
DNA
Data and Program

Representation

Alexandre David
1.2.05

adavid@cs.aau.dk

02+09-02-2011 DNA'11 - Aalborg University 2

Introduction
Very important to understand how data is
represented.

operations
limits
precision

Digital logic built on 2-valued logic system
high/low 5V/0V true/false
we abstract from that from now on
→ bits 0/1

02+09-02-2011 DNA'11 - Aalborg University 3

Basics

Natural/Real Numbers
Base 10
Infinite
Exact

Computer Numbers
Base 2
Finite
Rounding - overflow

In this lecture
How to represent numbers & characters – range,
encoding.
A little arithmetic.
How to use these numbers.

02+09-02-2011 DNA'11 - Aalborg University 4

Questions
How to code negative numbers?
How to code real numbers?
Which kind of precision do we get?

Small numbers vs. big numbers.

What about characters?

02+09-02-2011 DNA'11 - Aalborg University 5

Example
Overflow:
main() {

printf(“%d\n”,200*300*400*500);
}
outputs -88490188.
Fix – sort of:
main() {

printf(“%lld\n”,200LL*300LL*400LL*500LL);
}
outputs 12000000000. What if I forget LL?

02+09-02-2011 DNA'11 - Aalborg University 6

Example
Loss of precision:
(3.14+1e20)-1e20==0.0
3.14+(1e20-1e20)==3.14
Test x == 0.0 not very useful when solving
equations.
In this lecture you will know why.

02+09-02-2011 DNA'11 - Aalborg University 7

Data Storage
Basic unit is the byte (= 8 bits).

88double
44float
84char *
84long int
44int
22short int
11char
Typical 64-bitTypical 32-bitC-declaration

02+09-02-2011 DNA'11 - Aalborg University 8

“Features”

Limits on addressable memory.
Size linked to architecture – 32/64.
Aligned memory allocation (32/64 bits).
Careful on addressing:
main() {

char a[]=“Hello world!”;
int *p=&a[1];
printf(“%d\n”,*p);

}
Bus error on some CPUs

02+09-02-2011 DNA'11 - Aalborg University 9

Integer Encoding

Unsigned integers:

Signed integers:
Called 2 complement.

Highest bit codes the sign.

∑

∑
−

=

−
−

−

=

+−=

=

2

0

1
1

1

0

22

2

w

i

i
i

w
w

w

i

i
i

xxSB

xUB

w: size of a word (in bits)
x: bits (0 or 1)

02+09-02-2011 DNA'11 - Aalborg University 10

Range & Examples
Examples: 1010 = 10, 0110 = 6, 0101 = 5

Range:
unsigned 2k numbers from 0 to 2k-1
signed 2k numbers from -2k-1 to 2k-1-1

one more negative number than positive ones

How to convert between types?
int – char – long int…
sign extension

23=8 22=4 21=2 20=1

02+09-02-2011 DNA'11 - Aalborg University 11

Basic Arithmetic
Logical operations (bitwise):
&,|,^,~,<<,>>.
Example: a ^= b; b ^= a; a ^= b;
Arithmetic operations: + - * /.
Careful with shifts on signed integers!

arithmetic & logical shifts

Do not mess up with boolean operators
(&&, ||).

02+09-02-2011 DNA'11 - Aalborg University 12

Properties
Most operators are the same on
signed/unsigned integers – from a binary
point of view – beauty of the encoding.

One hardware implementation for
+ - / * …
valid for signed and unsigned integers.
Example on 4 bits:
1 + 1001 = 1010
unsigned: 1+9 = 10
signed: 1+(-7) = -6

02+09-02-2011 DNA'11 - Aalborg University 13

Properties
Operations based on the algebra
<Zn,+n,*n,-n,0,1> (commutativity,
associativity, distributivity,…)
Operations modulo n and -a=0 or -a=n-a.
Similar to boolean algebra <{0,1},|,&,~,0,1>
with the addition of DeMorgan laws
~(a&b)=~a|~b, ~(a|b)=~a&~b

02+09-02-2011 DNA'11 - Aalborg University 14

Practice: Shifts & Masks

Read bit n: Use mask (1 << n).
Set bit n on int bits[]:
ipos = n / 32;
imask = 1 << (n % 32);
bits[ipos] |= imask;
Division/multiplications by powers of 2
seen as shifts.
2-complement: -a = ~(a-1) = ~a+1

02+09-02-2011 DNA'11 - Aalborg University 15

Arithmetic
Machine code of + - * / same for int/uint.
Integer convertion == type casting.

Padding for the sign (int).
Conversion is modulo the size of the new int.
Beware of implicit conversions in C!

Optimizations for some operations:

2*a == a+a == a<<1 a/2 == a>>1
a*2^i == x << i a/2^i == a>>i
a%2^i == a & ((1<<i)-1) 2^i == 1<<i

02+09-02-2011 DNA'11 - Aalborg University 16

Notes
Beware of precedence of operators:

if (x & mask == value) WRONG
if ((x & mask) == value) RIGHT

Test odd numbers: if (x & 1)
Careful:
unsigned int i;
for(i = 0; i < n-1; ++i) … ?

02+09-02-2011 DNA'11 - Aalborg University 17

Overflow – “carry”

1011
+1101
111
11000

1011 multiplicand
*1101 multiplier
1011
0000 partial
1011 products
1011
10001111 productSubtraction?

02+09-02-2011 DNA'11 - Aalborg University 18

Hexadecimal Notation
Learn the first powers of 2.
Hexadecimal more useful:

One digit codes 4 bits. 0…F=0…15=16 numbers.
Notation: 0x…
Why?

Examples:
0xa57e=1010 0101 0111 1110

10=8+2,5=4+1,7=4+2+1,14=8+4+2
0xf = 1111, 0x7=0111, 0x3=0011

02+09-02-2011 DNA'11 - Aalborg University 19

Endianness: Beware!
“0xa57e” is a notation for humans.
Corresponds to “1010 0101 0111 1110” in
base 2.

Little endian: stored as 0111111010100101.
Big endian: stored as 1010010101111110.

Does not matter in C/Java/C#, except for
bitmap manipulation
device drivers
network transfers

02+09-02-2011 DNA'11 - Aalborg University 20

Testing for Endianness

Write a value on 32 bits.
Read 8/16 bits and check what was written.
Exercise for Sun/Intel.

Intel? → 0
Sun? → 0xfffffff0
What if a = 0x70000000?

main() {
int a = 0xf0000000;
char *c = &a;
printf(“%x\n”, *c);

}

02+09-02-2011 DNA'11 - Aalborg University 21

Representation of Reals

How to code a real number with bits?
Finite precision → approximation.
Represent very small and very large numbers →
density of encoding varies.

Scientific notation used, e.g. (base 10),
3.141e2 – but in base 2.
Starter: fractional numbers – bad for large
or small numbers.

Decimal (d):
Binary(b): ∑

−=

=
m

ni
i

i dd 10 ∑
−=

=
m

ni
i

i bb 2

02+09-02-2011 DNA'11 - Aalborg University 22

IEEE Floats

IEEE 754 floating point standard
V=(-1)SM*2E

Number of bits (float/double):
s[1], m[23/52], e[8/11].
Normalized and de-normalized values.
Bit fields: s, m, e to code respectively S, M, E.

Normalized values (e≠0, e≠111…)
E=e-bias (-126…127/-1022…1023).
M=1+m (1≤M<2)
Trick for more precision: implied leading 1.

S E M

02+09-02-2011 DNA'11 - Aalborg University 23

IEEE Floats

De-normalized values (e= 0 or 11…)
e=0: E=1-bias, bias=2k-1-1

Coding compensates for M not having an implied
leading 1.
M=m
For numbers very close to 0.

e=11…:
m=0, (signed infinite)
m!=0, NaN.

No more of this.

We abstract fro
m

this co
mplexity.

02+09-02-2011 DNA'11 - Aalborg University 24

Ranges of Floats
Single precision (float)
2-126…2127 ~ 10-38…1038.
Double precision (double)
2-1022…21023 ~ 10-308…10308.

02+09-02-2011 DNA'11 - Aalborg University 25

“Features” of IEEE floats

+0.0 == 0 (binary representation = 00…).
If interpreted as unsigned int, floats can be
sorted (+x ascending, -x descending).
All int values representable by doubles.
Not all int values representable by floats.

round to even (avoid stat. bias)
round towards 0
round up
round down
can’t choose in C…

02+09-02-2011 DNA'11 - Aalborg University 26

Properties (floats)
Operations NOT associative.
Not always inverse (infinity).
Loss of precision.
Ex: x=a+b+c; y=b+c+d;
Optimize or not?
Monotonicity a≥b ⇒ a+x≥b+x
Casts:

int2float rounded, double2float rounded/overflow
int2double, float2double OK
float2int, double2int truncated/rounded/overflow.

Important for
compilers and
programmers.

02+09-02-2011 DNA'11 - Aalborg University 27

IA32: The Good And The Bad

Good: Uses internally 80 bits extended
registers for more precision.
Bad:

Stack based.
Side effects like changing values when loading or
saving numbers in memory whereas register
transfers are exact.

Extensions: MMX, SSE, (Altivec). SIMD
instructions = operations working in parallel
on multiple data.

02+09-02-2011 DNA'11 - Aalborg University 28

Numerical Precision
Evaluation of precision

absolute x ± α
relative x*(1 ± α)

Be careful with division by very small values:
Can amplify numerical errors.

Numerical justification for Gauss’ method to solve
linear equations.

02+09-02-2011 DNA'11 - Aalborg University 29

Character Sets
By convention (standard), we assign codes to
characters.

Careful with programming languages
C char = 1 byte, Java char = 2 bytes
ASCII (American Standard Code for Information
Interchange) common (7 bits), extended ASCII
(8 bits).
Unicode
Other IEEE8859-x codings.
Other Japanese codings…

02+09-02-2011 DNA'11 - Aalborg University 30

More Complex Structures
How to represent, e.g.,
struct { int a, b; char c}?

Use continuous bits for the successive fields.
Compilers will align data!
Try: typedef struct { int a; char c; } foo_t;

int main()
{
printf(“%d\n”, sizeof(foo_t));
return 0;

}

02+09-02-2011 DNA'11 - Aalborg University 31

What About Programs?
Instructions coded into bytes.

“opcode”
Processors interpret them as their particular
instruction sets (standard).

