
Operand Addressing And
Instruction Representation

Alexandre David
1.2.05

adavid@cs.aau.dk

16-02-2011 DNA'11 - Aaborg University 2

Introduction
Previous chapter: processor types &
instruction sets.
This chapter:

how to represent instructions
how to specify operands

16-02-2011 DNA'11 - Aaborg University 3

Operands Per Instruction
Depends on the architecture

0,1,2,3 (or more) address design
Few → easier to decode, need more elementary
instructions to perform tasks, simpler, faster,
smaller.
Many → [opposite]

16-02-2011 DNA'11 - Aaborg University 4

0-Address Design
Operands are implicit.
Typical for stack-based computers.
Program:

push arguments
execute operators

consume arguments
produces result(s)

pop results
Ex: push X; push 7; add; pop X

16-02-2011 DNA'11 - Aaborg University 5

1-Address Architecture
Similar to hand calculator.
One explicit operand, one implicit operand
(accumulator).

Accumulator = special register used for argument
and result.
Ex: load X, add 7, store X

16-02-2011 DNA'11 - Aaborg University 6

2 Operands Per Instruction
2 explicit operands: source & destination
(used also as 2nd source).
Good for memory copy.
Ex: add 7,X

16-02-2011 DNA'11 - Aaborg University 7

3 Operands Per Instruction
2 sources, 1 destination.
Ex: add src1, src2, dst

add 7,X,X
add X,X,Y
add 0,X,Y

16-02-2011 DNA'11 - Aaborg University 8

Operand Types
Not all combinations are allowed in practice
(efficiency, cost).

immediate value
register – value
register – address – memory reference

Von Neumann Bottleneck
Bottleneck = memory. Operand addressing →
access memory.
Justifies use of registers.
Memory accesses limit performance.

16-02-2011 DNA'11 - Aaborg University 9

Operand Encoding
Implicit operand encoding

opcode tells signature
more opcodes needed

Explicit operand encoding
type in operand
more complex to decode

See Intel’s instruction set manual.

16-02-2011 DNA'11 - Aaborg University 10

More Types of Operands
Operands contain multiple items

typically register + offset
Intel example: (GNU asm)
“mov 0x4(%%edi),%%eax”
“lea (%%edi,%%ecx,$8),%%eax”

Indirect reference (more expensive).

16-02-2011 DNA'11 - Aaborg University 11

Types of Indirection

16-02-2011 DNA'11 - Aaborg University 12

Tradeoffs
No perfect solution.
Tradeoff between

ease of programming
fewer instruction
smaller instruction
range of immediate values
faster fetch & decode
decreased hardware size

16-02-2011 DNA'11 - Aaborg University 13

Lessons
Different kinds of operand encodings.

Fewer instructions means more complex types of
encoding.
You should recognize how your high-level
language is going to be executed.
x86 is indeed very complex.

