Chapter 3
Transport Layer

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:

U If you use these slides (e.g., in a class) in substantially unaltered form,
that you mention their source (after all, we’'d like people to use our book!)

U If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

CO M PUTER FIFTH EDITION
NETWORKING

KUROSE - ROSS

Computer Networking:
A Top Down Approach
Bth edition.

Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

Transport Layer 3-1

Our goals:

O understand principles
behind transport
layer services:

O multiplexing/demultipl
exing

O reliable data transfer

o flow control

O congestion control

3 learn about transport
layer protocols in the
Internet:

o UDP: connectionless
transport

o TCP: connection-oriented
transport

O TCP congestion control

Transport Layer

3-2

0 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-3

O provide /ogical communication
between app processes
running on different hosts

3 transport protocols run in
end systems

O send side: breaks app
messages into segments,
passes to network layer

O rcv side: reassembles
segments intfo messages,
passes to app layer

O more than one transport
protocol available to apps

o Internet: TCP and UDP

application
trans-ort

netwom
data li

Transport Layer

data link

physical

3-4

O network layer: logical
communication
between hosts

3 fransport layer: logical
communication
between processes

O relies on, enhances,
network layer services

Household analogy:

12 kids sending letters to
12 kids

0 processes = Kids

O app messages = letters
in envelopes

7 hosts = houses

3 transport protocol =
Ann and Bill

3 network-layer protocol
= postal service

Transport Layer

3-5

Internet transport-layer protocols

3 reliable, in-order
delivery (TCP)
O congestion control
o flow control
O connection setup

3 unreliable, unordered
delivery: UDP
O no-frills extension of

"best-effort” IP

7 services not available:

O delay guarantees
O bandwidth guarantees

application
@M
networ
data link
hysical
vp Y U k /
c:)hy > network |
5 data .Imk =
M hysical
O
(@\»b @ Q
@5 :é network v
ﬂ_ | datalink |Ng&>
physical |3
data linke,
physical
network
data link - rion
physical I network
physical data link
physical

Transport Layer 3-6

3 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-7

Multiplexing/demultiplexing

- Demultiplexing at rcv host: — — Multiplexing at send host: _
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

delivering received segments
to correct socket

[1 =socket Q = process

application application application
L | M
transport '%mipﬁ transport
network neTvl/or'k network
link link link
physical physical physical
host 1 host 2 host 3

Transport Layer 3-8

How demultiplexing works

O host receives IP datagrams

O each datagram has source
IP address, destination IP
address

O each datagram carries 1
transport-layer segment

O each segment has source,
destination port number

O host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits >

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer 3-9

O Create sockets with port
numbers:

DatagramSocket mySocketl = new
DatagramSocket(12534) ;
DatagramSocket mySocket2 = new

DatagramSocket(12535) ;
0 UDP socket identified by

two-tuple:

(desT IP address, dest port number)

3 When host receives UDP
segment:

O checks destination port
humber in segment

O directs UDP segment to
socket with that port
humber

O IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-10

DatagramSocket serverSocket = new DatagramSocket(6428);

SP: 6428 SP: 6428
DP: 9157 DP: 5775
SP: 9157 SP: 5775
client DP: 6428 server DP: 6428 Client
IP: A IP: C IP:B

SP provides "return address”

Transport Layer 3-11

f'nnnari'inn_,_nn
LOUTMICC 11011~ Ui

3 TCP socket identified
by 4-tuple:
O source IP address
O source port number
O dest IP address
O dest port number

O receiving host uses all
four values to direct
segment to appropriate
socket

7
1

ted demux

LU IWAZN

O Server host may support
many simultaneous TCP
sockets:

O each socket identified by
its own 4-tuple

7 Web servers have
different sockets for
each connecting client

O non-persistent HTTP will
have different socket for
each request

Transport Layer 3-12

Connection-oriented demux

(cont)

SP: 5775

DP: 80

S-IP: B

D-IP:C

client
IP: A

SP: 9157

L

DP: 80

S-IP: A

D-IP:C

server
IP: C

SP: 9157

DP: 80

S-IP: B

D-IP:C

Transport Layer 3-13

Client
IP:B

Connection-oriented demux:

Threaded Web Server

client
IP: A

P4 O
i I "
SP: 5775
DP: 80
S-IP: B
D-IP:C
Va
SP: 9157 SP: 9157
DP: 80 server DP: 80
S-IP: A IP: C S-IP: B
D-IP:C D-IP:C

Transport Layer 3-14

Client
IP:B

3 3.1 Transport-layer
services

J 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

3 “no frills," "bare bones”
Internet fransport Why is there a UDP?

EPOTOCO') . 7 no connection
3 “best effort” service, UDP establishment (which can
segments may be: add delay)
O lost 7 simple: no connection state
o delivered out of order at sender, receiver
To app J small segment header

a

O connectionless: no congestion control: UDP

O no handshaking between can blast away as fast as
UDP sender, receiver desired

O each UDP segment
handled independently
of others

Transport Layer 3-16

UDP: more

J often used for streaming
multimedia apps

32 bits >

O loss tolerant Length, in |Source port #| dest port #
O rate sensitive bytes of UDP [~ length checksum
segment
7 other UDP uses ncluding
o DNS header
O SNMP
A reliable transfer over UDP: Application
add reliability at data
application layer (message)
o application-specific

error recovery!
UDP segment format

Transport Layer 3-17

| INP ~h leciim
Ji O

or
\J oLV UL

Goal: detect "errors” (e.g., flipped bits) in transmitted

segment

Sender:

O treat segment contents
as sequence of 16-bit
Integers

3 checksum: addition (1's
complement sum) of
segment contents

0 sender puts checksum
value into UDP checksum
field

Receiver:

3 compute checksum of
received segment

O check if computed checksum
equals checksum field value:

o NO - error detected

O YES - no error detected.
But maybe errors
nonetheless? More later

Transport Layer 3-18

Internet Checksum Example

3 Note

O When adding numbers, a carryout from the
most significant bit needs to be added to the
result

0 Example: add two 16-bit integers

1

11 0011001100110
110101010101 0101

wraparound@lOlllOll10111011

sum

10 0] 0111100
checksum 01 1 1 000011
t

Transport Layer 3-19

111 111
00O 00O

3 3.1 Transport-layer
services

J 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-20

Principles of Reliable data transfer

O important in app., transport, link layers
3 top-10 list of important networking topics!

-

O

O O

S, = ‘receiver I
8 == OroOCess process

o 1
-'C:) L()relicible Chc::rmel)j
30

C O

Q —

() provided service

3 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-21

Principles of Reliable data transfer

O important in app., transport, link layers
3 top-10 list of important networking topics!

-

O

O O

S, = ‘receiver I
8 == OroOCess process

o 1
-'C:) L()relicible Chc::rmel)j
30

C O

Q —

th(‘bunrelioble chonnel):

(a) provided service (b) service implementation

3 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

Principles of Reliable data transfer

O important in app., transport, link layers
3 top-10 list of important networking topics!

-
O
O O
S, = ‘receiver I
8 —= Orocess process
e 1
dt d :
+ L()relicible Chc::rmel)j rdt_send () deliver data()
8_ 5 reliable data reliable data
D > fransfer protocol transfer protocol
% O (sending side) (receiving side)

udt_send()i Irdt_rcv ()

th(‘bunrelioble chonnel):

(a) provided service (b) service implementation

3 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

RDelinhle Aata Yrancfer
IINAMRM I WAUGATWA T A o | Sl

1IN

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

rdt send()

reliable data
fransfer protocol
(sending side)

send
side

deliver_data(): called by
rdt to deliver data to upper

/

data Tdel iver data()

reliable data receive
fransfer protocol .
receiving side) side

udt_send ()} [poctel

packet Irdt_rcv ()

T—h()unrelioble channel)J

udt_send(): called by rdft,
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

Transport Layer 3-24

RDelinhle Aata Yrancfer
INGWIINANRINGO W[AdUWUATGA T A o | Sl

we'll:
3 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

O consider only unidirectional data transfer
O but control info will flow on both directions!

7 use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

— \
event @
actions)

Transport Layer 3-25

state: when in this
"state” next state
uniquely determined
by next event

Rd+1 O: reliable
Al d W' | SITUVICO Ul

+rnanecfon AN
I Q] I <l

a reii@oie Lndarnei

3 underlying channel perfectly reliable

O nho bit errors
O no loss of packets

O separate FSMs for sender, receiver:
O sender sends data into underlying channel
O receiver read data from underlying channel

Wait for rdt_send(data)

call from
above

packet = make pkt(data)
udt_send(packet)

sender

rdt_rcv(packet)

Walit for
call from
below

extract (packet,data)
deliver_data(data)

receiver

Transport Layer 3-26

Rd12.0: channel with bit errors

0 underlying channel may flip bits in packet
o checksum to detect bit errors

O the question: how to recover from errors:

O acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

O negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

O sender refransmits pkt on receipt of NAK
3 new mechanisms in rdt2.0 (beyond rdt1.0):

O error detection
O receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-27

rdt2.0: FSM specification

rdt_send(data)
snkpkt = make_pkt(data, checksum) receiver
udt_send(sndpkt)
rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-28

rd12.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&

Wait for ISNAK(rcvpkt)

call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<
A

notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-29

rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

t rcv(rcvpkt) &&

Wait for
call from
above

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<
A

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-30

rdt2.0 h

e L
.V 11K

n
A

What happens if
ACK/NAK corrupted?

0 sender doesn't know what
happened at receiver!

O can't just retransmit:
possible duplicate

£t
1 QU

nul!
Uvv.

| £1
R

n
A

Handling duplicates:

[sender retransmits current
pkt if ACK/NAK garbled

O sender adds seguence
number to each pkt

3 receiver discards (doesn't
deliver up) duplicate pkt

—stop and wait
Sender sends one packet,
then waits for receiver
response

Transport Layer 3-31

-3

Q.
-t
N
—

ender handle
IOl , TIWTINITG

rbled K/
IS A

ur\|

L
>

NN
S ga

/

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) (|
ISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

A A
\,/A\Vgiifgrr Wait for
rdt_rcv(rcvpkt) && NAK 1 Caalllb%)\t?m
(corrupt(rcvpkt) ||
iSNAK (rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-32

rd+? 1 rerciver handle |'\| A /N o
| AT em 4t | ol | &) |) 1 TGAT INAd T & e | A 7 \N\» I\I NI VNS

ol
3‘

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\
rdt_rcv(rcvpkt) && (corrupt(rcvpk) ‘\ rdt_rcv(rcvpkt) && (corrupt(revpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q‘

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && <
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&

has seqaQ(rcvnkt)
i __ \1\.’\. erll\hl

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-33

rA+? 1° Aierticeinn
railc.L. QisCUsSsSion

Sender. Receiver:

7 seq # added to pkt 3 must check if received

3 two seq. #'s (0,1) will packet is duplicate
suffice. Why? O state indicates whether

O or 1 is expected pkt

3 must check if received seq #

AC.K/ NAK corrupted O note: receiver can not
O twice as many states know if its last

o state must "remember” ACK/NAK received OK

whether "current” pkt

Transport Layer 3-34

rdt2.2: a NAK-free protocol

3 same functionality as rdt2.1, using ACKs only

J instead of NAK, receiver sends ACK for last pkt
received OK
O receiver must explicitly include seq # of pkt being ACKed

O duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-35

rdt2.2: sender, receiver fr ragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

. — — rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

Wait for Wait for .
.......................... call 0 from ACK SALK(eVprLY))
................................... above 0 udt_send(sndpkt)
... sender FSM
.. f ragment rdt_rcv(rcvpkt)
.. && notcorrupt(rcvpkt)
oo T &8 iSACK (rovpkt,0)
(corrupt(revpkt) |~ e A
has_seqi(rcvpkt)) receiver FSM T
udt_send(sndpkt) fragmen‘r
— T
rdt_rcv(rcvpkt) && notcorrupt(revpkt) e
&& has_seql(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt) Transport Layer 3-36

rdt3.

N: rlnnn ole wi
W o GA Sl VVI

ho rarce an~lace
Vi & IV

\ IIU

New assumption:
underlying channel can

also lose packets (data
or ACKs)

O checksum, seq. #, ACKs,

retransmissions will be
of help, but not enough

Approach: sender waits
“reasonable” amount of
time for ACK

A retransmits if no ACK
received in this time

O if pkt (or ACK) just delayed
(not lost):

O retransmission will be
duplicate, but use of seq.
#'s already handles this

O receiver must specify seq
of pkt being ACKed

O requires countdown timer

Transport Layer 3-37

rdt3.0 sender

rdt_

send(data) rdt_rcv(rcvpkt) &&

\ sndpkt = make_pkt(0, data, checksum)
\ udt_send(sndpkt)
\ start_timer
—

rdt_rcv(rcvpkt)
A

Wait for

above

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer Q

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

A

call Ofrom

(corrupt(rcvpkt) ||
ISACK(rcvpkt,1))
A

timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-38

rdt3.0 in action

sender receiver

okt
send PO =——0____ rcv pkio
send ACKO
|

oy ACKO /

ACK
send pkt1 \m\‘
rcv pkil
ACK send ACK]
[cvACK
Kt g
CK

send pkio
A rcv pkio
send ACKO

(Q) operation with no loss

sender receiver
send pki0 \%* rcv pki0
ACK send ACKO
rcv ACKO /
send pkt1] kT]
(loss)

timeout _|
resend pkt1 %
rcv pktl
ACK send ACK

rcvACK "

send pktO
rcv pki0
}Q/ send ACKO

(b) lost packet

Transport Layer 3-39

rdt3.0 in action

sender receiver sender receiver
Pkt kt
send pki0 N’ rev pkio send pki0 \% cv pidQ
ACK send ACKO ACK send ACKO
rcv ACKO rcv ACKO _
send pktT Pk send pki1
rcv pktl rcv pktl
ACK send ACKI1 send ACK1
(loss))(4)"
timeout
timeout = pkt 4 resend pkil
resend pkt1 \rcv Pkt 1 . rcv pktl _
ACK (detect duplicate) rcvACK (detect duplicate)
ACKT send ACK1 send pkiO send ACK
g%\éd Oki0 kt rcv pkio
eV Bkio send ACKO
ACK © ACK 0
send ACKO
(c) lost ACK (d) premature timeout

Transport Layer 3-40

Performance of rdt3.0

3 rdt3.0 works, but performance stinks
0 ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000bits
trans R 109 bpS

O U . pgers Utilization - fraction of time sender busy sending

= 8microseconds

U ___ L/R___ .008
Sender' RTT+ L / R B 30008

O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
O network protocol limits use of physical resources!

= 0.00027

Transport Layer 3-41

rd13.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —jsz---------ooooomooo e
last packet bit transmitted, t =L/ R ¢

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next,|
packet,t =RTT+L/R

<

U = L/R = -008 = 0.00027

sender pTT.L /R 30008

Transport Layer 3-42

Pipelined protocols

Pipelining: sender allows multiple, "in-flight", yet-to-
be-acknowledged pkts
O range of sequence numbers must be increased
O buffering at sender and/or receiver

data pc:cke‘r—p

—

+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

3 Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-43

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —s-------------o-oooee oo
last bit transmitted, t =L/ R ¢

first packet bit arrives
last packet bit arrives, send ACK

> last bit of 2"d packet arrives, send ACK
last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next|
packet,t=RTT+L/R |

................. Increase utilization
................ Y / by a factor of 3!

U __3*L/R _ .02
sender RTT+L/R 30.008

= 0.0008

Transport Layer 3-44

Dinclininn Dnn+
| . | SLITTHIINT D I 1 VIV

Go-back-N: overview

O sender:up to N
unACKed pkts in
pipeline

3 receiver. only sends
cumulative ACKs

O doesn't ACK pkt if
there's a gap

A sender: has timer for
oldest unACKed pkt

o if timer expires:
retransmit all unACKed
packets

Selective Repeat: overview

O sender. up to N unACKed
packets in pipeline

3 receiver: ACKs individual
pkts

O sender. maintains timer
for each unACKed pkt

o if fimer expires: retransmit
only unACKed packet

Transport Layer 3-45

<
o

-Rack-
LA TN

Sender:
0 k-bit seq # in pkt header
J “"window" of up to N, consecutive unACKed pkts allowed

send_ base nexfseqnum dlready sable. ho
ack’ed yet sent
NI N p

S wmdow size —4

3 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK"
O may receive duplicate ACKs (see receiver)

3 timer for each in-flight pkt

3O timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-46

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextsegnum,data,chksum)

udt_send(sndpkt[nextsegnum])
if (base == nextseqgnum)

start_timer
nextseqnum-++
~~~~~ }
A e else
basesl e refuse_data(data)
nextseqnum=1 -, ( ,?
anum==2- e < timeout
start_timer
udt_send(sndpkt[base])
rdt_rcv(rcvpkt) C‘ udt_send(sndpkt[base+1])
&& corrupt(rcvpkt)
udt_send(sndpkt[nextseqnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else
start_timer Transport Layer 3-47



(=RN) reiver extended FSAA
W 71 N VCOIVOI TATTIINACOW | JIV Y
default
udt_send(sndpkt) rdt_rev(revpkt)
T~ ( D && notcurrupt(rcvpkt)

A Ts~a - && hasseqnum(rcvpkt,expectedsegnum)
S -

expectedsegnum=1 Qextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum)  sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum++

ACK-only: always send ACK for correctly-received pkt

Avl!‘!'h hlghoci' /n nr'r'/pr' coq ﬁ

O may generate duplicate ACKs
O need only remember expectedseqgnum

O out-of-order pkit:
o discard (don't buffer) -> no receiver buffering
O Re-ACK pkt with highest in-order seq #

Transport Layer 3-48



GRN in sender receiver

- send pkiU
action \~> rev pkt0

send pktl

send ACKO
> send pki2 —99 K
send pkid
(waif) rev pkt3, discard
¥ send ACK]
rcv ACKO
send pkt4
rcv pkitd, discard
Srg%/dAngK% \ Seng ACKI]
kt5, di d
- oki2 timeout send ACKT "

send pkt2 \‘/’

send pktd \ rev pki2, deliver

send pkt4 send ACK2

send pktd rcv pktd, deliver
\ send ACK3

Transport Layer 3-49



Selective Repeat

O receiver /ndividually acknowledges all correctly
received pkts

O buffers pkts, as needed, for eventual in-order delivery
to upper layer

7 sender only resends pkts for which ACK not
received
O sender timer for each unACKed pkt
7 sender window
O N consecutive seq #'s
O again limits seq #s of sent, unACKed pkts

Transport Layer 3-50



S e b m e o e o o PP [ ..-...... )~ o
Ive repeat: sender, receiver

\a OWS

send_base  hextsegnum

T

g S window size —24
PN

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlIIIIIIIIIIIIII]I]H

wmdow size—4

N
rcv_base

already
ack’'ed

sent, not
vet ack’'ed

(a) sender view of sequence numbers

out of order
(buffered) but
already ack’ed

Expected, not
yet received

(b) receiver view of sequence numbers

yet sent

not usable

W
I usable, not

acceptable
(within window)

I] not usable

Transport Layer 3-51



Selective repeat

—sender — receiver
data fr'om above : ka nin [rcvbase, rcvbase+N-1]
3 if next available seq # in 3 send ACK(n)
window, send pkt 3 out-of-order: buffer
timeout(n): 3 in-order: deliver (also
O resend pkt n, restart timer deliver buffered, in-order

pkts), advance window to
hext not-yet-received pkt

ka nin [rcvbase-N,rcvbase-1]

ACK(n) in [sendbase sendbase+N]:
O mark pkt n as received
O if n smallest unACKed pkt,

advance window base to = ACK(n.)
next unACKed seq # otherwise:
3 ighore

Transport Layer 3-52



Selective repeat in action

pktl =ent
n1za3a

pktl =ent
n1za3a

pkt? =ent
ni1z3

0123

pkt3 =ent.
4 5 6 7 89

4 56 789

window full

ACED rocvwd, pktd ==nt

|1 2 3 4

Ee6 789

ACK] rovd., pktbS ==nt

01

2 34 5|6 789

—— plet2 TIMEOUT, pkt? resent

01

2 34 5|6 789

ACK? rovd, nothing =ent

n1i

2345

B 7 89

0

1 23 4|5

456789 T L 110 rovd, delivered, ACKO sent

B 7 8 9

pktl rocvd, delivered. ACEl =ent

01
456 789 Wy

(loss)

2 345

B 7 89

pkta rovd, buf fered. ACKI =ent

01

2 345

B 7 89

pktd rovd., buffered. ACK4 =ent

01

pktS rowd,
01

2 345

2345

B 7 89

buf fered. ACKLS =ent

6 7 89

pkt2 rovd, pkt2. pkt3 pktd, pkth
delivered, ACKZ =ent

012 345

6B 7 819

~t Layer

3-53



Selective repeat:

sender window
(after receipt)

dilemma

Example:
0 seq#'s:0,1,2,3
3 window size=3

[ receiver sees ho
difference in two
scenarios!

N Vol ol e Vo Ve

ses
duplicate data as new

in (a)

Q: what relationship
between seq # size
and window size?

0 .1:2

012

012

timeout
retransmit pktQ

2l 2

30172

301

PktO

receiver window
(after receipt)

é)ktO

Ofl 2 3j0 1 2

CKO
CK1
ACK2

0 1}2 301 2

012)301)2

sender window
(after receipt )

01

2

012

Q1.2

pktO

—Jp receive packet
with seq number O

(a)

receiver window
(after receipt)

3017

301

301

2

310 1

2

301

011 2 3jJ0 1 2

CKO
CK1
ACK2

01§12 30)1 2

0123012

receive packet
with seq number O

()

Transport Layer 3-54



3 3.1 Transport-layer
services

J 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-55



TCP: O verview  rrcs: 793, 1122, 1323, 2018, 2581
O point-to-point: 3 full duplex data:
O onhe sender, one receiver O bi-directional data flow
1 reliable, in-order byte In same connection
steam: O MSS: maximum segment

size
7 connhection-oriented:

O handshaking (exchange
of control msgs) init's
sender, receiver state

0 send & receive buffers before data exchange

3 flow controlled:

o sender will not
foor overwhelm receiver

O no "message boundaries”
O pipelined:
O TCP congestion and flow
control set window size

socket
door —

TCP
send buffer

() [Segment] —p ()

Transport Layer 3-56



TCP segment structure

URG: urgent data

source port #

32 bits >

dest port # counting

(generally not used)\
ACK: ACK #

N sequence number

by bytes
of data

valid ]

(not segments!)

PSH: push data now

S

—acknowledgement number
head| not
Sed

F

len APR

Receive window

(generally not used)

Urg data pointer # bytes

RST, SYN, FIN:— |
connection estab

cheeksum
/

Op‘y(s (variable length)

rcvr willing
to accept

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-57



O byte stream
“number” of first
byte in segment’s
data

ACKs:

O seq # of next byte
expected from
other side

o cumulative ACK

Q: how receiver handles
out-of-order segments

O A: TCP spec doesn't
say, - up to
implementer

host ACKs
receipt
of echoed
C

Seq:42
, ACK =
W
host ACKs
receipt of
'C', echoes
back 'C’

time
simple telnet scenario

\ 4

Transport Layer 3-58



TCP Round Trip Time and Timeou

Q: how to set TCP
timeout value?

3J longer than RTT
O but RTT varies

3 too short: premature
Timeout

O unnecessary
retransmissions

3 too long: slow reaction
to segment loss

Q: how to estimate RTT?

7 SampleRTT: measured time from

segment transmission until ACK
receipt

O ignhore retransmissions

0 SampleRTT will vary, want
estimated RTT "smoother”

O average several recent

medaour CH\CHID ”UI JUDI

current SampleRTT

Transport Layer 3-59



TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + o*SampleRTT
O Exponential weighted moving average

O influence of past sample decreases exponentially fast
O typical value: o = 0.125

Transport Layer 3-60



1IN} ’

rm

X

0
3

le RTT estimat

nn:
ALK

®)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 -~

300

250 -

RTT (milliseconds)

200 -

150 -

100 T T T T T T T T T T

1 8 15 22 29 36 43 50 57 64 71 78

time (seconnds)

—e— SampleRTT —&— Estimated RTT

85

92 99 106

Transport Layer 3-61



TCP Round Trip Time and Timeout

Setting the timeout

0 EstimtedRTT plus "safety margin”
O large variation in EstimatedRTT -> larger safety margin

O first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT]

(typically, B = 0.25)

Then set timeout interval:

Timeoutlnterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-62



3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

1 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-63



TCP reliable data transfer
| &l
3 TCP creates rdt 3 retransmissions are
service on top of IP's triggered by:
unreliable service O timeout events
7 pipelined segments O duplicate ACKs
3 cumulative ACKs 3 initially consider

simplified TCP sender:
O ignore duplicate ACKs

O ignore flow control,
congestion control

3 TCP uses single
retransmission timer

Transport Layer 3-64



TCP sender events:

data rcvd from app:

O create segment with
seq #

0 seq # is byte-stream
number of first data
byte in segment

3 start timer if not
already running (think
of timer as for oldest
unACKed segment)

7 expiration interval:
TimeOutinterval

timeout:

O retransmit segment
that caused timeout

3 restart timer
ACK rcvd.

0 if acknowledges
previously unACKed
segments

O update what is known to
be ACKed

o start timer if there are
outstanding segments

Transport Layer 3-65



NextSeqNum = InitialSeqNum
SendBase = InitialSegNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} I* end of loop forever */

/7D
1O

sender

(simplified)

Comment:

- SendBase-1: last
cumulatively
ACKed byte
Example:

- SendBase-1 =71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
ACKed

Transport Layer 3-66



TCP: retransmission scenarios

SendBase

=100

«—timeout ——

v

time

lost ACK scenario

«

Sendbase
= 100
SendBase
=120

SendBase
=120

92 TimeouT—>|

92 timeout —+— Seq

eq-

Yp]
3
v

time

premature timeout

Transport Layer 3-67



TCP retransmission scenarios (more)
@ Host A Host B @

timeout ——
(%)
)
Q
!
Q
A
=
o

=120

?<
SendBase P\G\‘/
} Y

A

,
time
Cumulative ACK scenario

Transport Layer 3-68



TCP ACK generation [RFc 1122, RFC 2581]

’

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-69



Fact Dotranem
1 GoTl RCE Arno

|+
il

O time-out period often O If sender receives 3

relatively long: ACKs for same datq, it
o long delay before assumes that segment
resending lost packet after ACKed data was
O detect lost segments lost:
via duplicate ACKs. o fast retransmit: resend
o sender often sends segment before timer
many segments back-to- expires
back

o if segment is lost, there
will likely be many
duplicate ACKs for that
segment

Transport Layer 3-70



Host A Host B

seq # x1
seq # x2
seq # x3\
seq # x4 X ACK x1
#
5eq # X3 ACK x1
— ACK x1
ACK x1
triple
duplica’re<—{
ACKs

SSeng Seq X2

timeout

time

Transport Layer 3-71



event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKSs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence numbery

}
' \

a duplicate ACK for fast retransmit
already ACKed segment

Transport Layer 3-72



3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

7 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O conhnection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-73



TDF:ln nn
C@ rriow CO

s>_

-flow control
. . sender won't overflow

7 receive §|de of TCP receiver's buffer by

connection has a transmitting too much,

receive buffer: too fast
Ip (currently) wolication 3 speed-matching

unused buffer ., .
datagrams | space process service: matching
canA r'n+a +n r'aro;\'/; '9

application’'s drain rate

O app process may be
slow at reading from
buffer

Transport Layer 3-74



TCP Flow

n+rnl:
'.

r~ N
' VWW LCVITIT

(currently)

IP unused buffer

datagrams space

<«— rwnd —»
<—— RcvBuffer —

(suppose TCP receiver

discards out-of-order

senmon'l'c\
3' [ RAS2 B N J}

0 unused buffer space:

rwnd

RcvBuffer-[LastByteRcvd -
LastByteRead]

application
process

7 receiver: advertises

unused buffer space by
including rwna value in
segment header

7 sender: limits # of
unACKed bytes to rwnd

O guarantees receiver's
buffer doesn't overflow

Transport Layer 3-75



3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O cohnection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-76



TCP Connection Management

Recall: TCP sender, receiver I Nree way handshake:
establish "connection”

befor-e exchanging da'ra ST@E 1: Clien'l' hOST Sends TCP
segments SYN segment to server
3 initialize TCP variables: O specifies initial seq #
O seq. #s O no data
Q puffers, flow c_on’rrol Step 2: server host receives
info (e.g. RevWindow) SYN, replies with SYNACK
O client: connection initiator segment
Socket clientSocket = new o server allocates buffers

Socket(*'hostname', ""port

number™); O specifies server initial

seq. #
O server: contacted by client _ q. :
Socket connectionSocket Step 3: cller.\’r receives SYNACK,
we lcomeSocket.accept(); replies with ACK segment,

which may contain data

Transport Layer 3-77



CP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

@ client

close

d wait

Q time

close

FIN

CK
/ close
/
K

S@"V@f‘@

Transport Layer 3-78



CP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

o Enters “timed wait" -
will respond with ACK
to received FINs

Step 4: server, receives

ACK (Connectian rlaced
7 VN [N\, WV ITITIWw W I TIVI IV NA,

Note: with small
modification, can handle
simultaneous FINs.

@ client server@

closin
g9 FIN
cX .
/ ClOSlng
/
4
.6 K
=
9 closed
£
=
closed ™

Transport Layer 3-79



TCP Connection Mana

gem

ment

CLOSED client application
initiates a TCP connection
wizit 30 seconds
send SYMN
TIME_WAIT SYN_SENT
&
receive FIM receive 3TM & ACK
send ACK send ACK
¥
FIN_WAIT_2 ESTABLISHED TCP S@I"VCI"
client application I Ifecyc I e
receive ACK initiates close connection
send nothing FIN_WAIT_1 send FIN CLOSED server application
receive ACK creates a listen socket
TCP I send nothing
leC__ .. _1_
iy ecyc le
LAST_ACK LISTEN
Fy
receive 57N
send FIN send SYM & ACK
¥
CLOSE_WAIT SYN_RCVD
receive ACK
- send nothing
receive
- ESTABLISHED

Transport Layer 3-80



3 3.1 Transport-layer
services

J 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-81



Principles of Congestion Control

Congestion:

3 informally: "too many sources sending too much
data too fast for network to handle"

0 different from flow controll
O manifestations:
O lost packets (buffer overflow at routers)
0 long delays (queueing in router buffers)
3 a top-10 problem!

Transport Layer 3-82



A /
U

re/racte
UUOC D7 CUD 1O

Host A

A, . original data

3 two senders, two
receivers

3 one router,
infinite buffers

3 no retransmission

unlimited shared
output link buffers

C/2- 3 large delays

when congested

O maximum
achievable
throughput

7\'ou’r
delay

“-n...,_‘- L T T T T .

<

>
O
NS

Transport Layer 3-83



Crnerne/
WLULIODC D/

r~ N
CUVO

ote Af ~AAnAAS -I-
I& V)] LUV lly Sl l

5.

n
:S
&

3

o
N

3 one router, Finite buffers

0 sender retransmission of lost packet

Host B

Host A A, - original

data

A’ o original data, plus
retransmitted data

finite shared output
link buffers

Transport Layer 3-84



Causes/costs of congestion: scenario 2

3 always: ), = Kout (goodput)
in
3 “perfect” retransmission only when loss: )" > )

out

in /
O retransmission of delayed (not lost) packet makes kin larger

R/2

“costs"” of congestion:

(than perfect case) for same 7\‘0

. R/2
7“in

a

=

[S)
<

R/2

R/3

ut

R/2

R/2

3 more work (retrans) for given "goodput”
O unneeded retransmissions: link carries multiple copies of pkt

R/2

Transport Layer 3-85



Catere/racte A€ ~A lﬂnnt"l' AN® CrPNANIA <
WCLULIDC O/ LU 1O V)] UV ||HCD| ||' SLCCIIU TV J
O four senders Q: what happens as kl

3 multihop paths
3 timeout/retransmit

and k’ incr'ease ?

Host A A

A, - original data out

' - original data, plus y
retransmitted data

finite shared output
link buffers

Host B

[ —

Transport Layer 3-86



k!
N
another "cost" of congestion:

7 when packet dropped, any "upstream transmission
capacity used for that packet was wasted!

Transport Layer 3-87



A

nnr
MAPYI

_
>

nAr Inoc
VAW

Ac rnnnoC'l' nn ronntrnl
I oo \ @ 'S | o | 1V ! \V ) |

LI IV Wil i1

two broad approaches towards congestion control:

end-end congestion network-assisted
control: congestion control:

3 no explicit feedback from O routers provide feedback
network to end systems

T congestion inferred from O single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,

3 approach taken by TCP ATM)

O explicit rate sender
should send at

Transport Layer 3-88



CGCD c-l'lld\/' ATAA AB

QT OIUNY:* 7V IIvVy 7\

2 conge

c+ nh rantrn
I IVII LCVYVITIT

ABR: available bit rate:

7 “elastic service"

O if sender's path
"underloaded":

O sender should use
available bandwidth

O if sender’s path
congested:
O sender throttled to

minimum guaranteed
rate

RM (resource management)
cells:

0 sent by sender, interspersed
with data cells

O bits in RM cell set by switches
("network-assisted”)

o NI bit: no increase in rate
(mild conae<tion)
\11HHiA Vil ity
O CI bit: congestion
indication
O RM cells returned to sender by
receiver, with bits intact

Transport Layer 3-89



Case study: ATM ABR congestion control

I RM cells
source |:| data cells destination

Switch Switch

P LU SRIL

7 two-byte ER (explicit rate) field in RM cell

O congested switch may lower ER value in cell
O sender’ send rate thus maximum supportable rate on path

J EFCI bit in data cells: set to 1 in congested switch

o if data cell preceding RM cell has EFCI set, sender sets CI
bit in returned RM cell

Al

Transport Layer 3-90



3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-91



3 goal: TCP sender should transmit as fast as possible,
but without congesting network
O Q: how to find rate justbelow congestion level

1 decentralized: each TCP sender sets its own rate,
based on /mplicit feedback:

O ACK: segment received (a good thingl), network not
congested, so increase sending rate

O /ost segment. assume loss due to congested
network, so decrease sending rate

Transport Layer 3-92



TCP ¢

c+ nn rantranl: hnnrln id+h nrahinA
Sod | IVI VT VI WUGATINAVVINA T T D rll \JU |u

onge

0 "probing for bandwidth": increase transmission rate
on receipt of ACK, until eventually loss occurs, then
decrease transmission rate

O continue to increase on ACK, decrease on loss (since available
bandwidth is changing, depending on other connections in

hetwork)

AC.K s being received, X loss, so decrease rate

S0 Increase rate
b L7 TCP's
3 "sawtooth"
g behavior
()]

time

0 Q: how fast to increase/decrease?

O details to follow Transport Layer 3-93



TCP Congestion Control: details

7 sender limits rate by limiting number
of unACKed bytes "in pipeline”:
LastByteSent-LastByteAcked < cwnd
o cwnd: differs from rwnd (how, why?)
O sender limited by min(cwnd, rwnd)

cwnd

3 roughly, bytes

cwnd

rate = RTT bytes/sec

0 cwnd is dynamic, function of RTT

perceived network congestion

Transport Layer 3-94



nl* mnare Aetnile
JIie |I|VIQU°IUI

TCP Conge n Con
segment loss event:
reducing
O timeout: ponse
from rec
O cut cwn
3 3 duplica Ks: at
least so ments
getting t h (recall
fast retr 1)
O cut cw I, less
aggress han on

timeou

ACK received: increase

m tart phase:

rease exponentially
t (despite name) at
hection start, or
lowing timeout

stion avoidance:
rease linearly

m

Transport Layer 3-95



TD!A++

I \»l «’ | (A |

3 when connection begins, cwnd =
1 MSS

O example: MSS = 500 bytes
& RTT = 200 msec

O initial rate = 20 kbps

3 available bandwidth may be >
MSS/RTT

O desirable to quickly ramp up

t+0 respnectable rate
Nt rIV\.pl“vlv I Al W

O increase rate exponentially
until first loss event or when
threshold reached

O double cwnd every RTT .
Time

O done by incrementing cwnd ' |
by 1 for every ACK received

Transport Layer 3-96



Transitioning into/out of slowstart

ssthresh: cwnd threshold maintained by TCP

3 on loss event: set ssthresh to cwnd/2
o remember (half of) TCP rate when congestion last occurred

0 when cwnd >= ssthresh: transition from slowstart to congestion

avoidance phase

duplicate ACK
dupACKcount++

()

new ACK
cwnd = cwnd+MSS
dupACKcount =0

transmit new segment(s),as allowed
cwnd > ssthresh |
A ongestion

voidance

A
cwnd =1 MSS
ssthresh = 64 KB
dupACKcount = 0_>

timeout (/

ssthresh = cwnd/2
cwnd =1 MSS

dupACKcount =0

retransmit missing segment

timeout
ssthresh = cwnd/2
cwnd =1 MSS
dupACKcount=0

retransmit missing segment

Transport Layer 3-97



O
@)
S5
)
)

7 when cwnd > ssthresh
grow cwnd linearly

O increase cwnd by 1
MSS per RTT

O approach possible
congestion slower
than in slowstart

O implementation: cwnd
= cwnd + MSS/cwnd
for each ACK received

>
O

~ AIMD

3 ACKs: increase cwnd
by 1 MSS per RTT:
additive increase

3 loss: cut cwnd in half
(non-timeout-detected
loss ): multiplicative
decrease

AIMD: Additive Increase
Multiplicative Decrease

Transport Layer 3-98




TCP congestion control FSM: overview

cwnd > ssthresh

P

loss:

W timeout

Qo

>

loss:
3dupACK

P

new ACK

loss:
3dupACK

Transport Layer 3-99



TCP congestion control FSM: details

. new ACK
duplicate ACK cwnd = cwnd + MSS » (MSS/cwnd)
dupACKcount++ newACK dupACKcount = 0
cwnd = cwnd+MSS transmit new segment(s),as allowed
dupACKcount=0
A transmit new segment(s),as allowed
cwnd =1 MSS
ssthresh = 64 KB cwnd > ssthresh
_dupACKcount = 0 A
) timeout
ssthresh = cwnd/2
cwnd = 1 MSS duplicate ACK
__timeout > A retrandsL:r?i'tAﬁlécs?;g ts_eggment A dupACKcount++
ssthresh = cwnd/2 1
cwnd = 1 MSS
dupACKcount=0
retransmit missing segment

timeout

ssthresh = cwnd/2

cwnd=1 New ACK

dupACKcount=0 “vnd = ssthresh

dupACKcount == retransmit missing segment dﬁ\;,)vRCIchosun{e:SO dupACKcount ==
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

v

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-100



Popular "flavors” of TCP

TCP Reno

ssthresh

ssthresh

TCP Tahoe

cwnd window size (in segments)
r T T T T T

-+ 1% 17H1%H 1> & ©° [ © T/
5 6 7 8 9 1011 1213 14 15

Transmission round

=
_s
[l
L
I

Transport Layer 3-101



Summary: TCP Congestion Control

7 when cwnd < ssthresh, sender in slow-start
phase, window grows exponentially.

7 when cwnd >= ssthresh, sender is in congestion-
avoidance phase, window grows linearly.

3 when triple duplicate ACK occurs, ssthresh set

PRGN Y 4 PR | o~ o~ lIn e~~~
to cwna/2, cwnd set to ~ sstnresn

3 when timeout occurs, ssthresh set to cwnd/2,
cwnd set to 1 MSS.

Transport Layer 3-102



7 Q: what's average throughout of TCP as
function of window size, RTT?

O ignoring slow start
7 let W be window size when loss occurs.
owhen window is W, throughput is W/RTT

0 just after loss, window drops to W/2,
throughput to W/2RTT.

oaverage throughout: .75 W/RTT

Transport Layer 3-103



TCP Fitiiree: TC ve “!

NnN -Fn'l' h el
’ I iUl SO 1 Ui Yy, 11U A

0 example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

3 requires window size W = 83,333 in-flight
segments

3 throughput in terms of loss rate:
1.22 - MSS

RTTA/L

O = L=2101° Wow
3 new versions of TCP for high-speed

Transport Layer 3-104



TCP Fairness

- v

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

x#

bo’r‘rleneck
router
capacity R

conhnection 2

Transport Layer 3-105



W hy ie TCP -F P,
I\ -~ \ 4 | o

vV ! 1 \A

Two competing sessions:
O Additive increase gives slope of 1, as throughout increases
O multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput

Connection 1 throughput R

Transport Layer 3-106



Fairness (more)

Fairness and UDP

O multimedia apps often
do not use TCP
O do not want rate

throttled by congestion
control

7 instead use UDP:

O pump audio/video at
constant rate, tolerate
packet loss

Fairness and parallel TCP

connections

0 nothing prevents app from
opening parallel
connections between 2
hosts.

[ web browsers do this

J example: link of rate R
supporting 9 connections;
O new app asks for 1 TCP, gets
rate R/10

O new app asks for 11 TCPs,
gets R/2 |

Transport Layer 3-107



O principles behind transport
layer services:

o multiplexing,
demultiplexing

o reliable data transfer

o flow control Next:
O congestion control 0 leaving the network
J instantiation and “edge” (application,
implementation in the transport layers)
Internet 7 into the network
o UDP “core”
o TCP

Transport Layer 3-108



