Quantified Dynamic Metric Temporal Logic for
Dynamic Networks of Stochastic Hybrid Automata

Alexandre David*, Kim G. Larsen*, Axel Legay', Guangyuan Lit and Danny Bggsted Poulsen*
* Department of Computer Science, Aalborg University
T INRIA, Rennes
! Chinese Academy of Science

Abstract—Multiprocessing systems are capable of running
multiple processes concurrently. By now such systems have
established themselves as the defacto standard for operating
systems. At the core of an operating system is the ability
to execute programs and as such there must be a primitive
for instantiating new processes - also programs are allowed
to die/terminate. Operating systems may allow the executing
programs to split (spawn) into more computational threads in
order to let programs take advantage of concurrent execution
as well. One of the most used modelling languages, Timed
Automata, is based on multiple automata interacting thus they
easily model the concurrent execution of programs. However,
this language assumes a fixed size system in the sense that
automata cannot be created at will but must be instantiated
when the overall system is created. This is in contrast with the
fact that developers are able to create threads when needed.
In this paper we present our continued work to incorporate
spawning of threads into UpPAAL SMC. Our modelling language,
Dynamic Networks of Stochastic Hybrid Automata, is essentially
Timed Automata extended with a spawning primitive and a
tear-down primitive. The dynamic creation of threads has the
side-effect that it is no longer possible to use ordinary logics to
specify behaviours of individual threads - because the threads no
longer have unique names. In this paper we propose an extension
of Metric Temporal Logic with means for quantifying over the
dynamically created threads. This makes it possible to zoom in
on individual threads and specify requirements to their future
behaviour. Furthermore, we present a monitoring procedure for
the logic based on rewriting formulas. The presented modelling
language and the specification language have been implemented
in UrPAAL SMC version 4.1.18.

I. INTRODUCTION

Computer systems of today are beyond the state where
they were statically encoded entities that were disconnected
from their surroundings. Instead many software architectures
are build with communication to other systems in mind thus
each system may rely on other systems for accomplishing their
tasks. The systems providing services to other systems must
incorporate concurrency into their execution platforms in order
to handle requests from multiple clients simultaneously - and
to support an unknown number of clients they must be able to
make new computational threads at will. Luckily, most main-
stream programming languages and operating systems support

Work partially supported by NSFC(61361136002) for IDEA4CPS and the
863 Hi-tech Reseach and Development Program of China(2012AA011206).

concurrency out of the box and alleviate the programmer from
the burden of programming the concurrency model.

Reasoning on dynamic systems poses a major challenge to
the formal methods community, that is the one of being able to
develop models and techniques for systems whose state-space
is not known a priori. Additionally, it also requires to deal with
communication between processes at run time. Process algeb-
ras, e.g. CSP [14] and CCS [17] have been designed to analyse
such systems. In process algebras the behaviour of systems is
described with a minimal set of primitives and they allow us
to reason about the equivalence of systems using bisimulation
relations. By adding a recursion/replication operator we can
express spawning of processes. Whereas process algebras have
been developed for reasoning about dynamic systems, we note
that few formal tools support dynamic creation of processes.
Instead, they require specifying all processes in advance which
forces the modeller to encode an underlying resource manager
with a preset finite capacity. This stands in deep contrast
to the support given by operating systems and programming
languages.

In a recent work [9], we developed a modelling framework
that allowed spawning inside UPPAAL SMC [8]. In our setting,
processes are spawned from a finite set of templates, each
being an arbitrarily complex input/output timed system. In this
setting, processes communicate via an input/output mechanism
of actions, and each of those actions may eventually lead to the
creation of one or several new processes. The model checking
problem is known to be undecidable for such systems. As a
solution, we proposed to equip our system with a stochastic
semantic, allowing us to unleash the power of simulation-
based solutions such as Statistical Model Checking (SMC)[22].
In this framework, verification reduces to monitor several
executions of the system and then use an algorithm from
statistics to deduce the overall correctness with a controllable
confidence. One of the drawbacks of the work in [9] is that
the logic for specifying properties of template systems was a
limited extension of Metric Temporal Logic[16] (MTL), where
quantifications over processes were allowed at the atomic level.
While such a logic is powerful enough to express properties
like: “at any time, all the process shall avoid state x”, it does
not allow to deal with more complex requirements such as “if
there exists a process that reaches state q, then it should reach
state @’ in less than ten units of time after reaching q”.

In this paper, we propose an extension of MTL for dynamic
timed systems, where quantifications over process templates

can be nested. Our new dynamic quantitative MTL logic is
inspired by those proposed to specify properties of infinite
state systems, especially in the context of the so-called regular
model checking approach[3, 1]. As a second contribution,
we present a monitoring procedure for this new logic. The
procedure uses rewriting techniques of subformulas of the
logic. Our work has been implemented in UPPAAL SMC, the
SMC extension of UPPAAL.

Related Work.: Dynamic creation of processes is already
part of extensions of process algebras. An example is the fork
calculus [12] that extends CCS with a fork primitive. These
extensions do not consider quantities and run time verifica-
tion of complex requirements expressed in MTL. Recently,
Sharifloo proposed to avoid this assumption by combining
verification and run-time of the deployed system within the
Lover framework [19]. This work is in line with our objective,
but ignores timed and stochastic aspects. Tools such as BIP
have been extended to deal with dynamical architecture [5].
BIP focuses on interactions, while UPPAAL SMC proposes
a quantitative framework. Other approaches such as PRS
also consider dynamical networks. However, they remain at
a highly theoretical level, mostly studying what is decidable
and what is not [20]. Those approaches do not consider
effective and efficient algorithms. Finally, Henzinger et al.,
have also considered dynamical extension of reactive modules
with an application to systems biology. The theory presented
in [11] is without a run-time monitoring procedure and the
verification process is limited to conformance. There are
also a wide range of dynamical architectures dedicated to a
specific problem [10]. Our approach is more generic and hence
incomparable to those approaches. Dynamic process creation is
already part of the model checking tool SPIN[15]. Contrary to
our work, SPIN does not consider timed, hybrid or stochastic
aspects of systems. Boudjadar et al. [4] have developed a
framework called Callable Timed Automata (CTA) that allows
dynamic creation of processes. Our work distinguishes itself
from theirs by having a stochastic semantics and their work did
not consider a logic for expressing properties of the dynamic
systems.

II. CLIENT-SERVER EXAMPLE

The purpose of this section is to provide the intuition
behind our modelling formalism by means of an example.
The example we consider is that of a client-server system
shown in Fig. 1. Due to Traffic we have clients arriving in
the network (1). These clients connect to a server (2) that
generates threads (3) to handle the subsequent communication
with the clients (4). When the exchange is over, the client
and corresponding server threads terminate. This models the
typical behaviour of servers that listen on a port, accept a
connection, and delegate the connection to a forked process
or a new thread while returning to listening on its port. We
aim towards only giving the intuition behind our formalism in
this section and leave the actual semantics for later. In short, a
model consists of templates that we can instantiate to running
processes. A process is either instantiated as an initialisation

Server

Figure 1: A client-server example.
step of the model, or by being spawned by a running process
1

The model has four templates shown in Fig. 2 through 5.

@ Start

initPorts()

)Listening

hasPort()

connect?

spawn
ServerChild(openPort(),connectID)

Figure 2: Server()

a) Server.: Figure 2 shows the template modelling the
server. To model that servers can accept only a limited number
of connections, the server manages its available connection
ports with an array. The first transition from Start initialises
this array with initPorts(). The server awaits a connection
request from a client with a channel synchronisation on
connect?. The server reacts only if it has some available port
(condition hasPort()) and spawns a server child. This is done
with the spawn command that instantiates the ServerChild tem-
plate (modelling a thread) with argument values computed on-
the-fly. The server allocates a port with the function openPort()
and forwards connectID that it receives from the client to the
server child.

@Accepting
5
connectiD=id

©

accept[port]!

() Working

disconnect[port]?
closePort(port),
exit()

O End

Figure 3: ServerChild(const pid_t port, const int id)

'n the same manner as you spawn processes in computer systems

b) ServerChild.: The template taking care of the connec-
tions is shown in Fig 3. An instance of this template starts by
taking some time to reply and accept the connection. The time
is picked with an exponential distribution with rate 5. Then
the instance synchronises back with the client that initiated
the connection and “sends” the allocated port number with
the synchronisation accept[port]!?. Here connectID is used to
filter out the right client. The location Working abstracts from
the actual communication until the client closes it, which is
done by the synchronisation disconnect[port]?. The server child
closes the port (makes it available again) and terminates, which
is done with the special function exit().

spawn Client(++clientID)

0"

Figure 4: Traffic ()

¢) Traffic.: To model traffic, the template of Fig. 4 gen-
erates clients, i.e., spawns client processes with the expression
spawn Client(++clientID). The time between creation is picked
with an exponential distribution with rate 10. Each new client
receives a unique identifier.

d) Client.: When spawned, the client of Fig. 5 will take
some time to connect (exponential distribution with rate 10).
It will then wait for the synchronisation accept[p]? that passes
the port. The client tests if the reply matches its ID with
id==connectID. This is needed since we abstract from the
actual communication protocol. The client times-out after 5
time units and will retry MAX_RETRIES times before aborting.
If the connection is accepted then the client works for some
time, then disconnects with disconnect[port]! and terminates.
Here again the client process terminates by calling exit().

retries<MAX RETRIES
++retries

connect!
x=0, connectID=id

TimeOut

id==connectID
accept[p]?
port=p

End () exit() ()Working
2

disconnect[port]!

Figure 5: Client(const int id)

2The trick uses an array of channels for message passing.

e) Support for Dynamic Processes.: When the special
command spawn is encountered, UPPAAL SMC creates a new
instance of a given template with the current values of the ex-
pressions used for arguments. When the special function exit()
is executed in a dynamic process, UPPAAL SMC discards this
process. The templates that can be instantiated dynamically are
declared to be dynamic in the global declaration of the model
as shown in Listing 1. We also show the functions for opening
and closing ports.

pid_t openPort() {
assert(freePort>=0); return ports[——freePort];

}

void closePort(pid_t p) {
assert(freePort<MAX_CONNECTIONS);
ports[freePort++] = p;

dynamic ServerChild(const pid_t port, const int id);
dynamic Client(const int id);

Listing 1: Global declarations of the client-server ex-
ample

III. DYNAMIC NETWORK OF HYBRID SYSTEMS

In this section we provide the semantical part of our mod-
elling framework. The framework is equivalent to the one we
presented in [9] but the semantics are expressed differently: in
our previous work all processes were anonymous whereas we
in this work give them identities by giving them a name. We
later use these names in defining the semantics of our logic.

We abstract from the actual modelling formalism and define
our semantics on the basis of timed I[O-transition systems
(TIOTS).

Definition 1 (Timed 10-transition System): A Timed IO-
transition system over the input actions X; and output actions
¥, is a tuple (S, sy, —) where

e S is a set of states, s, € S is the initial state and

o —C S x(X;UX,UR>p) xS is the transition relation.

|
Let (S, 59, —) be a TIOTS then we write s — s’ whenever
(s,a,s') €= and a € ¥,. Similarly we write s 28 if
a€%,and s S s ifd e R>¢. In accordance with the

compositional specification for timed systems [7] we assume
any TIOTS is input-enabled i.e. for any state s and any

input action a there exists s’ s.t. s 2%, . Also we assume
determinism thus if s = s and s - s” then s’ = s".
Since we assume determinism we denote the x — successor,
z € (R>oUX; UX,) of s by s ie. s Ny

Timed IO-transition systems can be generated by various
formalisms. Well-known formalisms include Timed Automata
[2] and Hybrid Automata [13], where states have the form
(¢,v) where ¢ is the current control location of the automaton
and v is a valuation that assigns values to its continuous
variables e.g. clocks, costs and hybrid variables. A discrete
transition from (¢, v) to (¢',v’) corresponds to an edge, in the
automaton, between £ and ¢’ whose guard is enabled by v. The
resulting v’ is obtained by performing the updates required by
the edge. In delay transitions, the values of the continuous

variables are changed according to a flow function that gives
the rate of change for each clock. For a timed automaton
this rate is always 1 hence a delay of d would increase all
variables by d. For hybrid systems the rates are specified using
differential equations.

Example 1: Consider the model of a client attempting to
establish a connection to a server shown in Fig. 5. This timed
automaton has one clock x with a starting value of 0. The
client is initially in the location Starting. From this initial
state a possible transition sequence is:

(Starting,x = 0) 28 (Starting,x = 0.8)
comect!, (Waiting,x = 0)

In our framework a system consists of a dynamically
evolving set of processes, where processes are running in-
stances of templates and can spawn other processes. The
available set of templates that a process can be spawned as
is given in terms of a Template Collection J = (T1,...,Tn)
where each template defines a TIOTS. All the templates share
a common set of actions, 2. This set is partitioned into disjoint
subsets X1, %2, ...3" and template 7; uses X' as output
actions and ¥\ X' as input actions.

Definition 2 (Template Collection): A Template Collection
over the set of actions X partitioned into n disjoint sets
»y2 .. %" is a tuple (71,...,7Tn) where for all i, T; =
(8%, 88, —* W) with:

o (S% sh,—") is a TIOTS with output action :* and input

actions ¥\ ¥,

o Wi:Six X 2{T0T2Tul} describes for each state-

action-pair a set of templates that should be spawned
while doing that action from that state.

As mentioned earlier the semantics is based on a dynam-
ically evolving set of processes. When spawning a process,
on the basis of a template 7, a name p for the new process is
extracted from an infinite but countable set of names PNames,
and the global state is updated to point p to the initial state of
T. Furthermore, in the global state we record that p has type
T and record that the name p has been used.

Formally, a state of a template collection (77, ...
the form (Active, T, f), where

e Active C PNames contains the names that has been
bound to form a process,

e T : Active — {T1,...,T,} gives the template type of
each process and

e f:Active — [J]_, S maps the bound names to their
corresponding state.

, Tn) has

Naturally, we require consistency in the sense that if f(p)
points to a state of 7; then T'(p) = T;. For the actual spawning
of processes we define an operator & defined between a state
and a template.

(Active, T, f) & T= (Active U {p},T", f'),

where p € PNames)\ Active, f/(p) = s, T"(p) = T and for all
p’ € Active, f'(p') = f(p) and T'(p") = T(p’). This operator
is straightforwardly generalised to sets of templates.

Remark 1: In the above the names for processes was chosen
non-deterministically. To make this selection deterministic
we will assume an ordering on PNames and always extract
the smallest element from Active. Also, we will assume an
ordering among templates so that when spawning a collection
of templates they are spawned in a deterministic order.

For simplicity we let each template be initially be in-
stantiated by one process thus the initial state is defined as
(@, _,)®{Ti...,Tn}. This can easily be modified to only
spawn a subset of the processes. The transition relation of a
template collection is defined in Fig. 6. The semantics states
that the entire system can delay if all processes can participate
in the delay. Regarding actions, the system can perform an
action a! if there exists some process, of the template 7 owning
the action, that can perform it and all other components change
state in accordance with the input. The processes of 7 not
performing the action simply ignore it.

DELAY (Active, T, f) 4, (Active, T, ')
if d € Rxo and for all p € Active, f(p) % f'(p);

ACTION (Active, T, f) 2 (Active, T, f') & P
if a € 37, and there exists p € Active such that:

T(p) =T;, f(p) <> ['(p), P =¥ (f(p),a)),
and for all ¢ € (Active\ {p}), if T'(q) =T;

then f(q) = f'(q),otherwise f(q) > f'(q).

Figure 6: Transition relation of a Template collection

Example 2: In Fig. 7 we show a graphical representation of
the location changes of the clients. In the plot we see that all
the clients are spawned in location Starting and after some
delay move into Waiting. Then after some time has passed
they are accepted and enter the Working location. From there
they disappear when entering the End location

A timed run of a template collection J is an infinite
sequence w = sgdgsid; ... such that sg is the initial state
of J, and for all i € N: d; € R>¢ and s; d—>a—> Si+1 for
some a; € X. An infinite run is called time-diverging if for
any constant ¢ € R>q there exists j such that Y 7_(d;) > c.
For the remainder of this paper we will require all runs to be
diverging and for a template collection J we will let Q(J)
be the set of all such runs.

Consider each template 7 has a finite set of atomic propos-
itions A Py that can be true in states of that template. Now let
s be a state of T then PAP7(s) gives the finite subset of APy
that are true in s.

For a template collection J = 7Ti,72,...,7, we may
consider having global propositions AP;3as well as the pro-
positions for each template type APr,..., APy, . With these
we can then define the propositions that are true in a state s
of J as

3Number of active processes of each type

101

91

81

71

61

51

value

41

31

21

—

11

-

0,17 0,33 0,49 0,65

0,8
time

1 0,97 1,13 1,29 1,45

Figure 7: Gantt chart of the clients in the client-server example. Each line represent a single client. What location a client
is in can be read by first calculating ¥ = y mod 10 where after the location is given as follows: § = 0 == Starting,
Yy =2 = Waiting, y =5 = Working and §y =8 = Timeout.

Ps(s) ={(a,T,p)la € Active AT (a) = TA
p € PATT(f(a)} U Py(s), (1)

where P’; gives the finite subset of AP that are true in s.

With the mapping of states to propositions we can now what
we call the set of propositional runs of template collection as:

QAP (T) ={PydoP; .. . |3sodysy - - € QT)A

A. Stochastic Semantics

Following the stochastic semantics given for timed systems
in [8] our stochastic semantics is based on output races among
components i.e. each component chooses a delay and the one
with the smallest delay wins the race. Afterwards, the winning
component chooses an action to perform and another race
commences.

On the component-level we associate to each state of a
TIOTS (S, sy, —) a delay density function - for a state s we
write (s to obtain this density. In addition we assign an output
probability function v, to all states mapping output actions to
probabilities. Naturally we require that y5(a) = 0 if and only
if s 2.

Now, let 7 = (T1,...,7T,) be a template collection. We
want to define a measure on a set of propositional runs of 7.
The set is defined through a cylinder construction

C=Pl,...P,

, where P; C i AP,

AP ={(a,T,p)|a € PNames, T € {T1,...
p € APr} U AP,

and all I; are non-empty intervals with rational bounds. Notice

that AP is an infinite set, yet all P; must be finite subsets.
Now, we can calculate the probability of observing a run in

the cylinder C = Pyl ... P, from state s = (Active, T, f) as

(Pr(s)FPo)- Y. (
k€Active
(II

/ /j,f(k/)(T)dT> .
k' €Active\ {k} Y 71

(Z Yy (@) - Pg((s)*F,Ch))dt)
a€y,
with base case Ps(s,P) = Ps(s) - P, (P F P') is
1if P = P’ and O otherwise and C' = P;I;.... In this
expression we use s®!'/¥ to obtain the uniquely defined state
that is reached if the process with name k& performs action a1!.
The probability defined above requires some explanation:
first it is checked if the propositions first state matches those
of the cylinder, then on the outermost level we sum over
all active processes. After some delay ¢ in [y , the winning
process chooses to perform some action. Independently, the
other processes choose a delay greater than ¢ - captured by
the inner integral. Having delayed ¢, all the possible actions
that the winning component can perform and their probabilities
are taken into account. Finally, the probability of seeing the
remaining part of the cylinder is multiplied.
For the remainder of this paper we let C(7) be all cylinders.
Remark 2: Allowing spawning of templates one might
worry if the system will explode in the sense that discrete

,Tn} and

P7(s,C) = Lp iy (T) -

Io

actions may occur with shorter and shorter time between them
due to growing number of components. Essentially, one might
worry if the system would exhibit a zeno behaviour. Luckily it
follows from Reuters criteria for birth-and-death processes[18]
that if we only have exponential distributions (spanning a finite
range of rates) or uniform distributions (spanning a finite range
of intervals), the system will not explode. We rely on this fact
as our statistical model checking algorithm requires that runs
are time-diverging.

IV. QUANTIFIED DYNAMIC METRIC TEMPORAL LOGIC

In this section we present the syntax and semantics of
Quantified Dynamic Metric Temporal Logic(QDMTL) that is
highly based on MTL. The logic is defined over a template
collection J = (T1,..., Tn)-

For any template 7 = (S, sy, —) we assume there exists
a set of numeric expressions Fxpr(7) that we can evaluate
in any of its states. Similarly, we assume there exists a set
of boolean expressions Bool(7). In both cases we evaluate
the expression e in state s € S by [e](T,s). If e € Bool(T)
the result is contained in the set {T, L} otherwise it returns
a real-valued number. Now let s = (Active, T, f) be a state
of J, p € Active and let T(p) = 7. Then we denote the
evaluation of e € FEuxpr(T7) in the context of p in s by
lel(p,s) = [e](T, f(p)). Similar notation is used for the
boolean expressions.

Assume we have a finite set of names PVar each assigned a
template type. These will be placeholders for actual processes
in our formulas. For P € PVar we denote its type T by (P : 7).
Given this set of variables, the set of numeric expressions over
a template collection J is generated by the syntax

Eu=c|& op&|sum(T)(e)|P.eq

where ¢ € R and e € Expr(7) and if (P : 77) then ep €
Expr(T;). To evaluate these expressions we need to bind the
process names in PVar to actual process names in PNames. We
do this in terms of a mapping M : PVar — PNames U {x},
where x ¢ PNames. The symbol x is here used to denote
that a name has not been bound to a process. We then give
the semantical meaning of an expression £ in a given state
s = (Active, T, f) and with mapping M, denoted [-£-](s, M),
recursively as:

o [c](s,M)=c,

o [Eiop&](s, M) = [-£1-](s, M) op[-E-](s, M),

o [sum(T)(e)](s, M) =3 (s ([e](p;s)) and

o [Pel(s M) = [J(M(P),s)
Naturally the latter is only defined if M (P) # *.

The set of QDMTL formulas for a template collection J =
(Ti,...,Tn) is generated by the syntax

@:tt|PB|51~EQ|—|s@| OSD“Dl/\SDQ
| 1 Ula,p) 2 |forall(P: T)e

_ where P € PVar, (P:7), a,b € Rsp, where a < b and
b € Bool(T).

As it is custom in the family of MTL logics we use
Olasp)p as a syntactical short hand for ttUjqp)p, Oja)p for
—Ola;p 0. We derive the classic boolean operatorsx V and
= in the usual way and let exists(P : T)p = —forall(P :
T)—¢. We call an occurrence of a subformula where every
P.b or P.e is surrounded by a binding occurrence of the form
forall(P : T) a sentence. In the semantics, the actual binding is
accomplished by updating a mapping whenever encountering
an occurrence of forall(P : 7): if M is a mapping then

ifx =P

MI[P — p](z) = {p otherwise

M(x)

Let w = sgdpsidi... be a run of J, where s; =
(Active;, Ty, f;) for all ¢ > 0, and let ¢ be a QDMTL formula.
Then we define satisfaction of ¢ with respect to a mapping M
recursively as,

o wEMu

o wEMPDhif M(P)#x and [-b-](M(P),s) =T
o W):]VI 51 ~ 52 if |I'(€1'}](S&M) ~ II'EQ'](S(),M)
o wEMpifwkEMp

e WEMOpifwl EM o

o wEMp Apyif wEM ¢ and w EM

o w |:M_gal Ula,p) 2 if there exists j such that w M
@2, 3170 d; € [a,b], and for all k < j, ¥ =M ;.

o w EM forall(P : T)gp if for each p € Activey, if Ty(p) =
T then w =MP=7l
Example 3: Consider our running example of a client-server
model. Possible QMDTL formulas over this system are:

Og;5(forall(c : Client)(c.Waiting == <pg;10)(c.Working)))
Og;s(forall(c : Client)(c.Waiting = Oo10)(

c.Working A exists(s : ServerChild)

(s.Working A s.id == c.id))))

The first formula asserts that if a client within the first
five time units is awaiting a connection, then it will come to
the working location. The second formula asserts, in addition
to this, that a ServerChild should also be in the Working
location and have the same id i.e it asserts that a ServerChild
is communicating with the client.

Definition 3: Let ¢ be a QDMTL sentence and let M, be a
function where for all P € PVar My(P) = *. Then we define
that w E ¢ iff w EMo o,

Theorem 1: For all QDMTL formulas ¢, all template col-
lections J and mappings M : PVar — PNames, the set
{w e UT) |wEM p} is measureable.

Proof: (sketch)

For this sketch we focus on the subset of QDMTL where the
construction & ~ &, is omitted. First we define the propos-
itions per template 7 that we need to know the value of at
each state. Let ¢ be a QDMTL formula and 7 a template then
APr C Bool(T) is a finite set of properties that are relevant for
¢ ie. APy = {b|P.b is a sub-expression of ¢ and (P : T)}.
Let s be a state of the template collection J then the global
propositions AP; we are interested in are the active processes
and their type thus the global propositions AP; = {(a, T)|a €
Active A T is a template}. We let

Pz(s) = {(a, T;b)|a € Active A3IP.b € APFA (P : T)A
[-0-](a,s) = T}U
{(a,T)|a € Active A T(a) = T}

This is merely a concrete instance of the abstract set of
proposition mapping given in Eq. (1). Notice that the proposi-
tional run induced by proposition contains enough information
to conclude if a QDMTL formula is satisfied on that run *
thus we can easily define a satisfaction relation between a
propositional run and a QDMTL formula and easily show that

sodpsy - . - ':A/I Y = PJ(SO)dQPJ(Sl) . ':M (2]
What remains is to show that the set
{wlw € QAP(J) AwEM v}

is indeed measurable i.e. is representable by a set of cylinders.
We do so by structural induction in ¢. For this sketch we
only show the construction for two formulas. Let

o = forall(P : T)¢'
Consider the set of propositional runs:

U Aw=PRdo...P, € (7))
P()I()...PW,EC(J)
Vi,d; € I; NV(a,T) € Py,w EMP=al 7},
Clearly this is the set satisfying ¢ and since it is a
_union of cylinders, it is measurable.

Y= P.bU[a,b]PQ.b
Consider the set of propositional runs:

U {w=Pydy...P, € Q*T(T)
Polo...PneC(T)

35 s.t. I(M(Py), T, b) € P; with (Py : 7)
and Vi < j,3(M(P),T1,b) € P; with (P : 77)
and (Y I) € [a,b]}.

k=1..j—1

Again we see this is a set composed of cylinders
satisfying and that it is measureable since it is a
union of cylinders.

“recalling that we omitted the &1 ~ Ea

V. STATISTICAL MODEL CHECKING OF QDMTL

Statistical Model Checking [22] is a simulation based soft-
ware verification technique. Underlying the technique is that
the model has a Stochastic semantics and that we efficiently
can obtain runs from its associated probability distribution. In
addition we need a logic for which we can settle if a formula is
satisfied by a run. Generating a run of a model and validating
if a formula is satisfied gives rise to a bernoulli variable X
that obtains the value 1 if the formula was satisfied and 0 if it
was not satisfied. The probability that X = 1 is the probability
that a random runs satisfies the formula. Let this probability
be 0. Now let X1, X5 ... X, be n such bernoulli variables and
let Y be a random variable obtaining the value

Y = Xn:X
=1

i.e. Y counts the number of runs that satisfied the formula. Y
is distributed according to a binomial distribution with succes-
parameter 6. If we want to answer the qualitative question
“is @ greater than a threshold” we may employ a hypothesis
testing approach with a controllable level of significance[21].
In case we want to answer the guantitative question “what is
the probability §” we can employ an estimation approach and
obtain a confidence interval. One such method is using the
Chernoff-Bound as described in [8]

Statistical Model Checker

A naive statistical model checker thus consists of (1) a
component that generate runs of a model, (2) a component
that can settle if a formula is satisfied for a given run and (3)
an algorithm from statistics that either estimates the probability
0 or tests if it exceeds a threshold value.

The decoupling of the generation of the run and the val-
idation of a run has the positive effect of making it easy to
implement a statistical model checker and the individual com-
ponents may easily be exchanged for others. The decoupling
is, however, inefficient as time may be wasted generating a
long run that violated the property after one step thus we wish
to perform the validation of a run in parallel with the run
generation. Previously [6] we developed such a monitoring
scheme for MTL that was based on rewriting formulas: Given
a run

w = (So,do)(sl,dl) .

and a MTL formula ¢ the monitor rewrites ¢q into ¢; using

so and dy as input (denoted g S0.do, (p1) in such a way that
w! E ¢ if and only if w F ¢g. Continuing to rewrite the
formulas eventually transforms a formula into tt signalling
satisfaction, or £f signalling violation of the property. We now
provide some of the rewrite rules needed for QDMTL. The
remaining rules are similar to those presented in [6].

Since we have variables in the formulas we need to take a
mapping into account i.e. we rewrite tuples of the form (¢, M)
where ¢ is a QMDTL formula and M is a mapping from PVar
to PNames.

y (Atom)
(tt, M) 25 (tt, M)

[-E1](s, M) =1 [-€2:](s, M) =1y Ty~ T2

- (Evaly)
(1~ &, M) 25 (tt, M)
[-€1-](s, M) =1y [-&2-](s, M) =g e (Evalsy)

(& ~ &, M) 2% (££, M)

Above we show the most basic rewrite rules of our monit-
oring technique. The first rule states that if the formula is tt
then this will not change due to a rewrite’. The two latter
rules are expressing that to rewrite a comparison between
expressions, the two expressions should first be evaluated
and afterwards compared. If the comparison is true then the
formula is rewritten into tt, otherwise it becomes ff.

Monitoring a formula ¢ = forall(P : T)¢ requires monitor-
ing ¢ for each process of 7 i.e. we start a rewriting sequence
per process - each of these rewrite sequences should have
their own mapping. To denote that multiple formulas should
be rewritten in parallel with each other we use the syntactical
construct A [(¢1, M1), (92, M) ..., (¢n, My,)].

The formula ¢ is satisfied along a run if and only if ¢
was satisfied for all processes when we encountered 1. Con-
sequently, we rewrite A" [(o1, M1), (92, M) ..., (pn, My,)]
into tt if all of the formulas are rewritten into tt at some
point (see ConjListy below). Similarly, ¢ is not satisfied if
one of the processes did not satisfy ¢ thus if a formula is
rewritten into £f - captured by the rule C'onjList;. Finally, if
none of the above rules apply we simply rewrite the individual
formulas.

s,d

diedl,..., i, M; f£,M L

j_ { n (v) () (ConjListy)
s,d

/\[(Wl,Ml), AR (‘pn’ Mn) — (ff’ Ml)]

s,d
Vi € 1,..., i, M; — Lt L

n iet n (v — (ConjLists)
d

/\[(@h M), ..., (¢n, M) = (tt, Ml)]

(o 20 =5 (g nt)]
= (ConjLists)

+ +
A1 M), (o, M) 25 N[5 M), - (4, M)

The initiating step of transforming 1 into a /\+ construct
consist of three rules(below): the first rule corresponds to
immediately discovering that one of the processes did not
satisfy the formula ¢ thus @ is not satisfied. The second
one correspond to all processes immediately satisfy ¢ and
consequently that 1) is satisfied.

5 An equivalent rule applies for ££

The final rule is instantiating the parallel rewrite process
by first rewriting ¢ for all processes and then construct the
conjunction between these.

Ipe{srt (o MPp]) 2 et
(forall(P : T, M) =% ££

(Binding:)

Vpe {srt (o, M[P— p)) 2% tt

(forall(P : T, M) =% tt

(Binding:)

[, M [P = p1) 2% (0, M)

pEST

- (Bindings)

(forall(P : T, M) =% A\ [(12, My)]

pEsT

Theorem 2: Let w = sgdgsidisads ... be an infinite time-
diverging run and let ¢ be a QMDTL sentence. In addition
let M be a function where for all P € PVar M (P) = . Then
w F ¢ if and only if there exists a rewrite sequence

so,do s1,d1

(W?M) E— (‘PlvM/) — .. (ttvM”)
and w i ¢ if and only if there exists a rewrite sequence

so,do s1,d1

(p, M) == (@', M) == ... (££,M")

VI. EXPERIMENTS
A. Robot

We consider the imaginary example of robots moving ran-
domly on a 2-dimensional grid in search of a specific location.
In the following we describe a parameterised model so that we
can make a series of experiments. Let the grid have size x X y
and the goal be location (z — 1,y — 1). Initially no robots are
present on the grid but are spawned by an extra component.
The robots are spawned in location (7,0) where 4 is randomly
selected in the range [0,z — 1] for each robot. The robots each
have a variable x and y that tells where they are on the grid and
move with a rate of 2. The robots can only move up,down,left
or right and only inside the grid thus they cannot move from
one boundary to the other in one step.

In this random setup we may wonder how likely it is for
two robots to be in the same location at once within some time
limit 7. In UPPAAL SMC we can find the probability of no
robots being in the same field at once by checking the query

Pr ([][0; 7] forall (t:Robot)
(forall (t2:Robot)
(t.x == t2.x && t.y ==t2.y

imply t==t2))).

We call this formula ;. Naturally the probability we are
interested in is 1 — 6 where 6 is the probability of satisfying

®1.

In Table I we show the probability estimated for ¢; by
UPPAAL SMC for various parameters to the model.

Setting aside that robots may actually be on the same field
we might be interested in estimating the probability that the

T y | #Robots Probability | Time (s)
2 2 1 0.95, 1.00 0.15
4 4 2 0.00,0.07 1.01
8 8 4 0.00, 0.08 1.06
64 | 64 4 0.41,0.51 2.55
64 | 64 8 0.06,0.16 2.93

Table I: Verification results for ¢; for various grid sizes and
number of robots with 7 = 100. In the probability column is
a 95% confidence interval satisfying 1.

first robot reaching the goal, within 7 time units, does so with

a margin of J to the second robot reaching the goal. This is

straightforwardly expressed in UPPAAL SMC by the query

Pr ([][0;7]forall{t:Robot}
|l t.y!=ygoal V
([1[0;0] forall{t2:Robot}
((t2.x==xgoal && t2.y==ygoal)
imply t==t2))))

(t.x!=xgoal

where (xgoal,ygoal) is the goal location. We call this
formula for ¢, Again we show the verification result for
various parameters to the model in Table II.

x Yy #Robots Probability Time (s)
2 2 1 0.95, 1.00 0.17
4 4 2 0.00,0.08 1.20
8 8 4 0.48,0.58 3.70
64 | 64 4 0.95,1.00 3.97
64 | 64 16 0.95, 1.00 13.81
64 | 64 32 0.95, 1.00 13.85

Table II: Verification results for (o for various grid sizes and
number of robots with 7 = 100 and § = 1.

The latter two results in Table II may seem surprising as one
would expect the probability to decrease when adding more
robots. Verifying the property

Pr[<=100] (<> numOf (Robot)>16)

which estimates the probability that more than 16 robots is
spawned within the first 100 time units reveals why this is not
the case. The probability of spawning more than 16 robots lie
in the interval [0.01,0.03] with a confidence of 95% thus it is
unlikely that 16 robots are spawned and as result even more
unlikely that 32 are spawned.

B. Client-Server

We now turn our focus towards applying QDMTL to the
client-server example. For a start, we consider the property
that all clients get a connection within 10 time units after their
initial connection request. We verify this within the first 10
time units of a run. In UPPAAL SMC the property is expressed
as

Pr ([][0;10] forall { c Client}
(!'(c.Waiting && c.retries==0) V
(<>[0;10]c.Working)))

Ports Probability Time Largest o
10 0.17,0.27 17m56.750s 2054 | 2079.53
13 0.84,0.94 4m55.545s 491 854.49
15 0.94, 1.00 2ml11.51s 198 440.1

Table III: Probability that client do not get a connection in their
first try. The Ports column is the number of simultaneous
connections the server can handle. The Probability column is
a 95% confidence interval, time is the time used for the veri-
fication in seconds. Largest is the average largest intermediate
formula encountered during a verification and o is its standard
deviation

90
s 60 E clientiD
T 30 E numof(Client)
0
0 2,5 5,0 7.5 10,0

time

Figure 8: Development of the number of Clients. The
clientID curve is the total number of spawned clients - the
numOf (Client) is number of active clients.

This probability depends on the number of simultaneous
connections that the server can handle - in our model this
corresponds to the number of ports. In Table III we show the
95% confidence intervals obtained by verifying the property for
three different number of ports. We also present the time used
for the verification. In all of the three cases, the verification
used 738 runs. During the generation of the runs we measured
the size of the intermediate formulas, in terms of the number
of terminals and recorded the largest formula encountered.
In the Largest column we give the average of these and in
the o column we show the standard deviation. We observe
that the probability is higher when we provide the server
with more ports. At first, the verification time seems high.
However, recall that each discrete step in the model results in
an expansion of the forall and as a large large number of clients
are spawned, as seen in Fig. 8, this results in large formulas.
The monitoring technique is recursive in the formulas parse
tree thus large formulas result in large verification time. We
conjecture that the verification is smaller when the probability
is high simply because the intermediate formulas encountered
during verification is smaller. This is supported by the results
in Table III.

If we take a closer look at the model, we notice that it
is possible for the ServerChild to get stuck. If it chooses
a long delay > 5 before signalling a connection to the
client, the Client would have timed out and might not be
ready for receiving the synchronisation from ServerChild.
In the model there is no time out on the server side thus
the ServerChild would wait for a disconnect synchronisation
forever. This is possible in the model but verifying the property

Pr (<>[1;10] ServerChild}

s.Working))

exists { s
([110;20]

in UPPAAL SMC, with 10 ports available, shows that the
probability of having a ServerChild in the s.Working
location for 20 time units is in the interval [0.00,0.01] with a
confidence of 95% thus it seems like an improbable event.

VII. CONCLUSION

In this paper we have presented the logic QDMTL. The logic
has been developed with the specific aim of reasoning on the
behaviour of the dynamic systems i.e. systems consisting of
a dynamically evolving set of processes. The logic is com-
plemented by an on-the-fly monitoring technique that given a
time diverging run of the system is guaranteed to terminate and
provide a correct result. We have applied our new logic to two
examples, one being several robots moving autonomously on a
grid and the other being our running example of a client-server
architecture.

In the future we will continue our work towards providing a
tool set for reasoning on dynamic systems. Especially we will
extend the modelling formalism towards dynamic generation
of communication channels and for allowing processes to
communicate these to each other.

REFERENCES

[1] P. A. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and
M. Saksena. Regular model checking for Itl(mso). In
CAV, volume 3114 of LNCS, pages 348-360. Springer,
2004.

[2] Rajeev Alur and David L. Dill. A theory of timed
automata. TCS, 126(2):183-235, 1994.

[3] A. Bouajjani, A. Legay, and P. Wolper. Handling live-
ness properties in (omega-)regular model checking. In
INFINITY, volume 138(3) of ENTCS. Elsevier, 2005.

[4] Abdeldjalil Boudjadar, Frits W. Vaandrager, Jean-Paul
Bodeveix, and Mamoun Filali. Extending uppaal for the
modeling and verification of dynamic real-time systems.
In Farhad Arbab and Marjan Sirjani, editors, FSEN,
volume 8161 of Lecture Notes in Computer Science,
pages 111-132. Springer, 2013. ISBN 978-3-642-40212-
8.

[5] Marius Bozga, Mohamad Jaber, Nikolaos Maris, and
Joseph Sifakis. Modeling dynamic architectures using
dy-bip. In SC, volume 7306 of LNCS, pages 1-16, 2012.

[6] Peter E. Bulychev, Alexandre David, Kim G. Larsen,
Axel Legay, Guangyuan Li, and Danny Bggsted Poulsen.
Rewrite-based statistical model checking of wmtl. In RV,
volume 7687 of LNCS, pages 260-275, 2012.

[7] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik
Nyman, and Andrzej Wasowski. Timed i/o automata:
a complete specification theory for real-time systems. In
HSCC, pages 91-100. ACM, 2010.

[8] Alexandre David, Kim G. Larsen, Axel Legay, Marius
Mikucionis, Danny Bggsted Poulsen, Jonas van Vliet, and

Zheng Wang. Statistical model checking for networks of
priced timed automata. In Uli Fahrenberg and Stavros
Tripakis, editors, FORMATS, volume 6919 of Lecture
Notes in Computer Science, pages 80-96. Springer, 2011.
ISBN 978-3-642-24309-7.

[9] Alexandre David, Kim Guldstrand Larsen, Axel Legay,
and Danny Bggsted Poulsen. Statistical model checking
of dynamic networks of stochastic hybrid automata. 2013.
to appear.

[10] José Luiz Fiadeiro and Anténia Lopes. A model for
dynamic reconfiguration in service-oriented architectures.
In ECSA, volume 6285 of LNCS, pages 70-85. Springer,
2010.

[11] Jasmin Fisher, Thomas A. Henzinger, Dejan Nickovic,
Nir Piterman, Anmol V. Singh, and Moshe Y. Vardi.
Dynamic reactive modules. In CONCUR, volume 6901
of LNCS, pages 404—418. Springer, 2011.

[12] Klaus Havelund and Kim Guldstrand Larsen. The fork
calculus. Nord. J. Comput., 1(3):346-363, 1994.

[13] Thomas A. Henzinger and Vlad Rusu. Reachability
verification for hybrid automata. In HSCC, volume 1386
of LNCS, pages 190-204. 1998.

[14] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985. ISBN 0-13-153271-5.

[15] Gerad J. Holzmann. The model checker spin. IEEE
Transactions on Software Engineering, 23(5):279-295,
1997.

[16] Ron Koymans. Specifying real-time properties with
metric temporal logic. Real-Time Systems, 2(4):255-299,
1990.

[17] Robin Milner. A Calculus of Communicating Systems,
volume 92 of LNCS. Springer, 1980. ISBN 3-540-10235-
3.

[18] G. E. H. Reuter. Denumerable markov processes and the
associated contracting semigroups onl. Acta Mathemat-
ica, 97(1-4):1-46, 1957.

[19] Amir Molzam Sharifloo and Paola Spoletini. Lover:
Light-weight formal verification of adaptive systems at
run time. In FACS, volume 7684 of LNCS, pages 170—
187, 2012.

[20] Mihaela Sighireanu and Tayssir Touili. Bounded commu-
nication reachability analysis of process rewrite systems
with ordered parallelism. ENTCS, 239:43-56, 2009.

[21] A. Wald. Sequential tests of statistical hypotheses. Annals
of Mathematical Statistics, 16(2):117-186, 1945.

[22] Hakan L. S. Younes. Verification and Planning for
Stochastic Processes with Asynchronous Events. PhD
thesis, Carnegie Mellon University, 2005.

