
Physical and Virtual Memories

Alexandre David
1.2.05

adavid@cs.aau.dk



25-02-2011 DNA'11 - Aaborg University 2

Overview
Key characteristics.

Physical addressing.

Virtual memory.



25-02-2011 DNA'11 - Aaborg University 3

Key Aspects
Technology

the faster, the more expensive
the denser, the cheaper
types: volatile/non-volatile, random/sequential, 
read-only/read-write

map to examples

Organization
how the bits are packed and organized



25-02-2011 DNA'11 - Aaborg University 4

Memory Types
We are mostly concerned about RAM.
But other types

in general – storage (SD, SSD, disks…)
sequential access memory.

Technologies:
SRAM (static) – very fast & expensive

flip-flop maintaining a bit value – power,heat,cost
DRAM (dynamic) – fast and cheap

capacitor that needs to be refreshed
different latencies, cycle times etc… to accommodate 
the refresh.



25-02-2011 DNA'11 - Aaborg University 5

Terminology
Important commonly used terms:

primary memory
high speed, expensive
relatively limited
in practice: RAM, volatile

secondary memory
slow, cheap
high capacity
in practice: disks/ssd, non-volatile

memory hierarchy
hierarchy of the different types register-cache-RAM…
keys: speed, cost, and capacity



25-02-2011 DNA'11 - Aaborg University 6

Different Uses
Instructions – programs

very local, much sequential
fetch-and-execute cycle

Data
spatial & temporal localities are different
fetch-and-store, more randomly accessed

In practice it makes sense to have L1 caches 
for each type.



25-02-2011 DNA'11 - Aaborg University 7

Characteristics of RAM
Bandwidth

bytes/s

Latency
delay to get the 1st byte
read latency often different from write latency

Density
bit cells/surface, packed in chips of x MBytes.
the higher, the hotter



25-02-2011 DNA'11 - Aaborg University 8

Memory Organization
Traditional:
processor ↔ controller ↔ memory
Modern:
processor ↔ memory
(integrated controller, e.g., i5, i7, Athlon).
The point: The processor sees a given 
interface that can be implemented differently

DDRAM
QDRAM
dual/triple channel



25-02-2011 DNA'11 - Aaborg University 9

Memory Access
Processor ↔ controller:

Processor issues read/write requests.
Controller translates request into proper signals 
for the memory chips.
Controller replies and prepares for next request.
Latencies: read & write cycle times.

Controller ↔ processor:
parallel interface – a bus – one wire per bit
front-side bus
width of the bus = width of cache line in practice



25-02-2011 DNA'11 - Aaborg University 10

Physical Memory Addresses
Memory transfers words.
Each word has a unique physical address.
Trade-off on the size of words

larger, higher performance, more expensive

Byte addressing used, more convenient
memory still uses word addressing, transparent
translation done by the controller



25-02-2011 DNA'11 - Aaborg University 11

Byte-to-Word Addressing
Assume 32-bit physical words

Word address:
W = floor(B/N)

Offset:
O = B mod N

Avoid arithmetics:
choose powers of 2
→ read only some

bits instead!



25-02-2011 DNA'11 - Aaborg University 12

Byte-to-Word Addressing
This principle is very important.
Used for paging.



25-02-2011 DNA'11 - Aaborg University 13

Alignment
A data-structure of size N (generally power of 
2) is aligned in memory if its address starts 
at a multiple of N (power of 2).
Ex: int, 4 bytes, generally stored at multiple 
of 4.
Why? If an int is not aligned then we need to 
get 2 words to read it.

Performance reason.
Some architectures require this.



25-02-2011 DNA'11 - Aaborg University 14

Memory Size & Address Space
Size of address (registers) limits the 
maximum amount of addressable memory.
32-bit: 232 = 4,294,967,296 addressable 
bytes = address space
Consequence of powers of 2 (size & 
addressing): sizes expressed in multiple of 
210 and not 1000.



25-02-2011 DNA'11 - Aaborg University 15

Memory Dumps
Sequence of address: content (in hexa).

Usually packed in 4 bytes.
Ex: struct node { int count; struct node* next; } 
will occupy an int followed by a pointer.

32-bit: 2x 4 bytes.
64-bit: compilers will reserve 4 bytes (int) + 4 bytes 
(padding) + 8 bytes (pointer).
nodes not necessarily consecutive → more expensive 
than arrays (+ use indirect addressing).

Example in exercise: disassembled program.
Relative address (from beginning): opcodes.

And assembly (text) corresponding to the opcode.



25-02-2011 DNA'11 - Aaborg University 16

Memory Banks & Interleaving
Hidden by hardware on PCs.

Dual/triple channel technology.
Interleave bits on different banks.

Can be visible on special hardware.
Special: Crossbar memory controllers on GPUs.



25-02-2011 DNA'11 - Aaborg University 17

Content Addressable Memory
Concept very important – used as TLB.
Expensive & fast:

parallel search
memory organized as a number of slots
implements dictionary structure: stores (key, 
value).



25-02-2011 DNA'11 - Aaborg University 18

Virtual Memory
General concept:

mechanism hiding details of physical memory to 
provide a more convenient addressing.

VM system in practice:
Illusion of continuous memory of a given size.
Hides real hardware that may be missing a bank 
(not all slots populated).
Maps virtual address to physical address.
Protection between processes controlled by 
processor modes.



25-02-2011 DNA'11 - Aaborg University 19

Terminology
Memory management unit (MMU)

hardware unit supporting VM
translates VM addresses to physical addresses,
protects accesses.

Virtual address
used by processor to access data
translated.

Virtual address space
set of all virtual addresses – usually same as physical 
address space,

Virtual memory system
system with support for VM, including the OS



25-02-2011 DNA'11 - Aaborg University 20

Multiple Physical Memory Systems

More than one memory systems, e.g., DRAM 
+ disk (swap) in the same system.
Mapping decided by OS, supported by MMU.



25-02-2011 DNA'11 - Aaborg University 21

Virtual Addressing
Unique address for each location in memory.
MMU translates from virtual space to real 
physical memory.

Mapping may be dynamic to use the hardware 
efficiently.
Illusion of continuous memory.

Avoid arithmetic – use powers of 2.
Vadr / N = read high bits of Vadr

bank/page
Vadr % N = read low bits of Vadr

offset



25-02-2011 DNA'11 - Aaborg University 22

Illusion of Continuous Memory
Memory slots may 
be unoccupied.
CPU does not 
know which ones 
until it boots.
Visible address 
space (controlled 
by OS) may be 
continuous.



25-02-2011 DNA'11 - Aaborg University 23

Why VM?
Flexibility.
Homogeneous integration of hardware (same 
interface).
Programming convenience (continuity, 
abstract from where the chip is connected).
Support for multi-tasking

multi-programming
data + program protection through modes of 
execution



25-02-2011 DNA'11 - Aaborg University 24

Multiple Virtual Spaces
Programs do not interfere with each other.
Programs share memory resources.

Programs run concurrently.

Separate virtual space to each program.
Programs see a subset of the (total) virtual space 
and has access only to that subset.



25-02-2011 DNA'11 - Aaborg University 25

Example



25-02-2011 DNA'11 - Aaborg University 26

Dynamic Address Spaces
Processor configures the MMU.

Controlled by OS.

Address space mapping changes.
In practice

access to MMU restricted to OS
OS runs in real mode (sees physical address)
applications see VM
each memory access is checked by MMU

outside references result in errors (segfault)



25-02-2011 DNA'11 - Aaborg University 27

Segmentation
Fine granularity mapping

program (and data) divided into segments – whole 
procedures fit in them – whole data-structures too.
map each segment to memory
give access to segments

Key idea
keep segment in primary memory only when needed 
(resident)
move it to disk when not needed (swap out)

Problems
not flexible, fixed sized may be too large/small
variable sized segments cause fragmentation.



25-02-2011 DNA'11 - Aaborg University 28

Demand Paging
Similar to segments:

Divide space into pieces.
Keep in memory only when needed.

Key differences:
Fixed size pages (4kB usually).
Not assigned to procedures/data-structures.

Ex with big array.

Access on-demand.



25-02-2011 DNA'11 - Aaborg University 29

Paging
MMU

intercepts each memory reference,
translates address if the page is in memory,
generates a page fault otherwise and let the OS 
handle it.

OS
manages the pages and moves them between 
primary & secondary memories.

The catch:
Reserve some memory for the page table.
Very fast access to the page table.



25-02-2011 DNA'11 - Aaborg University 30

Paging
If physical memory is 
full, replace a page.

Choose a good one –
support in HW.

Page: unit of address 
space.
Frame: slot in memory 
corresponding to a 
page.
Resident: page in 
memory.

pages in
memory



25-02-2011 DNA'11 - Aaborg University 31

Page Table
One per application.
Frames addressed by page number.

Stores where the page is (RAM/disk).

Address translation
given Vadr, find Padr
find the right page number
use the page number to read the page table
convert to address within the page
access the frame in memory



25-02-2011 DNA'11 - Aaborg University 32

Address Translation
Translation:

K: page size (4kBytes in practice).
V: virtual address.
N: page number.
O: offset within the page.
N = floor(V/K)
O = V % K
Physical address = PageTable[N] + O
Avoid arithmetic:
use powers of 2 → read high/low bits only



25-02-2011 DNA'11 - Aaborg University 33

Address Translation by MMU



25-02-2011 DNA'11 - Aaborg University 34

Hardware Support
Special bits:

presence bit: is the page resident
use bit: set when the page is referenced
modified bit: set when the content is changed

Use:
Presence bit tells where the page is.
OS makes passes

can replace pages that are not used
reset use bit for next pass
needs to write to disk modified pages



25-02-2011 DNA'11 - Aaborg University 35

Efficiency Issue
Von Neuman architecture.

Memory critical for data & instruction access.
Fetch-and-execute all the time.

MUST be optimized.
Use a cache!
TLB: translation look-aside buffer.
CAM based cache storing pairs (Vadr, Padr).
TLB = page table cache.



25-02-2011 DNA'11 - Aaborg University 36

Address Translation by MMU

Some entries
are in the
TLB

In parallel, the MMU:
- looks at TLB
- looks at page table
If TLB hit, cancel page
table look-up.



25-02-2011 DNA'11 - Aaborg University 37

Why does it work?
Locality!!

spatial & temporal
data & instruction
within a page

Notes:
TLB is above the caches (L1 & L2).
The caches are referenced by physical addresses 
(after TLB translation).
L1 & L2 caches do not cache TLB entries.


