DNA
Microcode and Processor

!'_ Modes

Alexandre David
1.2.05
adavid@cs.aau.dk

i Evolution of Computers

= Early systems

= CPU (central processing unit) controlled the
entire system

= Responsible for 1/0, computations, ...
= Modern computers

= Decentralized architecture

= Processors distributed (1/0)

= CPU still controls other processors

i General Purpose CPU

= Very complex because
= designed for wide variety of tasks — multiple roles
= contains special purpose sub-units
= ex: core I/ has 731M transistors
= Supports protection and privileges (OS/applic.)
= supports priorities (1/0)
= data size (32/64-bit registers)
= high speed — parallelism = replication

i Modes of Execution

= Modes define
= Subset of valid instructions
= Size of data items
= accessible regions of memory
= avallable functional units
= amount of privilege

= One mode active at any time
= change with special instructions/registers

= Initiated by hardware
= mechanisms vary

i Example: x86

Real mode

= 20-bit segmented addressing (1MB)

= direct access to BIOS

= No multitasking or memory protection
= CPUs after 80286 start in real mode

= Protected mode
= Virtual memory, memory protection
= support for paging
= Virtual 8086 mode
= run in real mode under 32-bit protected mode

= Long mode
= 64-bit mode

= Enhanced mode
= protected mode with SSE instruction

i Privilege Level

s Determines available resources.

= Modes define privileges.
= We need at least 2 levels

= OS
= Applications

appl. 1 appl. 2 appl. N
low
privilege
Operating System --—h'igh
P g oy privilege
23-02-2011

i Microcode

= How to implement complex CPU?
= Program the complex instructions.

= Visible machine language = macro instruction
set.

= Internal language = micro-code.

= Microcontroller inside CPUs that decode and
execute macro-instructions.

= RISC
= Processors are all RISCs in the end.

= Key: Easier to write programs with micro-code
than to build hardware from scratch.

i Microcode

CPU <

macro instruction set

(implemented with microcode)

micro instruction set

(implemented with digital logic)

23-02-2011

DNA'11 - Aaborg University

visible to
- programimer

hidden
,r—f (internal)

. Microcontroller

i Data and Register Sizes

= Size of visible register may differ from
size of internal registers.

= EX: Could implement 32-bit instruction set on a
16-bit microcontroller.

Example: add32 on 16-bit

add32:
move low-order 16 bits from RS into r2
move low-order 16 bits from R6 1nto r3

add r2 and r3. placing result in rl

—> save value of the carry indicator
move high-order 16 bits from R5 mto 12
move high-order 16 bits from R6 nto r3
add r2 and r3. placing result in r0

copy the value 1n 10 to 12
—> add 12 and the carry bit, placing the result in r0
—> check for overflow and set the condition code
move the thirty-two bit result from r0 and rl
23-02-2011 to the desired destination 10

i Advantages/Drawbacks

= Advantages
= Can change microcode and keep the same

macro-instruction set!

= Less prone to errors, can be updated more easily.

= Drawback
= Cost In performance — overhead.
a Microcontroller mus&yupr’ at high speed than CPU

23-02-2011

o accommodate mu#igle micro-instructions per
macro-instruction

Speed=clock defined at the gate

level=speed of micro-controller.
DNA'11 - Aaborg University

11

i Visibility of Microcode

= Fixed microcode — generally the case

s Alterable microcode
= reconfigurable CPU — not very popular

= change before running programs — special
procedure

= more flexibility
= performance overhead

= FPGAs even more flexible with possible better
performance.

12

i Vertical Microcode

= Simple view of microcontroller ~ standard
processor.

= Execution of micro-code like assembly.
= One micro-instruction at a time.
s Access to different units.

s Decode each macro-instruction and execute
micro-code.

= Easy to read/write, bad performance.
= Not the case In practice.

13

i Horizontal Microcode

= Use implicit parallelism.
= Utilize units in parallel when possible.

s Control data movements and the different
hardware units at the same time.

= Very difficult to program.

= Long instruction:
|exec opl unitl]|exec op2 unit2|transfer this
register there]...

14

i Example Architecture

Arithmetic
Logic
Unit =—= result 1 result 2
(ALU) 1 1
operand 1 operand 2

L

Y |

macro
general-
purpose
registers

I

register access

|

< data transfer mechanism

23-02-2011

DNA'11 - Aaborg University

b

15

23-02-2011

Unit Command Meaning
000 No operation
001 Add
010 Subtract
ALU 011 Multiply
100 Divide
101 Left shift
110 Right shift
111 Continue previous operation
operand 0 No operation
1o0r2 1 Load value from data transfer mechanism
result 0 No operation
1o0r2 1 Send value to data transfer mechanism
00xxxx Nooperation
register 01xxxx Move register xxxx to data transfer mechanism
interface | 10xxxx Move data transfer mechanism to register xxxx
11xxxx No operation
ALU Oper.1 Oper.? Res.l Res ! Register interface

\

VY

16

i Horizontal Microcode

= Not like conventional programs.

= Each instruction takes one cycle
= but not all operations take one cycle

= special care for timing, wait for units that need
more cycles

ALU OP, OP, RES, RES, REG. INTERFACE

1 1 1 :0:0 :0 : 0:0 0 0 ©0 0 0

continue

17

i Intelligent Microcontroller

s Schedules instructions & units.
= Handles operations in parallel.

= Performs branch prediction.

= May try 2 paths and discard the results of the
wrong one later.

« Important: Keep the sequential semantics.

s Qut-of-order execution

= Use scoreboard to keep track of results and
dependencies

18

i Conclusion

s Does it matter?

= Yes! Understand your hardware and its
technology.

= Use It Iin a better way. Reduce branches, or make
them easy to guess.
EX:

for(i =0, j = n-1; i < j; ++i,--j) swap(&a[i],&a[j])
harder than

for(i = 0; i < n/2; ++i) swap(&ali],&a[n-1-i])

19

