
Int J Softw Tools Technol Transfer manuscript No.
(will be inserted by the editor)

Formal verification and simulation for platform screen doors and
collision avoidance in subway control systems

Huixing Fang · Jianqi Shi · Huibiao Zhu · Jian Guo · Kim Guldstrand Larsen ·
Alexandre David

Received: date / Revised version: date

Abstract For hybrid systems, hybrid automata based tools
are capable of verification, while Matlab Simulink/Stateflow
is proficient in simulation. In this paper, a methodology is
proposed, in which the verification tool SpaceEx/PHAVer
and simulation tool Matlab are integrated to analyze and ver-
ify hybrid systems. For the application of this methodology,
a Platform Screen Doors System (abbreviated as PSDS, a
subsystem of the subway control system), is modeled with
hybrid automata and Simulink/Stateflow charts, respectively.
The models of PSDS are simulated by Matlab and verified
by SpaceEx/PHAVer. The simulation and verification results
indicate that the sandwiched situation can be avoided under
time interval conditions. We improve the model with four
trains and four stations on a subway line, and analyze the
urgent control scenario for the safety distance requirement.
We conclude that this integration methodology is competent
in verifying Subway Control Systems.

Keywords Hybrid Systems · Formal Verification and Sim-
ulation · SpaceEx/PHAVer · Matlab Simulink/Stateflow ·
Subway Control Systems · Feedback-Advancement Verifi-
cation

1 Introduction

In this paper, we focus on the application of formal meth-
ods and simulation techniques on subway control systems.

H. Fang · J. Shi · H. Zhu · J. Guo (B)
3663 Zhongshan Road (N.), Shanghai Key Laboratory of Trustworthy
Computing, Software Engineering Institute, East China Normal
University, Shanghai, China
E-mail: {wxfang, jqshi, hbzhu, jguo}@sei.ecnu.edu.cn

K. G. Larsen, A. David
Department of Computer Science, Aalborg University,
Aalborg, Denmark
E-mail: {kgl, adavid}@cs.aau.dk

We present the case study for the platform screen doors sys-
tem and analyze the collision avoidance scenario between
subway trains. We model the system as a kind of hybrid
systems. The concept of hybrid systems arises in embedded
control with the interaction between continuous physical be-
havior and discrete digital controllers.

Hybrid automata have been proposed to model and ver-
ify hybrid systems [6, 30]. The verification of reachabil-
ity problem on hybrid systems is important and challeng-
ing [35, 24, 8, 34, 22, 9]. For linear hybrid systems, several
algorithms based on model-checking have been developed
[6, 42, 7]. The tool HyTech [29] focuses on linear hybrid
systems.

Moreover, PHAVer [18, 20] is another tool for the ex-
act verification of hybrid systems with piecewise constant
bounds on the derivatives. PHAVer adopts exact and robust
arithmetic based on the Parma Polyhedra Library (abbrevi-
ated as PPL, [10]). Piecewise affine dynamics with linear hy-
brid automata are handled by on-the-fly over-approximation.
For more complex hybrid systems, in [21], experimental re-
sults indicate that SpaceEx can cope with hybrid systems
with more than 100 variables which illustrate the scalability
of the tool.

Furthermore, simulation based tools are widely used in
industry. The most important tool is the Simulink/Stateflow
toolset. We can model continuous-time systems in Stateflow
charts. Continuous-time modeling allows us to simulate hy-
brid systems which respond to both continuous and discrete
mode changes.

Moreover, we can debug models in Simulink/Stateflow,
the debugging supports breakpoints on chart entry, event
broadcast, state entry etc. In this paper, we detect the sand-
wich scenario by using the debugging. The advantage of de-
bugging is that you can interact with the model during the
analysis, and it is the feature that one can not find in the
formal verification tools.

2 H. Fang et al.

In this paper, we propose the Feedback-Advancement
Verification (FAV) methodology to integrate verification with
simulation of subway control systems. By using Matlab tool-
set with Simulink and Stateflow we will benefit from its rich
library of primitive components. Moreover, it provides mod-
eling and simulation capabilities for complex systems, such
as nonlinear, continuous-time, discrete-time, multi-variable,
and multi-rate systems. However, simulation does not guar-
antee correctness of the systems for unpredicted interactions
with the environment. Formal method based tools avoid the
flaw of simulation. However, to acquire appropriate analy-
sis commands, it needs to experiment on verification repeat-
edly, as a result, it is time-consuming for complex systems.
Simulation provides visual and concrete perspective which
can be used as feedback to support the verification and im-
prove our verification progress. Therefore, it is appropriate
to combine simulation with formal verification.

We adopt the tools, i.e., SpaceEx/PHAVer and Matlab
Simulink/Stateflow for verification and simulation of Plat-
form Screen Doors System. Firstly, we construct the models
in both tools, and then we take verification and simulation on
bounded liveness properties, respectively. During the simu-
lation, the sandwiched situation is revealed. This indicates
that the passenger would be situated in the dangerous posi-
tion that is between platform screen doors and train doors,
therefore the passenger cannot go back to the platform. The
reason for the sandwiched situation is that the time interval
between platform screen doors closed and train doors closed
is too short to let the passenger return to the platform. We
modify the models and simulate this sandwiched situation
and then modify the models in SpaceEx/PHAVer and verify
the property. As a result, the ultimate models satisfy the time
interval constraint and sandwich-free property if the passen-
ger goes back to the platform during the time interval. And,
we improve the model with four trains and four stations on
a subway line. During the analysis we show that simulation
and verification can feedback mutually.

This paper is organized as follows. In Sect. 2, we in-
troduce the hybrid automata briefly, and the train automa-
ton of subway control systems as an example to depict the
concepts of hybrid automata. We describe several notations
of Matlab Stateflow chart in Sect. 3. In Sect. 4, we pro-
pose the Feedback-Advancement Verification methodology
which integrates verification with simulation. Sect. 5 de-
scribes the requirements in the Platform Screen Doors Sys-
tem. And in Sect. 6, the subway system is modeled with hy-
brid automata firstly, and then with the Simulink/Stateflow
charts. Sect. 7 simulates and verifies these models with Mat-
lab and PHAVer, respectively. We analyze the verification re-
sults and modify the models in Sect. 8. The improved mod-
els with the collision avoidance scenario are discussed in
Sect. 9. In which, the formal verification detects a bug that
is hard to be discovered during simulation. In Sect. 10 we

discuss other reports on the PSDS and subway control sys-
tems and the applications concerning formal methods and
simulation techniques. We conclude our methodology and
discuss future works in Sect. 11.

2 Fundamentals of Hybrid Automata

In this section, we give a brief introduction about hybrid au-
tomata, including linear hybrid automata and affine hybrid
automata. We also provide one example about the hybrid au-
tomaton of train travelling. Hybrid systems can be modeled
as hybrid automata. A hybrid automaton consists of a finite
control graph that represents the non-deterministic evolu-
tion of real-valued variables over time and discrete switches
(transitions) with jump conditions. The nodes of the finite
control graph are called control modes, and the edges are
called control switches.

2.1 Hybrid Automata Definition

Definition 1 (Hybrid Automata) A hybrid automaton is a
tuple A = 〈X ,V, f low, inv, init,E, jump,Σ ,syn〉 ([7]), where:

1. Variables. X = {x1,x2, · · · ,xn} is a finite set of n real-
valued variables, where n is the dimension of A.

2. Control modes. V is a finite set of control modes. For
each control mode v∈V , the initial condition init(v) is a
predicate over the variables in X . All initial states must
satisfy the initial condition of the control mode.

3. Flow conditions. For each control mode v ∈ V, f low(v)
is a predicate over the variables in X ∪ Ẋ , where Ẋ =

{ẋ1, ẋ2, · · · , ẋn} and ẋi(1≤ i≤ n) is the first-order deriva-
tive of xi with respect to time. Once the current control
mode is v, the variables in X and their time-derivatives
satisfy the flow condition f low(v).

4. Invariant conditions. For each control mode v ∈ V , the
invariant condition inv(v) for mode v is a predicate over
the variables in X . When the control mode is v, inv(v)
must be satisfied by the variables in X .

5. Control switches. For source control mode v ∈ V and
target control mode v′ ∈ V , if the hybrid automaton A
has a transition from v to v′, then (v,v′) ∈ E is a control
switch, note that E is a multi-set.

6. Jump conditions. For each control switch e ∈ E, there is
a jump condition for it. The jump condition jump(e) is
a predicate over the variables in X ∪X ′. For 1 ≤ i ≤ n,
xi ∈ X and x′i ∈ X ′ refer to the value of the variable xi
before and after the control switch, respectively.

7. Events. Σ is a finite set of events. For each control switch
e ∈ E, the synchronization label syn(e) is an event in Σ .
In which, syn is a labeling function, syn : E→ Σ .

Formal verification and simulation for platform screen doors and collision avoidance in subway control systems 3

If v is a control mode and r = (r1, · · · ,rn)∈Rn is a value
of variables X , then the pair (v,r) is a state of the hybrid au-
tomaton A. Since the invariant condition inv(v) is a predicate
over the variables in X , therefore the state (v,r) is admissi-
ble only if inv(v) is true when the value of the variable xi is
ri, for 1≤ i≤ n. We will illustrate this by an example in the
next subsection (Sect. 2.3).

Definition 2 (Parallel Composition of Hybrid Automata)
Given two hybrid automata:

A1 = 〈X1,V1, f low1, inv1, init1,E1, jump1,Σ1,syn1〉,

and

A2 = 〈X2,V2, f low2, inv2, init2,E2, jump2,Σ2,syn2〉.

Let A1||2 = 〈X ,V, f low, inv, init,E, jump,Σ ,syn〉 be the par-
allel composition of A1 and A2. Thus, V = V1 ×V2, X =

X1∪X2, syn = syn1∪ syn2. The most important point is that,
the control switches e1 ∈ E1 and e2 ∈ E2 with the same syn-
chronization label syn(e) ∈ Σ ,e ∈ E. Then e1 and e2 should
be synchronized in A1||2. Usually, we use the word ‘com-
mand’ or ’signal’ to denote the control switches with the
same synchronization label between two hybrid automata.

2.2 The Behavior of Hybrid Automata

The behavior of a hybrid automaton can be described as
the composition of discrete and continuous transitions. The
readers can refer to [31] for details concerning the semantics
of hybrid automata.

Definition 3 (Labeled Transition Systems) A labeled tran-
sition system is a tuple LT S = 〈S,Sinit ,L,→l〉.

1. S is a set of states, and Sinit ⊆ S is a set of initial states.
2. L is a set of labels, for each label l ∈L, the binary relation

on the state space S is→l . Each triple p→l q is called a
transition of the system, for p, q ∈ S, and we call q the
successor of p.

At this point, we can describe the behavior of a hybrid au-
tomaton as a labeled transition system.

Definition 4 (Transition Semantics of Hybrid Automata)
The semantics of a hybrid automaton A = 〈X ,V, f low, inv,
init,E, jump,Σ ,syn〉 is the semantics of a labeled transition
system LT SA = 〈SA,SA

init ,L
A,→A

α|δ 〉, where:

1. The state space of hybrid automaton A is SA. The state
space and initial states, SA,SA

init ⊆ V ×Rn. State (v,r) ∈
SA iff inv(v) is true when the value of the variables X is
r, denoted by inv(v)[r/X] = true. Likewise, (v,r) ∈ SA

init
iff inv(v)[r/X] = true and init(v)[r/X] = true.

-1000 0 1000 2000

vtrain

Fig. 1 A train on a line, travelling from left to right. Variable v denotes
the velocity of the train. And the station is at the position 0

near
−1000 ≤ x ≤ 0

0 ≤ v ≤ 16
ẋ = v

v̇ = −0.128

stop
x=0
v=0

ẋ = v
v̇ = 0

leave
0 ≤ x ≤ 2000

ẋ = v
v̇ = 0.128

x =−1000∧ v = 16 ← Initial Condition

Invariant
Condition

→

Flow
Condition

−→ ↑
Event (Label)

↓
Jump Condition

↓
Mode

↘
Mode
Name

x≥−0.5∧ x′ = 0∧ v′ = 0
near stop

stop leave

x≥ 2000∧ x′ =−1000∧ v′ = 16

leave near

Fig. 2 Train automaton. The initial mode is the near mode. The initial
distance is−1000 (meters) to the station. And, the train takes a velocity
of 16 (m/s) at the beginning

2. The set of labels consists of events and time durations,
LA = Σ ∪R≥0. For discrete behavior, we have the transi-
tion (v,r)→A

α (v′,r′) iff ∃ e ∈ E, jump(e)[r,r′/X ,X ′] =
true, syn(e) = α , and the source and target of control
switch e in hybrid automaton A is v and v′, respectively.
For continuous behavior that concerns the time duration
δ ∈ R≥0, the timed transition (v,r) →A

δ
(v,r′) iff ∃ f :

[0,δ]→ Rn, f is a differentiable function, f (0) = r and
f (δ)= r′. For all time points ε ∈ (0,δ), inv(v)[f (ε)/X] =

true and f low(v)[f (ε), ḟ (ε)/X , Ẋ] = true.

2.3 Example: Train Automaton

In this paper, the unit of distance is metre, the time unit is
second, the unit for velocity is m/s, and m/s2 is for accel-
eration or deceleration unless otherwise stated. Consider a
train in the subway control systems (see Fig. 1). When the
distance between train and station is −1000, a sensor sig-
nals its approach to the controller (as an arbitrator in the
PSDS). Then the train approaches the station at a speed of
v ∈ [0,16] and the acceleration v̇ = −0.128, indicating that
the train will slow down. And, when the distance is −0.5,
the train sends the near stop signal to the controller, and
the train will stop. Both distance and speed are reset to zero
when the train stops. When the train leaves the station, its
speed v≥ 0 and acceleration v̇ = 0.128, the train will speed
up. The train is modeled by the automaton shown in Fig. 2.

The set of real-valued variables of the train automaton is
X = {x,v}, where x is the distance between the train and the
station, v is the speed of the train.

The train automaton has three control modes and the set
of control modes is V = {near,stop, leave}. The flow con-
dition of the control mode near is f low(near) = (ẋ = v)∧

4 H. Fang et al.

(v̇ = −0.128). The invariant condition of the control mode
near is inv(near) = (−1000 ≤ x ≤ 0)∧ (0 ≤ v ≤ 16). Let
r = (r1,r2), where r1,r2 ∈R, r1 denotes the value of variable
x, r2 denotes the value of variable v. If r = (−1000,16) and
state (near,r) is the initial state of the train automaton, then
(near,r) is admissible in mode near according to inv(near).

The pair cs=(stop, leave) is a control switch of the train
automaton, the control switch (stop, leave) corresponds to
the event stop leave. The jump condition (omitted in Fig. 2)
of the control switch cs is x = 0∧v = 0∧x′ = 0∧v′ = 0. The
pair (p,q) is a jump of the train automaton if p = (stop,r)
and q = (leave,r′), where r = (0,0) and r′ = (0,0).

2.4 Linear Hybrid Automata and Affine Hybrid Automata

Linear hybrid automata (abbreviated as LHA) [7] are a sub-
class of hybrid automata. The linear expression, linear con-
straint and linear predicate are illustrated as follows:

1. Linear expression. A linear expression over a set of vari-
ables Vars is of the form s1x1 + · · ·+ snxn + t, for s1, · · · ,
sn, t ∈R,x1, · · · ,xn ∈Vars, R is the set of real constants.

2. Linear constraint. A linear constraint is of the form le ./
0, where le is a linear expression and the sign ./ is in
{<,≤,=}.

3. Convex linear predicate. A convex linear predicate is a
finite conjunction of linear constraints.

4. Linear predicate. A linear predicate is a finite disjunction
of convex linear predicates.

Thus, a hybrid automaton is a linear hybrid automaton if
for every control mode v ∈V , the invariant condition inv(v),
and the initial condition init(v) are linear predicates. For ev-
ery control switch e ∈ E, the jump condition jump(e) is a
linear predicate. The flow condition f low(v) is a linear pred-
icate over the variables in Ẋ only. The formal verification
tool HyTech is designed to verify linear hybrid automata.

Affine hybrid automata [16] is a class of hybrid automata.
For each control mode v ∈V , the flow condition f low(v) is
an affine dynamics predicate. An affine dynamics predicate
over X ∪ Ẋ is the conjunction of the form ẋ = le, for le is a
linear expression.

Comparing with the linear hybrid automaton whose flow
condition is over variables in Ẋ only, the affine hybrid au-
tomaton is over variables in X ∪ Ẋ . For example, the train
automaton in Fig. 2 is an affine hybrid automaton because
the predicate ẋ = v in the mode near is an affine dynamics
predicate. The formal verification tool SpaceEx/PHAVer is
designed to verify affine hybrid automata.

2.5 Reachability Analysis

Whether a system satisfies the safety property can be deter-
mined by the set of reachable states. For a given hybrid au-

tomaton A, there is a continuous timed transition (v,r)→δ

(v,r′), where (v,r) and (v,r′) are two states in the control
mode v ∈ V , δ ∈ R≥0 is a time duration. Let the differen-
tiable function f : [0,δ]→ Rn represents the curve of the
flow, thus, during the time duration δ , f (0) = r, f (δ) = r′

and the state (v, f (t)) is admissible for each t ∈ [0,δ]. In
addition, the flow condition f low(v) is true over the time
interval [0,δ]. Furthermore, there is a discrete transition:
(v,r)→α (v′,r′), where the control switch e = (v,v′) ∈ E
and α = syn(e) (α is a synchronization label). We can ob-
tain the set of reachable states by repeatedly computing the
successors of continuous timed and discrete transitions. Let
S be a set of states of A, the continuous timed successors and
discrete successors are:

1. Timed successors:

Postt(S) = {(v,r′)|∃δ ∈ R≥0,(v,r) ∈ S : (v,r)→δ (v,r′)};

2. Discrete successors:

Postd(S) = {(v′,r′)|∃α,(v,r) ∈ S : (v,r)→α (v′,r′)}.

The set of reachable states denoted by Reach(S) is the
least fixpoint of the equation S = Postd(Postt(S)). There are
also definitions of timed and discrete predecessors. And the
set of predecessors, which can reach S is denoted by

Reach−1(S).

More details can be found in [7].
The process to compute Reach(S) is used for the for-

ward analysis: starting from the initial states Init, iterate
the operator Postt and Postd , until a fixpoint is reached and
then check whether the intersection of the unsafe states and
Reach(Init) is empty. In a similar way, the backward anal-
ysis: starting from the unsafe states Unsa f e, iterate the op-
erator Pret (timed predecessors) and Pred (discrete prede-
cessors), until a fixpoint is reached and then check whether
the intersection of the initial states and Reach−1(Unsa f e) is
empty.

The formal verification tool HyTech implements the for-
ward and backward analysis. But, PHAVer does not imple-
ment the backward analysis directly. Nevertheless, to carry
out the backward analysis in PHAVer, one uses the reverse
command [19] to obtain reverse causality in the automaton
and then uses forward analysis.

3 Stateflow Chart Notations

Each state label in the chart of Stateflow starts with the name
of the state followed by an optional slash (‘/’) character. The
slash is optimal if the state name is followed by a carriage
return. For example, in Fig. 9, the initial state of train chart
is the state with name near. After the name, the state ac-
tions are declared with a keyword label (‘en’,‘du’,etc.) that

Formal verification and simulation for platform screen doors and collision avoidance in subway control systems 5

identifies the type of action and a colon (‘:’). State actions
are optional as well. There are five types of state actions,
described as follows.

1. Entry Action. The keyword label is ‘entry’ or ‘en’ for
short. In the state near of train chart in Fig. 9, the three
entry actions are ‘distance = −1000’, ‘distance out =
distance’, and ‘v= 16’. This means the value of distance
is reset to−1000 meters, the value of distance out is re-
set to the new value of distance, and the value of v is
reset to 16 m/s, whenever state near is entered.

2. During Action. The keyword label is ‘during’ or ‘du’
for short. In Fig. 9, state near has three during actions,
‘distance dot = v’ denotes a differential equation that
the first derivative of distance is v, ‘v dot = −0.128’
represents the differential equation that the first deriva-
tive of v is −0.128 m/s2, distance out = distance de-
notes the value of distance out equals the value of distance,
whenever state near is already entered and any event (the
sampling of Simulink in our case) occurs.

3. Exit Action. The keyword label is ‘exit’ or ‘ex’ for short.
If a state is active (entered), but becomes inactive (ex-
ited), this action is executed.

4. On Event Name Action. The keyword label consists of
‘on’ and event name. If a state is active and its event
with event name occurs, the corresponding action is ex-
ecuted. However, this kind of action is not supported in
Stateflow chart with continuous variables, for instance,
it is not allowed in our case.

5. Bind Action. The keyword label is ‘bind’. This action is
used to specify the write permission of variables for the
state that the action is positioned. It means that the state
and its children can change the value of the variables
specified in the bind action, other states can read but not
write.

Transition Label Notation: A transition in Stateflow chart
is a label consists of an event, a condition, a condition action,
and/or a transition action. The general form of a transition is:

event[condition]{condition action}/transition action

In a transition, the event is optional. When an event is spec-
ified, the occurrence of the event is the precondition of the
transition to be taken. If the event is not specified, the con-
dition of a transition is a Boolean expression which denotes
that the transition can be taken when the condition is true.
If both event and condition are specified, then the transition
can be taken when the event occurs and the condition is true.
The condition action is executed whenever the condition is
true. An implied condition is true if no explicit condition is
specified. The transition action is executed after the transi-
tion destination has been determined to be valid. Normally,
a transition is valid when the source state of the transition
is entered and the event (if specified) occurs and the condi-
tion is valid. For detailed notations, readers can refer to the

Modeling

Formal Verification Simulation

Modify Formal Model Modify Simulated Model

Formal Verification Simulation

Ultimate Models

Bounded
Liveness

Bounded
Liveness

Feedback

Forward
Backward

Forward
Backward

Safety-Critical Safety-Critical
Feedback

Base Phase

Exploration
Phase

Conclusion Phase

MeasurableNondeterministic

Fig. 3 Feedback-Advancement Verification. FAV consists of three
phases, base phase, exploration phase and the conclusion phase

user’s guide of Stateflow (see http://www.mathworks.

com/help/pdf_doc/stateflow/sf_ug.pdf).

4 Co-Verification Methodology

The formal verification of hybrid system is based on the
reachability analysis with hybrid automata. The traditional
formal method based tools (e.g., HyTech, PHAVer) have the
ability to provide parametric analysis, offer analysis com-
mands for users, and generate error-trace. On the other hand,
using Matlab toolset with Simulink and Stateflow, numerous
benefits can be achieved by its rich library of primitive com-
ponents. Simulation data is visualized in the Matlab toolset
and we can take advantage of its interactive features. More-
over, it provides modeling and simulation capabilities for
complex systems. With simulation, we are not sure about
the correctness of the systems because of the unpredicted
interactions with the environment.

On the contrary, formal methods based tools avoid the
limitation of simulation that cannot guarantee design cor-
rectness. However, appropriate analysis commands are not
easy to acquire with formal methods tools, it needs to con-
duct experiment on the verification many times. Hence it is
time-consuming for complex hybrid systems.

In our case study, the Stateflow/Simulink model is a re-
finement of the SpaceEx/PHAVer model, which is closer to
a final implementation, and this could be proved by suitable
refinement relations (e.g. timed simulation or timed trace in-
clusion [31, 38]). Moreover, the two models are complemen-

http://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf

6 H. Fang et al.

tary for some features (e.g.,visualization of simulation, cor-
rectness proving by verification), stressing different aspects
of the overall system and permitting complementary analy-
sis techniques, i.e. verification versus simulation.

Therefore, it is feasible to verify and analyze hybrid sys-
tems by combining formal verification with simulation. In
this paper, we propose the methodology FAV (Fig. 3). This
methodology is composed of three phases: base phase, ex-
ploration phase and conclusion phase.

1. Base phase: Construct models by formal method (e.g.,
hybrid automata) and simulation technology (e.g., the
Simulink/Stateflow models), respectively. Bounded live-
ness and non safety-critical properties are checked in this
phase. The models are modified according to the results
of simulation and verification. As both hybrid automata
and Stateflow charts are varieties of finite-state machine,
they are consistent with parts of the model structure and
syntax, although not in all aspects. For instance, the state
in Stateflow is corresponding to the mode in hybrid au-
tomata. The flow conditions in the mode of hybrid au-
tomata can be described as the during actions in State-
flow state. For example, the flow condition ‘v̇ = 1’ is
consistent with the during action ‘du:v dot=1’. And the
flow condition ‘v̇= dv’ with invariant ‘−1≤ dv≤ 0’ can
be implemented as during action ‘du:v dot=v shut’,
and the value of v shut can be changed by a manual
switch, as we implemented in the Simulink model in
Fig. 8. The hybrid automata model in SpaceEx/PHAVer
is considered as an abstraction of the Simulink/Stateflow
model. Likewise, the model in Simulink/Stateflow is a
refinement for the model in SpaceEx/PHAVer. The main
objective of this phase is to check whether the models
are correct or not in a coarse-grained manner. There-
fore, the properties to be checked in this phase are simple
(e.g., the train can stop or leave, given the initial states
and bounded time) and without concerning the safety.
The complex and safety-critical properties are checked
in the exploration phase.

2. Exploration phase: In this phase, safety critical proper-
ties (e.g., no one is injured in the system) or complex in-
teractive situations of the system (e.g., Human-Machine
Interaction Protocol) are researched with the combina-
tion method of formal verification and simulation. In
terms of the conclusion of base phase, if errors or prob-
lems occur during verification, then we manually modify
formal models and proceed with verification. This pro-
cess is repeated until the model satisfies the safety prop-
erties or the process of verification is failed because of
the limitation of tool or resources. On the other hand,
if errors or problems occur during simulation, then we
modify simulated models and proceed with simulation.
Based on the capability of verification tools (e.g. state
exploration), some complex critical properties cannot be

Reset z to 0 whenever
train doors are not closed

z>=5 and train
doors are closed

1
2

z>=0

Fig. 4 Conductive graph. Each rectangle denotes one state. The edge
between states is considered as a state transition. The constant numbers
(e.g., 1 and 2) near transitions denote the priorities for transitions

verified in verification tools. As a result, it shall turn to
simulation finally. For simulation, one cannot simulate
all the interaction with environment, and it is required to
verify the correctness of the new models in verification
tools. The revision of models is a conductive modifica-
tion based on feedbacks between two types of models.
For instance, the correction of the controller in Fig. 14
can be illustrated by a conductive graph in Fig. 4. The
state with constraint ‘z >= 0’ in Fig. 4 represents the
state of ‘about to close2’ in Fig. 14. The edge in the
conductive graph denotes the transition with conditions
and actions, the actions are executed when the transition
is valid according to the conditions. In the conductive
graph, the transitions have different priorities, the tran-
sition with priority 1 is prior to the one with priority 2.
Thus, the transition with priority 1 will be tested at first.
The value of z will be reset to 0 and z << 5 (much less
than 5) when the train doors are not closed. If the train
doors are closed, the transition with priority 2 can be
tested. As the condition ‘z>= 5’ is contained in the tran-
sition, the transition will be valid when z≥ 5. According
to the conductive graph, the priorities for transitions (i.e.,
control switches) in Fig. 15a are guaranteed by variable
c1, because the condition c1 = 0 is true whenever the
transition with label shut closed1 is valid. Therefore, the
transition with label close2 can only be triggered after
the transition with label shut closed1 is finished. In addi-
tion, the transition with label shut closed1 sets the value
of z to 0, it restricts the time duration to 5 seconds be-
tween these two transitions. With the conductive graph
the consistent modification can be implemented in the
models of Simulink/Stateflow and SpaceEx/PHAVer.

3. Conclusion phase: After the second phase, the final (par-
ticular for the properties that had been checked up to this
time) model of formal verification or simulation is ob-
tained and can be applied to new developing stages in
model-based design.

The exploration phase is used to verify the safety proper-
ties and provide a correct model. Moreover, formal verifica-
tion and simulation could influence each other by feedback.

In the following, we utilize our method FAV to model
and verify the subway control system. We first illustrate re-
quirements of the subway control system, and then model re-
quirements and verify models in the tools: SpaceEx/PHAVer
and Matlab toolset. With simulation, we simulate subway
environment and find that the models do not satisfy the safety

Formal verification and simulation for platform screen doors and collision avoidance in subway control systems 7

property. Then we modify models and verify the correctness
of the new models with SpaceEx/PHAVer. The visualized
simulation results are also given by Matlab toolset.

5 Requirements of Platform Screen Doors in Subway
Control Systems

This paper focuses on the Platform Screen Doors System
(PSDS). The platform screen doors are widely used at sub-
way stations around the world. These doors screen the plat-
form from the train, and prevent passengers from falling off
the platform that is probably due to suicide or the piston ef-
fect [12].

The PSDS is a safety-critical system. One small design
deficiency in the system may cause serious accident. For ex-
ample, on 15 July 2007 in Shanghai, China, a man tried to
enter a crowded train at the subway station, but failed. When
the train doors and platform edge doors closed almost si-
multaneously, he was sandwiched between closed doors and
fell off. Consider the three different schemes of closing train
doors and platform screen doors:

1. Simultaneously. The platform screen (or edge) doors and
train doors close simultaneously. As we mentioned be-
fore, passengers may be sandwiched in the middle and
unable to go back to the platform or enter the train. This
scheme is not appropriate for the PSDS.

2. Platform Screen Doors First (PSDF). First, we close the
platform screen (edge) doors, and then the train doors.
This scheme is also improper when the platform screen
doors is closed but the train is crowded. Thus, some pas-
sengers fail to squash into the train, it needs to open the
platform screen doors again.

3. Train Doors First (TDF). First, close the train doors, and
then the platform screen doors. Passengers can return to
the platform when the train doors are closed. Moreover,
there is enough time to go back to the platform before
the platform screen doors are closed.

Although it may need other measures to improve safety,
we focus on the Platform Screen Doors Systems with the
TDF scheme in this paper. The most important requirement
is that, before the train starts to leave a station, the passen-
gers should not be sandwiched (i.e., the passengers cannot
return back to the platform) between the train doors and
screen doors in a period of time after the train doors are
closed. Let T1 be the time when the train doors are closed,
T2 be the time when the screen doors start to close, then the
requirement can be declared as a simple formula,

T2−T1 ≥C∧C > 0

where, C is a constant, denoting a time duration, for instance
C = 5 (seconds) in Sect. 6.

part
0 ≤ y1 ≤ 2

ẏ1 = 1

open
y1 = 2
ẏ1 = 0

shut
0 ≤ y1 ≤ 2
−1 ≤ dy1 ≤ 0

ẏ1 = dy1

closed
y1 = 0
ẏ1 = 0

y1 = 0∧ c1 = 0

c′1 = 0
open1

y1 = 2
part open1

c′1 = 1

close1

c1 = 1

reclose1

dy1 =
0∧ y1 >

0

shut part1y1 = 0∧ c′1 = 0
shut closed1

Fig. 5 Train doors automaton. Initially, the train doors are closed. Dur-
ing the mode part the doors are opening. Whenever the variable y1
equals 2 (meters), the doors are opened. The statement ‘ẏ1 = 1’ means
the velocity of opening the door is 1 m/s, i.e., the distance between two
door leafs increases at the speed of 1 meter per second

part
0 ≤ y2 ≤ 2

ẏ2 = 1

open
y2 = 2
ẏ2 = 0

shut
0 ≤ y2 ≤ 2
−1 ≤ dy2 ≤ 0

ẏ2 = dy2

closed
y2 = 0
ẏ2 = 0

y2 = 0∧ c2 = 0

c′2 = 0
open2

y2 = 2
part open2

c′2 = 1

close2

c2 = 1

reclose2

dy2 =
0∧ y2 >

0

shut part2y2 = 0∧ c′2 = 0
shut closed2

Fig. 6 Platform screen doors automaton. The same as the train doors,
the train doors are closed, initially. During the mode part the doors
are opening. Whenever the variable y2 equals 2 (meters), the doors are
opened. The statement ‘ẏ2 = 1’ means the velocity of opening the door
is 1 m/s

6 Models

We divide the whole system into four parts, train, train doors,
platform screen (edge) doors and controller.

6.1 Hybrid Automata Models

Now, we use four automata to formalize the Platform Screen
Doors System. The train automaton (Fig. 2) represents the
travelling of the train. The train doors automaton (Fig. 5)
and platform screen doors automaton (Fig. 6) represent the
opening and closing of the train doors and screen doors, re-
spectively. The controller automaton (Fig. 7) represents as
an arbitrator between these three automata.

The train doors automaton (see Fig. 5) has four control
modes. Modes open and closed denote the train doors are
opened and closed, respectively, modes part and shut denote
that the train is opening doors and closing doors, respec-
tively. Each train door consists of two leafs, left door leaf

8 H. Fang et al.

about to open2
0 ≤ z ≤ 5

ż = 1

idle
z = 0
ż = 0

start
0 ≤ z
ż = 1

about to close2
0 ≤ z
ż = 1

about to open1
0 ≤ z ≤ 5

ż = 1

open1
0 ≤ z ≤ 6

ż = 1

ring
6 ≤ z ≤ 9

ż = 1

about to close1
0 ≤ z ≤ 5

ż = 1

z = 0∧ c1 = 0∧ c2 = 0

near stop

z = 5∧ z′ = 0
open2

z = 5∧ z′ = 0
open1

z = 6
ring

z = 9∧ z′ = 0

ring o f f

z = 5∧ z′ = 0
close1

c1 = 0∧ z′ = 0
5≤ z∧

close2

c2 = 0∧ z′ = 0
5≤ z∧

stop leave

Fig. 7 Controller automaton. The variable z is used as a clock in this automaton. Variable c1 is shared with train doors automaton, c2 is shared
with platform screen doors automaton. The synchronized label near stop is shared with the train automaton

and right door leaf. The variable y1 represents the distance
between the left door leaf and right door leaf. It means that
the door is opened when the distance is 2 and then y1 = 2.
Similarly, if the door is closed then the distance is 0 and the
value of y1 is 0. Initially, the door is closed, and after receiv-
ing an open1 command from the controller, the door will be
opened at a rate of 1. When the door is opened and receives
a close1 command, it will be closed at a rate of dy1, where
the value of the variable dy1 ranges between -1 and 0. When
the rate is zero but the door is not closed, someone or some-
thing is clipped. Thus the door needs to be opened again and
then after the door is open, passengers leave the door and the
controller also needs to close the door again. The variable c1
is a guard to re-close the door. We assign 1 to c1 when the
door receives the close1 command. We check the value of c1
when the door is open. If c1 = 1, close the door again.

The platform screen doors automaton is the same as the
train doors automaton except variables. These two automata
have similar behavior. They are managed by the controller.

The controller automaton (Fig. 7) plays a role of an ar-
bitrator. It receives signals from train, sends commands to
train, train doors and platform screen doors. Initially, the
controller is at control mode idle. When it receives the signal
near stop, the controller enters the mode about to open2.
Five seconds later, it sends command open2 to the platform
screen doors and waits 5 seconds. The platform screen doors
begin to open when it receives command open2. Then the
controller sends command open1 to the train doors. At the
same time, the train doors begin to open. Six seconds later,
the controller starts to ring (as an alert). After the alert off,
the controller waits five seconds and then sends command
close1 to train doors. Train doors begin to close. Five sec-
onds later, the controller sends command close2 to platform
screen doors if train doors are closed (c1 = 0 denotes train
doors are closed). Similarly, five seconds later, it sends com-
mand stop leave to train if platform screen doors are closed.
After that, the train leaves the station and the controller re-
turns to mode idle.

6.2 Simulation Models

In this section, we model our PSDS in Simulink/Stateflow.
Our Stateflow chart consists of four subcharts. Fig. 9 rep-
resents the Stateflow chart of train. Fig. 10 represents the
train doors (the chart of platform screen doors in Fig. 11 is
the same as the train doors except the variable names). The
controller is shown in Fig. 12.

In Fig. 8, we use two Manual Switches to simulate the
velocity of closing doors, one for the train doors and another
for the platform screen doors, they select values from −1
and 0. Accordingly, v shut1 and v shut2 are two input vari-
ables which represent the values of the Manual Switches se-
lected. Furthermore, there are three output variables, y1 out,
y2 out and distance out. The value of y1 out equals y1 (see
Fig. 10) and the value of y2 out equals y2. y1 out and y2 out
represent the distances between the two sides of doors, train
doors and platform screen doors, respectively. The distance
between train and station is represented by distance out. We
use the Scope block to display these three output variables
with respect to simulation time.

In the train Stateflow chart shown in Fig. 9, distance is
a local variable which denotes the distance between train
and station. And, v is also a local variable which denotes
the velocity of the train. The expression distance dot repre-
sents the time derivative of the variable distance, therefore
its value equals the velocity of train which is denoted by v.
Similarly, the expression v dot represents the time deriva-
tive of v, thus, v dot denotes the acceleration of the train.
In addition, “en:” is the prefix for entry actions which ex-
ecute when the state is entered, and, “du:” is the prefix for
during actions in which the derivatives and updates for vari-
ables are defined, the during actions are executed at every
time step when the sate is active and no valid transition to
another state is available.

In the Stateflow chart, we use local variables as shared
variables between different Stateflow subcharts. The local
variables defined in a Stateflow chart can be read and written
in the chart’s all subcharts. For example, the variable stop is

Formal verification and simulation for platform screen doors and collision avoidance in subway control systems 9

train door velocity

platform screen door velocity
d

−1

c

0

b

−1

a

0

ScopePSDS stateflow chart

v_shut1

v_shut2

y1_out

y2_out

distance_out

Fig. 8 Simulink model of PSDS. The left part is the Manual Switches,
controlling the velocity of train doors and platform screen doors when
closing doors. The Stateflow chart is in the middle. Variable y1 out (or
y2 out) is the output variable denoting the state of the train (or platform
screen) doors

Train 1

stop
en:distance= 0;
v=0;
distance_out= 0;

near
en:distance=−1000;
distance_out=distance;
v=16;
du:
distance_dot=v;
v_dot=−0.128;
distance_out=distance;

leave
en:start=0;
du:distance_dot=v;
v_dot=0.128;
distance_out=distance;

{start=0;stop=0;distance=−1000;}

[distance>=−0.5]{stop=1;}

[start==1]

[distance>= 2000]

Fig. 9 Train chart. Variables start and stop are shared between train
and controller for the control of the train departure and stopping

Train_door 2open
en:y1=2;y1_out=y1;
du:y1_dot=0;
y1_out=y1;

part
du:y1_dot=1;
y1_out=y1;

closed
en:y1=0;y1_out=y1;
close1=0;
du:y1_dot=0;

shut
du:y1_dot=v_shut1;
y1_out=y1;

[y1>=2]

[open1==1]/open1=0;

[close1==1]

[y1>0&&v_shut1==0]

1

[y1<=0]
2

Fig. 10 Train doors chart. Variables open1 and close1 are shared be-
tween train doors and controller

used in train chart and controller chart. The condition action
stop = 1 is executed as soon as the condition distance >=

−0.5 of the transition from state near to stop is true. Then in
the controller chart, the condition stop == 1 is true. There-
fore the transition from state idle to about to open2 will
be active. Similarly, variable start is also the shared vari-
able between train and controller. Variable open1 (open2)
and close1 (close2) are shared variables between train doors
(screen doors) and controller.

The variable close1 has the similar purpose as c1 (see
Fig. 5) which is used as the guard to re-close train doors.
And, the variable open1 is the guard to open train doors.

Screen_door 3
open
en:y2=2;y2_out=y2;
du:y2_dot=0;
y2_out=y2;

part
du:y2_dot=1;
y2_out=y2;

closed
en:y2=0;y2_out=y2;
close2=0;
du:y2_dot=0;

shut
du:y2_dot=v_shut2;
y2_out=y2;

[y2>=2]

[open2==1]/open2=0;

[close2==1]

[y2>0&&v_shut2==0]

2

[y2<=0]
1

Fig. 11 Platform screen doors chart. Variable open2 and close2 are
shared between platform screen doors and controller

Controller 4start
en:z=0;
du:z_dot=1;

idle

about_to_open2
en:z=0;
stop=0;
du:z_dot=1;

about_to_close2
en:z=0;
du:z_dot=1;

about_to_open1
en:z=0;
du:z_dot=1;

about_to_close1
en:z=0;
du:z_dot=1;

ring
du:z_dot=1;open1

en:z=0;
du:z_dot=1;

[z>=5]{start=1;}
2

[stop==1]

[z>=5]{close2=1;}

2
[z>=5&&in(Screen_door.closed)==0]

1

[z>=5&&in(Train_door.closed)==0]
1

[z>=5]{close1=1;}

[z>=5]{open2=1;}

[z>=5]{open1=1;}

[z>=9]
[z>=6]

Fig. 12 Controller chart. Here, the variable z is used as a clock. The
predicate in(...) is employed to check whether the doors are closed

In the same way, open2 and close2 have corresponding pur-
poses, respectively.

Moreover, we use the predicate

in(Train door.closed) == 0

in the controller Stateflow chart, indicating whether the train
doors are closed. Here Train door is the name of the train
doors chart (see Fig. 10) and closed is one of the states of
the train doors chart. If the predicate is true, the train doors
are not closed. Therefore, a self-loop transition to substates
about to close2 and start is added (see Fig. 12), and the con-
troller continues waiting until train doors or platform screen
doors are closed.

7 Formal Verification and Simulation for PSDS

Given a property P of a hybrid system, formal verification
is to answer whether the hybrid system satisfies the property
P. For safety-critical systems, we want to check whether a
system cannot reach a set of unsafe states Sunsa f e. Neverthe-
less, we do not verify the safety property of a system at first.
Conversely, first of all, we check the bounded liveness and
simple properties of the system, and then the safety property.
In the following, we will check four properties of PSDS by
formal verification and simulation, respectively.

10 H. Fang et al.

7.1 Formal Verification

PHAVer is a tool for the verification of hybrid systems with
piecewise constant bounds on the derivatives. PHAVer deals
with affine dynamics with linear hybrid automata by using
an on-the-fly over-approximating algorithm. PHAVer is free
from overflow errors by using PPL [10] and GMP (GNU
Multiple Precision Arithmetic Library) [23]. In this paper,
we adopt the formal verification tool PHAVer to verify hy-
brid automata models.

The following command statement represents that the
four automata are composed using ampersand symbol (&):

sys = controller & traindoor & screendoor & train.

Thus, sys is the composition of the four automata which
have been described in Sect. 6, representing the PSDS illus-
trated in this paper. A symbolic state is denoted by a com-
bination of a control mode name and a linear formula, for
example, stop & x==0 represents the state when the train
is stop and the value of x is zero.

The initial state of our system is represented as follows:

1 idle ∼ closed ∼ closed ∼ near &
2 z==0 & x==-1000 & v==16 & y1==0 &
3 y2==0 & close1 flag==0 & close2 flag==0

where mode names of automata in the composition are con-
catenated with ∼ in proper order at line 1. idle is the mode
in controller automaton. And, closed, closed, near
are the modes in automata traindoor, screendoor and
train, respectively. In addition, close1 flag represents
the variable c1 in Fig. 5, and close2 flag represents the
variable c2. The following four (bounded) liveness proper-
ties are checked for PSDS in our work:

1. Leaving and Stopping: At first, we want to analyse
whether the train can depart from the station, or whether
it can stop at the station. The states that the train can
leave and stop are denoted by the following states:

1 sys.{
2 $ ∼ $ ∼ $ ∼ leave & True,
3 $ ∼ $ ∼ $ ∼ stop & True
4 }.

The expression “$ ∼ $ ∼ $ ∼ leave” refers to all
the modes compositions except that the train automaton
is in mode leave, and “$ ∼ $ ∼ $ ∼ stop” refers to
those in which train automaton is in the mode stop. And
the identifier True refers to all the possible evaluations
of variables in automata. The verification of properties
in PHAVer is by reachability analysis. The command
sys.reachable returns the set of states reachable in the
automaton sys from the initial states. And the command

identifier1.intersection assign(identifier2)

intersects the identifier2 with identifier1, then
puts the result into identifier1, where identifier1
and identifier2 represent two sets of states. As a re-
sult, the two commands

1 sys.reachable
2 intersection assign(forbidden)

can be used to verify whether the unsafe states can be
reached from the initial states, where sys.reachable

represents the states that can be reached by the system
(sys) and forbidden denotes the set of unsafe states.
The verification results given by PHAVer support that
the above states (leave and stop) are reachable from the
initial state.

2. Ringing: Both train doors and platform screen doors are
opened when the bell is ringing. Consider the following
states denoted by:

sys.{ ring ∼ $ ∼ $ ∼ $ & True }.

The expression “ring ∼ $ ∼ $ ∼ $” refers to all the
mode compositions in which controller automaton is in
the mode ring. We can list the intersection of the above
states and all the reachable states, then check the modes
that the train doors automaton and platform screen doors
automaton can be in, provided that the bell is ringing.
The intersection is given by PHAVer as follows:

1 controller ∼ traindoor ∼ screendoor ∼ train.{
2 ring ∼ open ∼ open ∼ stop &
3 6<=z<=9 & x==0 & y2==2 & y1==2 &
4 close2 flag==0 & close1 flag==0
5 }.

Where, the traindoor and screendoor are both in the
mode open. Therefore, we are sure that both train doors
and platform screen doors are open whenever the bell is
ringing.

3. Ordering: The property declares that, the train doors
need to be closed at first, and then the platform screen
doors. The screen doors need to keep open when the
train doors are being closed. Consider following states
denoted by:

sys.{ about to close2 ∼ $ ∼ $ ∼ $ & True }.

Where, the expression “about to close2 ∼ $ ∼ $

∼ $” refers to all the mode compositions in which con-
troller automaton is in the mode about to close2. And,
the controller has sent command close1 to train doors
when the controller automaton is positioned in the mode
about to close2. We can determine whether the property
holds by checking the intersection of the above states
and all reachable states. We have the following intersec-
tion by PHAVer, and the result states demonstrate that
the screen doors are opened when the train doors are
closing:

Formal verification and simulation for platform screen doors and collision avoidance in subway control systems 11

1 controller ∼ traindoor ∼ screendoor ∼ train.{
2 about to close2 ∼ shut ∼ open ∼ stop &
3 -1 <= dy1 <= 0 & 0 <= y1 <= 2 & x == 0 &
4 y2 == 2 & close2 flag == 0 &
5 close1 flag == 1 & z + y1 >= 2,
6

7 about to close2 ∼ open ∼ open ∼ stop &
8 x == 0 & y2 == 2 & y1 == 2 &
9 close2 flag == 0 & close1 flag == 1 &

10 z >= 0,
11

12 about to close2 ∼ closed ∼ open ∼ stop &
13 x == 0 & y2 == 2 & y1 == 0 &
14 close2 flag == 0 & close1 flag == 0 &
15 z >= 2,
16

17 about to close2 ∼ part ∼ open ∼ stop &
18 0 < y1 <= 2 & x == 0 & y2 == 2 &
19 close2 flag == 0 & close1 flag == 1 &
20 z + y1 >= 2
21 }.

Furthermore, the train doors should be closed when the
controller is in mode start. And the states the controller
is in the mode start are denoted by:

sys.{ start ∼ $ ∼ $ ∼ $ & True }.

In the same way, we can check the intersection of the
above states and all reachable states, and then draw the
conclusion.

4. Operation of Doors: There are no operations of the
doors before the train stops or after the train departs from
the station. Therefore, the following states should not be
reachable:

1 sys.{
2 $ ∼ open ∼ $ ∼ $ & x>0,$ ∼ part ∼ $ ∼ $ & x>0,
3 $ ∼ shut ∼ $ ∼ $ & x>0,$ ∼ open ∼ $ ∼ $ & x<0,
4 $ ∼ part ∼ $ ∼ $ & x<0,$ ∼ shut ∼ $ ∼ $ & x<0
5 }.

Through the formal verification with PHAVer, the above
four properties are totally satisfied by our PSDS models.

7.2 Simulation

The four (bounded) liveness properties are verified and no
errors have been detected in PHAVer. Next, we consider the
simulation of our models with the Matlab toolset. As the
models have been constructed in Sect. 6, we can analyze
the activities of train doors, screen doors and train with the
Scope block for the result illustration. Fig. 13a displays one
normal run of the train from near to leave.

In Fig. 13a, y1 represents the activities of train doors,
y2 represents the activities of platform screen doors. Here
distance denotes the activities of the train (i.e., the distance
between train and subway station). The distance ranges over
[−1000, 2000], and the train stops at the station when dis-
tance equals zero. After the train stops, y2 increases to 2,
which means that the screen doors are opened. And then,
y1 also increases to 2, which means that the train doors are

opened. A few seconds later, y1 decreases to 0, and then y2
also decreases to 0. It means that the train doors have closed
before screen doors begin to close.

In Fig. 13a, we choose the running of the system within
about 350 seconds period, in this simulation, the train can
leave and stop, thus, the first property Leaving and Stop-
ping is satisfied. The variable y2 equals 2 for several seconds
when y1 decreases from 2 to 0. Thus, the first part of third
property Ordering is satisfied.

Moreover, the fourth property Operation of Doors is also
satisfied, because all the variations of y1 and y2 are taken
place when distance equals 0. The other properties can be
checked by the analysis of the Stateflow chart with simula-
tion or debugging.

As mentioned before, we can simulate the situation that
someone is sandwiched between the closed doors. The pro-
cess is described as: first, we start the Stateflow debugger
and continue simulating until the variable y1 begins to de-
crease. After that, we change the closing speed of train doors
from −1 to zero by double-clicking the train door velocity
Manual Switch, then the train doors re-open and then re-
close.

As depicted in Fig. 13c, screen doors begin to close al-
most at the moment the train doors closed, so the sand-
wiched situation occurs. We can prolong the closing time of
train doors by changing the closing speed for several times
to simulate the sandwiched situation.

The normal situation and sandwiched situation are illus-
trated in Fig. 13b and Fig. 13c, respectively. The good point
is that the platform screen doors do not begin to close before
the train doors are closed. But the weak point is that the time
interval (denoted by Tdc) between the moments when train
doors are closed and screen doors begin to close is smaller
than it is in the normal situation. Furthermore, the platform
screen doors may close immediately when the train doors
are closed. Therefore, it is required to set a number of sec-
onds (i.e., Tdc) for passengers to return to the platform when
train doors are closed. And, the previous PSDS hybrid au-
tomata also did not consider this time interval. As a result,
we need to modify our models, not only hybrid automata but
also the Matlab Simulink/Stateflow charts.

8 Correction

In this section, we will modify the models of the controller,
aiming to avoid the sandwiched situation under proper time
interval Tdc. Firstly, we do the correction for the simulation
models and then the hybrid automata.

12 H. Fang et al.

0 50 100 150 200 250 300 350

0

1

2

0 50 100 150 200 250 300 350

0

1

2

0 50 100 150 200 250 300 350
−1000

−500

0

500

1000

1500

2000

y1

y2

distance

(a) One normal running

110 120 130 140 150 160
−0.5

0

0.5

1

1.5

2

2.5

110 120 130 140 150 160
−0.5

0

0.5

1

1.5

2

2.5

y1

y2

(b) Normal simulation

110 120 130 140 150 160
−0.5

0

0.5

1

1.5

2

2.5

110 120 130 140 150 160
−0.5

0

0.5

1

1.5

2

2.5

y1

y2

(c) Sandwich simulation

110 120 130 140 150 160
−0.5

0

0.5

1

1.5

2

2.5

110 120 130 140 150 160
−0.5

0

0.5

1

1.5

2

2.5

y1

y2

(d) Simulation after the correction

Fig. 13 Simulation results of PSDS. (a) illustrates an ordinary running of the system. The change of variable y1 displayed at the top of (a) indicates
the state of the train doors. And y2 is for the screen doors. The number 2 represents that the doors are open, number 0 for closed state. The third
part at the bottom of (a) shows the moving of the train. (b) is the detail state for the doors in the normal situation. (c) is for the sandwiched situation.
(d) is the result after correction

8.1 Simulation Correction

For Stateflow chart (see Fig. 12), the self-loop transition of
the state about to close2 contains the transition condition:

z>=5 && in(Train door.closed)==0.

where, the predicate in(.) can be evaluated to true (1) or
false (0). If the train doors are closed, then the predicate

in(Train door.closed) equals 1, as a result, the boolean ex-
pression in(Train door.closed) == 0 is false.

Let’s consider the following situation. If the train doors
are closed at the moment z == 4.9, then the Stateflow pred-
icate in(Train door.closed) == 0 is false. Thus, the transi-
tion from about to close2 to start will occur when z ==

5, and the time interval is 0.1s which is smaller than 5s.
On the contrary, if we remove z >= 5 from (z >= 5 &&
in(Train door.closed) == 0), then we just check whether

Formal verification and simulation for platform screen doors and collision avoidance in subway control systems 13

Controller 4start
en:z=0;
du:z_dot=1;

idle

about_to_close2
en:z=0;
du:z_dot=1;

about_to_open2
en:z=0;
stop=0;
du:z_dot=1;

about_to_close1
en:z=0;
du:z_dot=1;

about_to_open1
en:z=0;
du:z_dot=1;

open1
en:z=0;
du:z_dot=1;

ring
du:z_dot=1;

[z>=5]{close2=1;}

2

[z>=5]{start=1;}
2

[stop==1]

[z>=5&&in(Screen_door.closed)==0]

1

[in(Train_door.closed)==0]

1

[z>=5]{close1=1;}
[z>=5]{open2=1;}

[z>=9]

[z>=5]{open1=1;}

[z>=6]

Fig. 14 Correct Controller chart

the train doors are closed in the transition condition, and the
new controller Stateflow chart is in Fig. 14. The new tran-
sition condition makes the controller reset the variable z to
0 if the train doors are not closed. Moreover, the variable z
is needed to increase from 0 to 5 (will take 5 seconds) after
the train doors are closed, and then the controller starts to
close platform screen doors. Fig. 13d is the simulation re-
sult. Compared with Fig. 13c, the time interval in the new
model is much larger.

However, we cannot conclude that the time interval is at
least 5 seconds definitely, because we cannot simulate ev-
ery operation of train doors and controller. We can solve
this (i.e., verify time interval property) by formal verifica-
tion tools like PHAVer in the next subsection.

8.2 Formal Verification Correction

For the controller automaton (see Fig. 7), the clock named t
will be placed in the control mode about to close2. When
the controller switches from about to close2 to start, we
keep the value of the clock t unchanged, and then we can
check this value in the mode start. The right time to start
this clock is the moment when the train doors are closed.
Therefore, we add a self-loop control switch of the mode
about to close2. The jump condition is (z′= 0∧c′1 = 0∧t ′=
0), and the synchronization label of the control switch is
shut closed1 which is the same as the label of the control
switch from mode shut to closed in the train doors automa-
ton (see Fig. 5). Thus the two control switches will be taken
simultaneously.

Similarly, we are sure that, for the control of platform
screen doors, a self-loop control switch of mode start is
added with the synchronization label shut closed2.

Fig. 15a represents the new controller automaton. And,
we integrate the error state into the monitor automaton in
Fig. 15b. At this time, we need to verify the time interval
property. Consider the states denoted by sys.{start ∼ $ ∼

$ ∼ $&t < 5}. The above states should not be reachable
from initial state. This means that the time interval would
not be smaller than 5. On the contrary, the following states
must be reachable:

sys.{ start ∼ $ ∼ $ ∼ $ & t >= 5 }.

And, the verification results by PHAVer show that this time
interval property is satisfied. And the following states are
not reachable:

sys = controller & traindoor & screendoor & train & monitor.
sys.{ $ ∼ $ ∼ $ ∼ $ ∼ ERROR & True }.

The following states given by PHAVer illustrate that, during
the mode start (the controller prepares to start the train), the
train doors are closed, and the screen doors may be in mode
open, shut, part and closed.

1 controller ∼ traindoor ∼ screendoor ∼ train.{
2 start ∼ closed ∼ shut ∼ stop &
3 -1 <= dy2 <= 0 & 0 <= y2 <= 2 &
4 x == 0 & y1 == 0 &
5 close2 flag == 1 & close1 flag == 0
6 & t >= 5 & z + y2 >= 2,
7

8 start ∼ closed ∼ open ∼ stop &
9 x == 0 & y2 == 2 & y1 == 0 &

10 close2 flag == 1 & close1 flag == 0 &
11 t >= 5 & z>=0,
12

13 start ∼ closed ∼ closed ∼ stop &
14 x == 0 & y2 == 0 & y1 == 0 &
15 close2 flag == 0 & close1 flag == 0 &
16 t >= 5 & z>=0,
17

18 start ∼ closed ∼ part ∼ stop &
19 0 < y2 <= 2 & x == 0 & y1 == 0 &
20 close2 flag == 1 & close1 flag == 0 &
21 t >= 5 & z + y2 >= 2
22 }.

According to the results, the predicate t ≥ 5 is always true.
Which indicates that the time interval property is satisfied.

9 Collision Avoidance in Subway Control Systems

In this section, we improve our models as a subway control
system that consists of four trains, four stations, and the plat-
form of each station contains two sides (i.e., platforms), the
Side-A and Side-B. The train would stop at Side-A when its
direction is Direction-A, and it would stop at Side-B when
the direction is Direction-B, as illustrated in Fig. 16.

The first station is Station-1, and the last station is Station-
4. At first, the train stops at the Side-A of Station-1, then it
leaves for Station-2 and then Station-3, Station-4. When the
train departs from Side-A of Station-4, it will change its di-
rection from A to B, and stop at the Side-B of Station-4.
Also, the train changes the direction from B to A when it
leaves from Side-B of Station-1.

Along the subway line, we use constant numbers to spec-
ify the positions of stations. Station-1 is positioned at 0, i.e.,

14 H. Fang et al.

about to open2
0 ≤ z ≤ 5

ż = 1

idle
z = 0
ż = 0

start
0 ≤ z∧ 0 ≤ t
ż = 1∧ ṫ = 0

about to close2
0 ≤ z∧ 0 ≤ t
ż = 1∧ ṫ = 1

about to open1
0 ≤ z ≤ 5

ż = 1

open1
0 ≤ z ≤ 6

ż = 1

ring
6 ≤ z ≤ 9

ż = 1

about to close1
0 ≤ z ≤ 5

ż = 1

z = 0∧ c1 = 0∧ c2 = 0

near stop

z = 5∧ z′ = 0
open2

z = 5∧ z′ = 0
open1

z = 6
ring

z = 9∧ z′ = 0

ring off

z = 5∧ z′ = 0
close1

c1 = 0∧ z′ = 0

5≤ z∧

close2

shut closed1

t ′ = 0∧ z′ = 0∧ c′1 = 0

shut closed2

z′ = 0∧ c′2 = 0

c2 = 0∧ z′ = 0

5≤ z∧

stop leave

(a) Controller

IDLE

OK

ERROR1_
' 0

shu t close
T 

WAITING

0 T

1T 

2

5T
close


2

5T
close


(b) Monitor

Fig. 15 Correct controller automaton and the monitor, the synchronized label shut closed1 and the corresponding self-loop transition added on
mode about to close2 are for the goal of time interval property

Station-2
2284

Station-1
0

Station-3
3292

Station-4
9097

Change
Direction

Change
Direction

Direction A

Direction B

A

B

A A A

B B B

Fig. 16 The subway (metro) line, train running path and stations, Side-
A (i.e., platform A) is depicted as a solid blue circle, and Side-B (i.e.,
platform B) the solid red circle

' 1.5v 

300 meters
A B

Fig. 17 The urgent distance control for trains

it is the reference point among the four stations in the sys-
tem. Station-2 is positioned at 2284, therefore, the distance
between Station-1 and Station-2 is 2284 (meters).

Moreover, each train has one group of train doors de-
scribed in previous sections. Each side of station has one
group of screen doors. As a result, we have eight groups of
screen doors in the system.

9.1 Requirement

In this case, we focus on the safety distance between trains.
Our objective is to make sure that the train collision is ab-
sent in our system. To keep a safety distance, in this case
study, we monitor the distance between two trains, the train
shall brake when its distance to the train ahead is less than
or equal to 300 meters (urgent distance, as illustrated in
Fig. 17). The deceleration will be−1.5m/s2 during the brak-
ing.

Let Ω be the safety distance between trains, and Φ be
the urgent distance,ϒ the set of trains. ∀i, j, i 6= j, and Ti,Tj ∈
ϒ , the requirement is:

[D(Ti,Tj)≤Φ =⇒ U(Ti)] =⇒ [D(Ti,Tj)≥Ω]

where, D is a function that returns the distance between Ti
and Tj if the train Tj is ahead of Ti. U(Ti) is a predicate that

Table 1 Variables in the Simulink/Stateflow model. The Output vari-
able is used to display the simulation result. The Input variable is used
to receive signal (or just a value) from outside of the Stateflow model.
The variable of type double can be changed continuously, also double
variables can be used to denote floating numbers. The variable of type
int32 is the discrete variable. The type Inherit means the type is inher-
ited from the Simulink component that produces the input to Stateflow
chart. Local variable and global variable are relative concepts. For ex-
ample, if Stateflow chart A has one local variable x and four subcharts,
then x is a shared variable between the four subcharts. But, if one of
the subcharts has a local variable y, then y cannot be read or write by
other subcharts

Variable Scope Type Size Initial Value

v shutTD Input Inherit [4 1]

v shutPSD Input Inherit [4 2]

openPSD Local double [4 2]

closePSD Local double [4 2]

Delay Local double [1 4] [0 50 100 150]

openTD Local double [4 1]

closeTD Local double [4 1]

S Local double [1 4] [0 2284 3292 9097]

N Local int32 4

urstopped Local double [4 1]

dir Local int32 [4 1]

position Local double [4 1]

distance out Output double [4 1]

y1 out Output double [4 1]

y2 out Output double [4 2]

checks Ti is in the urgent control state (i.e., breaking or stop).
In other words, whenever the distance between two trains is
less than or equal to the urgent distance, the train behind is
under the urgent control. Then these two trains are safe from
collision.

9.2 Simulation of Collision Avoidance Scenario

Since the strong expressive power and fast simulation re-
sult feedback of Simulink/Stateflow, we do the simulation

Formal verification and simulation for platform screen doors and collision avoidance in subway control systems 15

init
du:time_dot=1;

urgent_dec
du:
distance_dot=dir[i]*v;
v_dot=-1.5;
distance_out[i]=distance;

near
du:
distance_dot=dir[i]*v;
v_dot=acc;
distance_out[i]=distance;

stop
en:v=0;

recover
du:distance_dot=dir[i]*v;
v_dot=-0.5;
distance_out[i]=distance;

run
du:distance_dot=dir[i]*v;
v_dot=0.5;
distance_out[i]=distance;

urgent_stop
du:distance_dot=0;
v_dot=0;distance_out[i]=distance;
ex:maxv=sqrt(0.5*abs(S[j]-distance))

urgent_inc
en:urstart[i]=0;
du:distance_dot=dir[i]*v;
v_dot=0.5;
distance_out[i]=distance;

ChangeDirection
du:time_dot=1;

tmp

stablerun
du:distance_dot=dir[i]*v;
v_dot=0;
distance_out[i]=distance;

select

Train0

[urstart[i]==1]

[(dir[i]==1&&j<N-1)||(dir[i]==-1&&j>0)]{j=j+dir[i];}
3

[abs(distance-S[j])<=500]
1

[v>=20]
2

[start[i]==1]
{stop[i]=0,time=0;}

[urstop[i]==1]
3

[urstop[i]==1]
2

{acc=-v^2*0.001}
[urstop[i]==1]

2

{i=0,start[i]=0,stop[i]=0,time=0,distance=0,
v=0,dir[i]=1;}

[v<=0.1]
{urstopped[i]=1;}

[urstop[i]==1] 1
[urstop[i]==1]2

[time>=30]
{dir[i]=-dir[i],stop[i]=1,start[i]=0;}

[abs(distance-S[j])<=1]
{stop[i]=1,v=0,start[i]=0;}

2

[maxv<=20]

2

[time>=Delay[i]]{stop[i]=1,j=0;}

[maxv>20]

1

[j==N-1&&dir[i]==1]
2

[abs(distance-S[j])<=1]
{stop[i]=1,start[i]=0;}

1

[v>=maxv]
1

[j==0&&dir[i]==-1]
1[abs(distance-S[j])<=500]1

Fig. 18 The improved train chart in Stateflow. The variable j is used for station index, it ranges over {0,1,2,3}. N is a constant variable that
represents the amount of stations, in our case, N = 4. The variable i denotes the id of trains, in this statechart, i = 0. For other trains, i maybe 1, 2 or
3. The direction of Train-i is represented by the variable dir[i], thus dir is an array. Similarly, the position of station is S[j], for instance, S[0] = 0.
Initially, before start running, the train has to wait for a period of time, Delay[i] is used for Train-i that after the delay of Delay[i] (seconds) the
train can stop at the first station. When the train restarts from urgent stop, we calculate the maximum velocity (maxv) of the train according to the
distance from the train to the front station and the acceleration (0.5 m/s2). If maxv is great than 20 m/s, the train will do the normal running (i.e.,
go to the state run). Otherwise, it will go to the state urgent inc. The distance between the train and the first station is represented by the variable
distance. The velocity of the train is denoted by variable v. In addition, the symbol ‘∗’ used in Stateflow denotes the multiplication operator

idle
en:t=0;
du:t_dot=0.5;

CalDistance
MATLAB Function

Delay
en:t=0;
du:t_dot=1;

stopDecision(a)
MATLAB Functiontmp

en:t=0;
du:t_dot=0.5;

UrgentController [i==N&&t>=1]{i=0;}

2
[t>=150]{i=0;} {stopDecision(i);}

[t>=0]{CalDistance(),i=i+1;}

[i!=N&&t>=0]
1

Fig. 19 Urgent controller chart in Stateflow. Variable i is used for the id of trains, in our case, i ranges over {0, 1, 2, 3}. The amount of trains is
represented by variable N, and N = 4. The matlab function stopDecision(a), decides whether the train with id a has to stop urgently, for example,
it sets the value of urstop[1] to be 1 if Train-1 has to stop urgently. Another function, CalDistance recalculates the distances between trains, and
sets the train to restart (urstart[i]=1, the id of this train is 1) if its distance to other trains is a safe one

before proceeding to the formal verification. Stateflow sup-
ports the declaration and invocation of Matlab functions in
which we can employ plentiful control structures such as
conditional and iterative statements. And, in the model of
Simulink/Stateflow, array variables are supported, as a re-
sult, we can read and write variables according to an index
(Table 1 illustrates some variables and their scopes, types,
dimensions at the highest level of our model). This is very
convenient for modeling, for instance, in our model, we have
four trains, each train has the same chart structure and same
variables definitions, it is easy to get and set the their val-
ues with an index variable in the control structures. More-
over, the transition label in Stateflow allows non-linear pred-
icates (for instance, we can move the exit action ‘maxv =

sqrt(0.5 ∗ abs(S[j]− distance))’ in urgent stop to the tran-
sition from urgent stop to select in Fig. 18) and math func-
tions in the condition (i.e., the guard) and action (i.e., the as-
signment). This expressive power gives the designer a great
freedom of choice during the modeling.

In Fig. 18, we improve the train chart with more real-
istic dynamics and the urgent control reactions. The trains
are not allowed to start from the first station simultaneously
as we only have one track at each side of one station. As a
result, each train has to wait for some time at the beginning.
The work flow of one train is depicted as follows: at first, it
waits for several time and then stops at the first station. Af-
ter it picks passengers, the train leaves the first station and
goes to Station-2. When the train stops at the final station, all
passengers get off the train, then it changes its running direc-
tion from A to B, and stops at the Side-B of the final station.
The train picks up the passengers at the Side-B of the final
station, then it leaves. Similarly, the train also changes the
direction when it leaves from the Side-B of the first station.

As illustrated in Fig. 18, the train would be in the stable
running state when its velocity reaches 20 (m/s). And, the
train would slow down if the distance to the station ahead is
less than or equal to 500 meters. During the running, each
train will interact with the urgent controller (in Fig. 19). The

16 H. Fang et al.

shared variable urstop[i] indicates whether or not to do the
urgent stop. And, urstart[i] represents the restart signal of a
train during the urgent control. We put the control logic in
the Matlab function stopDecision to decide whether or not
to stop a train urgently. In the Matlab function CalDistance,
the controller calculates the distances between trains and
restarts the train if it is safe to start running again.

The simulation results are showed in Fig. 20-21. Fig. 20
illustrates the normal runnings of fours trains, from left to
right, the curves represent the positions of Train-0, Train-1,
Train-3 and Train-4 over time, respectively. Obviously the
urgent distance control was taken (for Train-1, Train-2 and
Train-3) before they passed the final station (i.e., the posi-
tion 9097). And, we can see that Train-0 never goes into
the urgent control state as it is the first train that begins to
start running in the system, i.e., no train is ahead of Train-0.
For Train-1, it has to stop urgently near the second station
(i.e., position 2284), because Train-0 is stopped at the sec-
ond station, and the distance between these two trains is less
than 300 meters. Likewise, Train-2 and Train-3 also must
urgently stop when the previous trains are stopped urgently.
All trains have to change its direction at the final station,
and it takes more time for the train during the final station,
Train-1 has to stop urgently when Train-0 is at Side-A of the
final station. After the final station, there is no urgent con-
trol for the four trains as the distances between them are safe
enough for their future running. In Fig. 21, the difference for
the positions of Train-0 and Train-1 is depicted in the second
sub-figure, and the third sub-figure denotes the direction of
Train-0, the number 1 for Direction-A, −1 for Direction-B.
After Train-0 changes its direction, the position difference
will be zero, it is safe for these two trains as they are posi-
tioned at the different sides of the station or subway line.

9.3 Formal Verification of Collision Avoidance Scenario

For formal verification, we employ SpaceEx ([21]) to model
and verify the hybrid automata model. It supports component-
based modeling and verification on affine hybrid automata.
It is proper to use this tool to handle large-scale hybrid sys-
tems with complex dynamics. For more details about the
tool SpaceEx, one can refer to the website of the tool 1.

The simulation result in Fig. 20 indicates that the trains
have strict running orders. This feedback from simulation
can be beneficial to simplify our modeling and verification
process with hybrid automata. Now, modeling of two trains
in SpaceEx is sufficient to verify the urgent collision avoid-
ance scenario. The train automaton and the urgent controller
automaton are illustrated in Fig. 23-24 (see Appendix A).
We find one bug that is not detected during the design and
simulation (the reachable states are listed as in Fig. 22).

1 http://spaceex.imag.fr/

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

P
o
s
it
io

n

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1

T
ra

in
−

0

U
rg

e
n
t
F

la
g

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

1

T
ra

in
−

1
U

rg
e
n
t
F

la
g

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

1

T
ra

in
−

2

U
rg

e
n
t
F

la
g

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

1

T
ra

in
−

3

U
rg

e
n
t
F

la
g

Train−0

Train−1

Train−2

Train−3

Fig. 20 One normal runnings of four trains for 2000 seconds. The first
sub-figure denotes the positions of four trains over time. In addition,
four sub-figures represent the urgent control flags for these trains, re-
spectively. If the flag takes value of 1, the train is in urgent control, and
0 otherwise

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

P
o
s
it
io

n

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

500

1000

1500

2000

2500

D
if
fe

re
n
c
e

0 500 1000 1500 2000 2500 3000 3500 4000 4500

−1

0

1

D
ir
e
c
ti
o
n

Fig. 21 The distance between Train-0 and Train-1

As described in the verification result, the two trains (the
trains in the components trainsys 1 and trainsys 2) are po-
sitioned at the first station at the same time while the screen
doors at the station are closing. pos1 and pos2 are the po-
sitions for these two trains. ‘dir1 == 1’ represents that the
direction of the first train is in Direction-A, and ‘dir2 == 1’
means the second train is also in Direction-A. In Sect. 7,
we know that the time for closing the train doors and screen
doors may be very long as during the closing we have to
reopen and reclose the doors, because of the clamping situa-

http://spaceex.imag.fr/

Formal verification and simulation for platform screen doors and collision avoidance in subway control systems 17

1 loc(trainsys 1.train)==stopAtStation & loc(trainsys 1.train)!=init &
2 loc(trainsys 1.traindoors)==closed &
3 loc(trainsys 1.controller)==closeScreenDoors &
4 loc(trainsys 2.train)==stopAtStation & loc(trainsys 2.train)!=init &
5 loc(trainsys 2.traindoors)==closed &
6 loc(trainsys 2.controller)==about to open2 &
7 loc(urgentcontrol)==Delay & loc(screendoors 1)==shut &
8 loc(screendoors 2)==closed & loc(screendoors 3)==closed &
9 loc(screendoors 4)==closed & loc(screendoors 5)==closed &

10 loc(screendoors 6)==closed & loc(screendoors 7)==closed &
11 loc(screendoors 8)==closed & screendoors 8.y == 0 &
12 screendoors 7.y == 0 & screendoors 6.y == 0 &
13 screendoors 5.y == 0 & screendoors 4.y == 0 &
14 screendoors 3.y == 0 & screendoors 2.y == 0 &
15 trainsys 1.controller.z+screendoors 1.y == 2 &
16 trainsys 2.controller.z-globalTime == -50 &
17 distance == -1 & urstopped 2 == 0 & urstopped 1 == 0 &
18 trainsys 2.controller.z-t == -50 &
19 trainsys 1.traindoors.y == 0 & trainsys 1.train.S == 0 &
20 trainsys 1.train.time == 0 & dir1 == 1 &
21 trainsys 1.train.v == 0 & pos1 == 0 &
22 trainsys 1.stationid == 0 &
23 trainsys 2.traindoors.y == 0 & trainsys 2.train.S == 0 &
24 trainsys 2.train.time == 0 & dir2 == 1 &
25 trainsys 2.train.v == 0 &
26 pos2 == 0 & trainsys 2.stationid == 0 &
27 trainsys 2.controller.z-trainsys 1.controller.z <= -1 &
28 trainsys 1.controller.z <= 2 & trainsys 2.controller.z >= 0

Fig. 22 The verification result in SpaceEx

tion. Therefore, this bug means that the delay of a period of
time before the train goes to the first station is not a proper
approach to schedule all the trains in our case.

The bug seems very simple, one may believe that peo-
ple can recognize this at the beginning of the design, and
if we monitor the first station carefully, we can remove this
bug easily. But, a small error may lead to a large discrep-
ancy later on. We treat this “simple” bug as serious as we
can. After carefully analyzing for this, we found that the ur-
gent controller also has a similar bug when we observes the
final station. In the design of urgent controller, we believe
that two trains positioned at the same station with different
directions is safe because one train stops at the Side-A and
another stops at the Side-B of the station. But, if the train
changes its direction from A to B at the final station, then
it is very dangerous when there is another train which al-
ready stopped at the Side-B of the station. We believe that
the latter bug is not as “simple” as the former one. This is
one reason why we employ the feedback between simulation
and formal verification.

10 Related Work

The platform screen doors system is a subsystem of subway
control system. The literature [36] reported the work about
COPPILOT (PSD controller, [14]) which had been done at
ClearSy [13] in France. It applied the B-method ([3]) to the
development of platform screen doors systems. More details
about B-method can be found at [1], and the 15-year appli-
cation in industry [37]. The tools and applications of B and

Event-B ([2, 47]), for example, the application on metro can
be found at the website [15].

The work [36] is an industrial project. And the prod-
uct Coppilot has been installed in the Paris metro, at sev-
eral platforms: station Invalides and Saint-Lazare Line 13.
The architecture of the work was based on Siemens safety
automaton, and ordinary infra-red and radar sensors. It is
different from our work, the motivation of our work is to
combine the formal verification with simulation and take a
try to apply this methodology to the real systems, in addi-
tion, our models discussed here are an abstract of the real
systems. On the contrary, [36] also contains the process of
the code translation from B to LADDER (for the Siemens
automaton can be programmed in LADDER).

Another work ([45]) on platform screen doors consid-
ered the emergency evacuation in underground railway sta-
tions, studied the evacuation times for variants of passenger
loadings on the subway system in Hong Kong.

The characteristic of [45] is the empirical equations and
the statistical data for the estimation. Another interesting
point is that it also considered the positions of the train doors
and platform screen doors when the train stopped. It is not
studied in our work as we focus on the time interval prop-
erty in this paper, and we believe it shall be done in the future
work based on formal methods.

The Metrô Rio case study in [17] adopted the Matlab
Simulink/Stateflow for the development of ATP (Automatic
Train Protection) system. It also took the formal verification
using Simulink Design Verifier. For the generated code, the
tool Polyspace was applied to check the correctness of the
code.

The main distinction between our work and the Metrô
Rio case study is that it did not consider the connection
between formal verification and simulation during develop-
ment. On the contrary, in our methodology (FAV), there is
a feedback relation between formal verification and simula-
tion, this relation is key for the advancement of design and
development process.

The ARTEMIS EU-project MBAT [40] studied in [39]
elaborated the improving of verification process in driverless
metro Systems. It combined model-based static analysis and
dynamic testing in the development of the MBAT project in
Ansaldo STS. In the CBTC (Communication-Based Train
Control) case study, they also studied the “Openning” of the
train doors and platform screen doors, but focused on which
side of the doors should open at first (or second). This is
different from our work demonstrated here, we focus on the
“Closing” of the doors.

The common point is that, the proposed Ansaldo STS
process workflow in [39] also concerned the feedback be-
tween formal verification and the non-formal analysis (e.g.,
the test).

18 H. Fang et al.

On the life safety aspect of platform screen doors, the lit-
erature [46] investigated the fire and evacuation scenario in
a subway train fire. The fire simulation in the work adopted
the Fire Dynamics Simulator (FDS V406 [41]) code to pre-
dict the smoke spread and analyze the safe time. And, it
pointed out that the installation of platform screen doors in
the subway station has better advantage for the safety of pas-
sengers than that lacks of platform screen doors.

The work [48] studied the requirement analysis for train
control systems. It translated the requirement into PSL ([4])
model, and checked the model with the requirement analysis
tool RATSY ([11]). Another work on train control systems
was proposed in [33], which employed Z ([32]) and State-
chart ([27, 28]) for the formal specification and verification.
Compared with our work, the above two papers focus on the
abstract level of the system and did not consider the contin-
uous behavior of the train in their work. Our work not only
considered the discrete transitions between control modes,
but also the continuous flow of the system states.

On the timed UML aspect, [43] proposed a method and
a tool based on the communicating extended timed automata
for simulation and model checking on the UML models. It
integrated the real-time feature as UML extensions, and con-
sidered timers, clocks, time-related data types, etc. Due to
the lack of the description on the continuous behavior (e.g.,
affine dynamics), it is not applicable for hybrid systems in-
volving linear and non-linear dynamics.

11 Conclusions and Future Work

In this paper, we have presented the models of Platform
Screen Doors System (PSDS) which is a subsystem of sub-
way control systems. And, we improved the models with
four trains, four stations on a subway line. The formal ver-
ification approaches and simulation based techniques have
been applied and elaborated in detail. Moreover, we pro-
posed the methodology to integrate the formal verification
with industrial simulation. For the verification of PSDS, we
combined the formal verification tool SpaceEx/PHAVer with
simulation tool Simulink/Stateflow. Benefited from the in-
teractive simulation and the powerful visualization features
of Matlab toolset, we have simulated the sandwiched situ-
ation by using Simulink blocks in the model, and explored
the reaction of the system in the Scope window with respect
to simulation time.

To verify the correctness of the correction, we checked
the time interval property by the tool SpaceEx/PHAVer. In
base phase, we focused on verification and simulation for
four fundamental properties, and found the sandwich prob-
lem with simulation. Then in the exploration phase, we mod-
ified our controller’s model and took simulation again, then
modified the hybrid automaton of controller and checked the
correctness by formal verification with SpaceEx/PHAVer.

As a result, we acquired the ultimate models of PSDS for
our case. For the collision avoidance scenario, we showed
that the simulation result is beneficial for the formal verifi-
cation. And, we can inspect unpredictable flaws during the
verification, which can be feedback to simulation as well.

As future work, we plan to continue the verification on
subway control systems. Moreover, the potential work could
be to extend the Matlab Simulink/Stateflow toolset with the
capability of formal verification. In the literature [26], Ha-
mon and Rushby presented an operational semantics for the
Matlab Stateflow. And in [25], Hamon presented a deno-
tational semantics for Stateflow. Although these works are
subject to a subset of Stateflow, we could benefit from them
to analyze the new features in Stateflow and construct for-
mal tools to improve the verification progress.

Furthermore, in [5], Agrawal, Simon and Karsai pre-
sented the algorithm of translation from Simulink/Stateflow
models to hybrid system models in Hybrid System Inter-
change Format (HSIF [44]). This foundational work is help-
ful on the formal verification for Simulink/Stateflow models
and could be implemented in the Matlab toolset, and it can
be adopted in our future work. In addition, the scalability of
the integrated notation and method is worth to be discussed
in the future work.

Acknowledgements We thank Goran Frehse for his insightful discus-
sion on SpaceEx/PHAVer and hybrid systems. This work was partly
supported by the Danish National Research Foundation and the Na-
tional Natural Science Foundation of China (Grant No. 61061130541)
for the Danish-Chinese Center for Cyber Physical Systems. And, also
it was supported by National Basic Research Program of China (No.
2011CB302904), National High Technology Research and Develop-
ment Program of China (No. 2011AA010101 and No. 2012AA011205),
National Natural Science Foundation of China (No. 61021004 and No.
91118008), and Shanghai STCSM Project (No. 12511504205).

References

1. Abrial, J.-R.: The B-book: assigning programs to mean-
ings. Cambridge University Press, Cambridge (2005)

2. Abrial, J.-R.: Modeling in Event-B: system and soft-
ware engineering. Cambridge University Press (2010)

3. Abrial, J.-R., Lee, M., Neilson, D., Scharbach, P.,
Srensen, I.: The b-method. In: Proceedings of VDM,
LNCS, vol. 552, pp. 398–405. Springer-Verlag (1991)

4. Accellera Orgnization: Property specification language
reference manual (2003)

5. Agrawal, A., Simon, G., Karsai, G.: Semantic transla-
tion of simulink/stateflow models to hybrid automata
using graph transformations. Electron. Notes. Theor.
Comput. Sci. 109, 43–56 (2004)

6. Alur, R., Courcoubetis, C., Henzinger, T., Ho, P.: Hy-
brid automata: An algorithmic approach to the spec-
ification and analysis of hybrid systems. In: Hybrid

Formal verification and simulation for platform screen doors and collision avoidance in subway control systems 19

Systems, LNCS, vol. 736, pp. 209–229. Springer-Verlag
(1993)

7. Alur, R., Henzinger, T., Ho, P.: Automatic symbolic ver-
ification of embedded systems. IEEE Trans. Softw. Eng.
22(3), 181–201 (1996)

8. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approxi-
mate reachability analysis of piecewise-linear dynam-
ical systems. In: Proceedings of HSCC, LNCS, vol.
1790, pp. 20–31. Springer-Verlag (2000)

9. Asarin, E., Dang, T., Maler, O., Testylier, R.: Using re-
dundant constraints for refinement. In: Proceedings of
ATVA, LNCS, vol. 6252, pp. 37–51. Springer-Verlag
(2010)

10. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.: Possibly
not closed convex polyhedra and the parma polyhedra
library. In: Proceedings of SAS, LNCS, vol. 2477, pp.
299–315. Springer-Verlag (2002)

11. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G.,
Könighofer, R., Roveri, M., Schuppan, V., Seeber, R.:
Ratsy–a new requirements analysis tool with synthesis.
In: Proceedings of CAV, pp. 425–429. Springer-Verlag
(2010)

12. Bonnett, C.: Practical Railway Engineering. Imperial
College Press (2005)

13. ClearSy: ClearSy–A French SME company. URL
http://www.clearsy.com/?lang=en

14. ClearSy: COPPILOT System. URL http://www.

coppilot.fr/en/coppilot/

15. ClearSy: Tools and applications at ClearSy. URL
http://www.tools.clearsy.com

16. Doyen, L., Henzinger, T., Raskin, J.: Automatic rect-
angular refinement of affine hybrid systems. In: Pro-
ceedings of FORMATS, LNCS, vol. 3829, pp. 144–161.
Springer-Verlag (2005)

17. Ferrari, A., Fantechi, A., Magnani, G., Grasso, D., Tem-
pestini, M.: The metrô rio case study. Sci. Comput. Pro-
gram. (2012)

18. Frehse, G.: PHAVer: Algorithmic verification of hybrid
systems past HyTech. In: Proceedings of HSCC, LNCS,
vol. 3414, pp. 258–273. Springer-Verlag (2005)

19. Frehse, G.: Language Overview for PHAVer version
0.35 (2006)

20. Frehse, G.: PHAVer: algorithmic verification of hybrid
systems past HyTech. Int. J. Softw. Tools. Technol.
Transf. 10(3), 263–279 (2008)

21. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray,
R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler,
O.: SpaceEx: Scalable verification of hybrid systems.
In: Proceedings of CAV, LNCS, vol. 6806, pp. 379–395.
Springer-Verlag (2011)

22. Girard, A., Le Guernic, C.: Zonotope/hyperplane inter-
section for hybrid systems reachability analysis. In:
Proceedings of HSCC, LNCS, vol. 4981, pp. 215–228.

Springer-Verlag (2008)
23. Granlund, T., Ryde, K.: The GNU Multiple Precision

Arithmetic Library Version 4.0 (2001)
24. Halbwachs, N., Proy, Y., Raymond, P.: Verification of

linear hybrid systems by means of convex approxima-
tions. In: Proceedings of SAS, LNCS, vol. 864, pp. 223–
237. Springer-Verlag (1994)

25. Hamon, G.: A denotational semantics for stateflow. In:
Proceedings of EMSOFT, pp. 164–172. ACM (2005)

26. Hamon, G., Rushby, J.: An operational semantics for
stateflow. Int. J. Softw. Tools. Technol. Transf. 9(5-6),
447–456 (2007)

27. Harel, D.: Statecharts: A visual formalism for complex
systems. Sci. Comput. Program. 8(3), 231–274 (1987)

28. Harel, D., Naamad, A.: The statemate semantics of stat-
echarts. ACM Trans. Softw. Eng. Methodol. 5(4), 293–
333 (1996)

29. Henzinger, T., Ho, P., Wong-Toi, H.: Hytech: A model
checker for hybrid systems. Int. J. Softw. Tools. Tech-
nol. Transf. 1(1-2), 110–122 (1997)

30. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s
decidable about hybrid automata? J. Comput. Syst. Sci.
57(1), 94–124 (1998)

31. Henzinger, T.A.: The theory of hybrid automata. In:
Proceedings of LICS, pp. 278–292. IEEE Computer So-
ciety (1996)

32. Jacky, J.: The way of Z: practical programming with
formal methods. Cambridge University Press (1996)

33. Jo H.-J, Hwang J.-G, Yong Y.-K : Development
of formal method application for ensuring safety in
train control system (2008). URL http://www.

railway-research.org/IMG/pdf/o.3.4.2.3.pdf

34. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques
for reachability analysis. In: Proceedings of HSCC,
LNCS, vol. 1790, pp. 202–214. Springer-Verlag (2000)

35. Le Guernic, C., Girard, A.: Reachability analysis of lin-
ear systems using support functions. Nonlinear Anal.
Hybrid Syst. 4(2), 250–262 (2010)

36. Lecomte, T.: Safe and reliable metro platform screen
doors control/command systems. In: Proceedings of
FM, LNCS, vol. 5014, pp. 430–434. Springer-Verlag
(2008)

37. Lecomte, T.: Applying a formal method in industry: A
15-year trajectory. In: Proceedings of FMICS, LNCS,
vol. 5825, pp. 26–34. Springer-Verlag (2009)

38. Lynch, N.A., Vaandrager, F.W.: Forward and backward
simulations, ii: Timing-based systems. Inf. Comput.
128(1), 1–25 (1996)

39. Marrone, S., Nardone, R., Orazzo, A., Petrone, I., Ve-
lardi, L.: Improving verification process in driverless
metro systems: The mbat project. In: Proceedings of
ISoLA, LNCS, vol. 7610, pp. 231–245. Springer-Verlag
(2012)

http://www.clearsy.com/?lang=en
http://www.coppilot.fr/en/coppilot/
http://www.coppilot.fr/en/coppilot/
http://www.tools.clearsy.com
http://www.railway-research.org/IMG/pdf/o.3.4.2.3.pdf
http://www.railway-research.org/IMG/pdf/o.3.4.2.3.pdf

20 H. Fang et al.

40. MBAT Consortium: ARTEMIS Project MBAT. URL
http://www.mbat-artemis.eu

41. National Institute of Standards and Technology (NIST):
Fire Dynamics Simulator and Smokeview Code. URL
http://code.google.com/p/fds-smv/

42. Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An ap-
proach to the description and analysis of hybrid sys-
tems. In: Proceedings of Hybrid Systems, LNCS, vol.
736, pp. 149–178. Springer-Verlag (1993)

43. Ober, I., Graf, S., Ober, I.: Validating timed uml mod-
els by simulation and verification. Int. J. Softw. Tools.
Technol. Transf. 8(2), 128–145 (2006)

44. Pinto, A., Sangiovanni-Vincentelli, A.L., Carloni, L.P.,
Passerone, R.: Interchange formats for hybrid systems:
Review and proposal. In: Proceedings of HSCC, LNCS,
vol. 3414, pp. 526–541 (2005)

45. Qu, L., Chow, W.: Platform screen doors on emergency
evacuation in underground railway stations. Tunn. Un-
dergr. Space Technol. 30(0), 1–9 (2012)

46. Roh, J.S., Ryou, H.S., Park, W.H., Jang, Y.J.: Cfd simu-
lation and assessment of life safety in a subway train
fire. Tunn. Undergr. Space Technol. 24(4), 447–453
(2009)

47. Su, W., Abrial, J.-R., Zhu, H.: Complementary method-
ologies for developing hybrid systems with event-b. In:
Proceedings of ICFEM, LNCS, vol. 7635. Springer-
Verlag (2012)

48. Zhao, L., Tang, T., Cheng, R., He, L.: Property based re-
quirements analysis for train control system. J. Comput.
Inf. Syst. 9(3), 915–922 (2013)

A Appendix: Hybrid Automata of Train and Urgent
Distance Controller in SpaceEx

Table 2 Variables in Hybird Automata of Train and Urgent Distance
Controller

Variable Meaning

time Used as a clock to tick time passing in train automa-
ton.

Delay A constant variable. Used as the initial waiting time
for a train, after the delay the train will start to work
and stop at the first station.

v The velocity of a train in our case.

pos The position of a train in our case.

S Denotes the position of a subway station. The value
of S will be reset whenever the train leaves a station.

dir The running direction of a train. The direction is Di-
rection A (see Fig. 16) when the value of dir takes 1,
and −1 for Direction B.

j Represents the identifier of the station that is in the
front of the train or the station the train is stopped.

t Used as a clock to tick time passing in urgent distance
controller automaton.

distance Denotes the distance between two trains.

globalTime Records the time passing whenever the urgent dis-
tance controller is active.

urstopped 1 A flag variable that indicates the behaviors of the first
train should be. If its value is 1, then the train has to
stop urgently. And, the train can restart to run from
urgent stop when the value of urstopped 1 is 0.

urstopped 2 The same as urstopped 1, but urstopped 2 is used
for the second train.

http://www.mbat-artemis.eu
http://code.google.com/p/fds-smv/

Formal verification and simulation for platform screen doors and collision avoidance in subway control systems 21

Fi
g.

23
Tr

ai
n

au
to

m
at

on
in

Sp
ac

eE
x.

T
he

no
ta

tio
ns

of
th

e
hy

br
id

au
to

m
at

a
in

Sp
ac

eE
x

ar
e

sl
ig

ht
ly

di
ff

er
en

tf
ro

m
th

at
w

as
de

fin
ed

in
D

efi
ni

tio
n

1.
T

he
pr

im
ed

va
ri

ab
le

x′
in

a
m

od
e

is
co

rr
es

po
nd

in
g

to
th

e
fir

st
-o

rd
er

de
riv

at
iv

e
of

x.
T

he
sy

m
bo

l‘
&

’i
s

us
ed

as
a

re
la

tio
n

op
er

at
or

fo
rl

og
ic

al
co

nj
un

ct
io

n.
T

he
as

si
gn

m
en

t‘
:=

’i
n

a
ju

m
p

co
nd

iti
on

is
ap

pl
ie

d
fo

rt
he

re
se

to
fv

ar
ia

bl
es

w
he

n
th

e
co

nt
ro

l
sw

itc
h

is
va

lid
.F

or
ex

am
pl

e,
‘j

:=
0’

re
pr

es
en

ts
th

e
re

se
to

f
th

e
va

lu
e

of
j

to
0.

T
he

co
nd

iti
on

al
op

er
at

or
s

su
ch

as
‘=

=’
,‘
<
=

’
in

a
ju

m
p

co
nd

iti
on

is
fo

r
th

e
te

st
in

g
of

th
e

va
lu

e
of

ex
pr

es
si

on
s,

fo
r

in
st

an
ce

,‘
po

s−
S
<
=

50
0’

is
a

te
st

of
th

e
re

su
lt

fo
rt

he
su

bt
ra

ct
io

n
of

S
fr

om
po

s
is

le
ss

th
an

or
eq

ua
lt

o
50

0
m

et
er

s

22 H. Fang et al.

Fig.24
U

rgentdistance
controllerautom

aton
in

SpaceE
x

	Introduction
	Fundamentals of Hybrid Automata
	Stateflow Chart Notations
	Co-Verification Methodology
	Requirements of Platform Screen Doors in Subway Control Systems
	Models
	Formal Verification and Simulation for PSDS
	Correction
	Collision Avoidance in Subway Control Systems
	Related Work
	Conclusions and Future Work
	Appendix: Hybrid Automata of Train and Urgent Distance Controller in SpaceEx

