.Error && forall(s:slot t) !adapterGR(s).Overflow

U purpose.Goal ]

Purpose 1 specifies to turn the light on to its maximum intensity level without having

a buffer overflow in the FIFO2. In addition, the user must have released the trigger. We

do not need an extra automaton for this purpose. To achieve this, the user has a clock x

that can be reset (Fig. 4a or 4b) and can observe if x ∈ [0, 1[ or not. In addition, overflow

and the released state together with the maximum light intensity are observable3.

Purpose 2 specifies that the goal state of our monitor automaton should be reached

while avoiding overflow or the error state in the monitor. To do so the user can observe

if his clock x ∈ [0, 2[ or not, if the light is at its maximum level (or not), or if it is

switched off (or not). This can be checked for both our purpose automata, though we

need the user of Fig. 4b to fulfil the goal of the purpose of Fig. 4d.

2 We model-checked that the 2nd FIFO cannot overflow.
3 The winning and losing conditions are always implicitly observable.
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It is important to notice that the observations that are given are only from the tester’s
side and we do not see the internal state of the SUT, thus respecting the black-box
testing principle. We show one strategy generated in a few second4 for purpose 2 with a
deterministic communication delay of 4 time units. We sanitized and minimized it (the
raw output has 16 states).

State 0: GRASP until x /∈ [0, 2[. Goto state 1.

State 1: delay until envLevel 6= 0. Goto state 2.

State 2: RESET until x ∈ [0, 2[. Goto state 3.

State 3: RELEASE until x /∈ [0, 2[. Goto state 4.

State 4: GRASP until x ∈ [0, 2[. Goto state 5.

State 5: delay until x /∈ [0, 2[. Goto state 6.

State 6: RESET until either x ∈ [0, 2[ and then goto state 7

or envLevel = Max and then goto state 12.

State 7: RESET until envLevel = Max. Goto state 8.

State 8: RELEASE until x /∈ [0, 2[. Goto state 9.

State 9: delay until envLevel = 0 and envLevel 6= Max. Goto state 10.

State 10: delay until purpose.Goal. Goto state 11.

State 11: envLevel = 0 and purpose.Goal, goal reached.

State 12: RESET until x ∈ [0, 2[. Goto state 8.

∆-Testability The model is general and does not enforce minimal delays between inputs

and outputs. We can constrain the environment model or add another purpose automaton

to constrain the strategy. For example, if the delay between grasp and release exceeds

the longest duration for registering a touch, then there is no strategy to satisfy purpose

2. This delay is the ∆ of our example.

7 Conclusion

We addressed conformance testing of remote SUTs specified with timed input/output

automata. Our testing architecture is composed of two queues with a communication

latency threshold. Testers and SUTs communicate in an asynchronous way. We intro-

duced the ∆-testability criterion allowing remote testing to be as powerful as local

testing without any additional mechanism. The ∆-testability criterion ensures that in-

put/output interleaving never occurs, controllability of the test and a remote verdict

similar to local one. Then we presented a test selection approach with the partial ob-

servability timed game solver Uppaal-TIGA. The method has consisted in modelling

the queues with new TIOA that receive and delay the actions. Then the test generation

was reduced to synthesis of winning strategies in the game provided that the sizes of the

queues are bounded. However the limitation of the size of the queue restricts the number

of consecutive inputs/outputs the tester/SUT may send within the period of the latency

threshold. Moreover, using one clock per cell leads to exponential blow up during the

generation of the test cases whether the latency is deterministic or not.

We believe that testing ∆-testable criterion can be performed in a more efficient

way and with less constraints on the size of the queues. Promising results hold in case of

deterministic latencies. Further works include the design of dedicated testing algorithms

for ∆-testable specifications and the automatic verification of the ∆-testability criterion.

4 Using the pre-release version 0.17.
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