
1

Principles of Parallel Algorithm 
Design

Alexandre David
1.2.05



2

27-02+03-03-2008 Alexandre David, MVP'08 2

Overview
Introduction to parallel algorithms.

Tasks and decomposition.
Processes and mapping.
Processes vs. processors.

Decomposition techniques.
Recursive decomposition.
Exploratory decomposition.
Hybrid decomposition.



3

27-02+03-03-2008 Alexandre David, MVP'08 3

Introduction
Parallel algorithms have the added 
dimension of concurrency.
Typical tasks:

Identify concurrent works.
Map them to processors.
Distribute inputs, outputs, and other data.
Manage shared resources.
Synchronize the processors.

There are other courses specifically on concurrency. We won’t treat the 
problems proper to concurrency such as deadlocks, livelocks, theory on 
semaphores and synchronization. However, we will use them, and when 
needed, apply techniques to avoid problems like deadlocks.



4

27-02+03-03-2008 Alexandre David, MVP'08 4

Decomposing Problems
Decomposition into concurrent tasks.

No unique solution.
Different sizes.
Decomposition illustrated as a directed graph:

Nodes = tasks.
Edges = dependency.

Task dependency graph!

Many solutions are often possible but few will yield good performance and be 
scalable. We have to consider the computational and storage resources 
needed to solve the problems.
Size of the tasks in the sense of the amount of work to do. Can be more, less, 
or unknown. Unknown in the case of a search algorithm is common.
Dependency: All the results from incoming edges are required for the tasks at 
the current node.

We will not consider tools for automatic decomposition. They work fairly well 
only for highly structured programs or options of programs.



5

27-02+03-03-2008 Alexandre David, MVP'08 5

Example: Matrix * Vector

N tasks, 1 task/row:

Matrix

Ve
ct

or

Task dependency graph?



6

27-02+03-03-2008 Alexandre David, MVP'08 6

Example: Database Query 
Processing

MODEL = ``CIVIC'' AND YEAR = 2001 AND
(COLOR = ``GREEN'' OR COLOR = ``WHITE)

The question is: How to decompose this into concurrent tasks? Different tasks 
may generate intermediate results that will be used by other tasks.



7

27-02+03-03-2008 Alexandre David, MVP'08 7

A Solution Measure of concurrency?
Nb. of processors?Optimal?

?

How much concurrency do we have here? How many processors to use? Is it 
optimal?



8

27-02+03-03-2008 Alexandre David, MVP'08 8

Another Solution

Better/worse?

?

Is it better or worse? Why?



9

27-02+03-03-2008 Alexandre David, MVP'08 9

Granularity
Number and size of tasks.

Fine-grained: many small tasks.
Coarse-grained: few large tasks.

Related: degree of concurrency.
(Nb. of tasks executable in parallel).

Maximal degree of concurrency.
Average degree of concurrency.

!

•Previous matrix*vector fine-grained.
•Database example coarse grained.
Degree of concurrency: Number of tasks that can be executed in parallel.
Average degree of concurrency is a more useful measure.
Assume that the tasks in the previous database examples have the same 
granularity. What’s their average degrees of concurrency? 7/3=2.33 and 
7/4=1.75.

Common sense: Increasing the granularity of decomposition and utilizing the 
resulting concurrency to perform more tasks in parallel increases performance. 
However, there is a limit to granularity due to the nature of the problem itself.



10

27-02+03-03-2008 Alexandre David, MVP'08 10

Coarser Matrix * Vector

N tasks, 3 task/row:

Matrix

Ve
ct

or



11

27-02+03-03-2008 Alexandre David, MVP'08 11

Granularity
Average degree of concurrency if we take 
into account varying amount of work?
Critical path = longest directed path
between any start & finish nodes.
Critical path length = sum of the weights
of nodes along this path.
Average degree of concurrency = total 
amount of work / critical path length.

!

Weights on nodes denote the amount of work to be done on these nodes.
Longest path → shortest time needed to execute in parallel.



12

27-02+03-03-2008 Alexandre David, MVP'08 12

Database Example
Critical path (3). Critical path (4).
Critical path length = 27. Critical path length = 34.

Av. deg. of concurrency = 63/27. Av. deg. of conc. = 64/34.

2.33 1.88



13

27-02+03-03-2008 Alexandre David, MVP'08 13

Interaction Between Tasks
Tasks often share data.
Task interaction graph:

Nodes = tasks.
Edges = interaction.
Optional weights.

Task dependency graph is a sub-graph of 
the task interaction graph.!

Another important factor is interaction between tasks on different processors.
Share data implies synchronization protocols (mutual exclusion, etc) to ensure 
consistency.
Edges generally undirected. When directed edges are used, they show the 
direction of the flow of data (and the flow is unidirectional).
Dependency between tasks implies interaction between them.



14

27-02+03-03-2008 Alexandre David, MVP'08 14

Example: Sparse Matrix 
Multiplication

Sparse matrix: A significant number of its entries are zero and the zeros do not 
conform to predefined patterns. Typically, we do not need to take the zeros 
into account.
In the example: Task i owns row i of A and b.
Interaction depends on the mapping work to do / task, i.e., granularity, and 
mapping tasks – processor.



15

27-02+03-03-2008 Alexandre David, MVP'08 15

Processes and Mapping
Tasks run on processors.
Process: processing agent executing the 
tasks. Not exactly like in your OS course.
Mapping = assignment of tasks to 
processes.
API exposes processes and binding to 
processors not always controlled.

Good mapping??

Here we are not talking directly on the mapping to processors. A processor 
can execute two processes.
Good mapping:
•Maximize concurrency by mapping independent tasks to different processes.
•Minimize interaction by mapping interacting tasks on the same process.
Can be conflicting, good trade-off is the key to performance.

Decomposition determines degree of concurrency.
Mapping determines how much concurrency is utilized and how efficiently.



16

27-02+03-03-2008 Alexandre David, MVP'08 16

Mapping Example

Notice that the mapping keeps one process from the previous stage because 
of dependency: We can avoid interaction by keeping the same process.



17

27-02+03-03-2008 Alexandre David, MVP'08 17

Processes vs. Processors
Processes = logical computing agent.
Processor = hardware computational unit.
In general 1-1 correspondence but this 
model gives better abstraction.
Useful for hardware supporting multiple 
programming paradigms.

Now remains the question:
How do you decompose?

Example of hybrid hardware: cluster of MP machines. Each node has shared 
memory and communicates with other nodes via MPI.

1. Decompose and map to processes for MPI.
2. Decompose again but suitable for shared memory.



18

27-02+03-03-2008 Alexandre David, MVP'08 18

Decomposition Techniques
Recursive decomposition.

Divide-and-conquer.

Data decomposition.
Large data structure.

Exploratory decomposition.
Search algorithms.

Speculative decomposition.
Dependent choices in computations.

Model-checker

!



19

27-02+03-03-2008 Alexandre David, MVP'08 19

Recursive Decomposition
Problem solvable by divide-and-conquer:

Decompose into sub-problems.
Do it recursively.

Combine the sub-solutions.
Do it recursively.

Concurrency: The sub-problems are solved 
in parallel.

Small problem is to start and finish: with one process only.



20

27-02+03-03-2008 Alexandre David, MVP'08 20

Quicksort Example

<5≤

<3≤ <9≤

<7≤
<10≤

<11≤

Recall on the quicksort algorithm:
•Choose a pivot.
•Partition the array.
•Recursive call.
•Combine result: nothing to do.



21

27-02+03-03-2008 Alexandre David, MVP'08 21

Minimal Number
4 9 1 7 8 11 2 12



22

27-02+03-03-2008 Alexandre David, MVP'08 22

Data Decomposition
2 steps:

Partition the data.
Induce partition into tasks.

How to partition data?
Partition output data:

Independent “sub-outputs”.

Partition input data:
Local computations, followed by combination.

Partitioning of input data is a bit similar to divide-and-conquer.



23

27-02+03-03-2008 Alexandre David, MVP'08 23

Matrix Multiplication

BTW: Trivial with shared memory.

We can partition further for the tasks. Notice the dependency between tasks. 
What is the task dependency graph?



24

27-02+03-03-2008 Alexandre David, MVP'08 24

Intermediate Data Partitioning

Linear combination
of the intermediate
results.



25

27-02+03-03-2008 Alexandre David, MVP'08 25

Owner Compute Rule
Process assigned to some data

is responsible for all computations associated 
with it.

Input data decomposition:
All computations done on the (partitioned) 
input data are done by the process.

Output data decomposition:
All computations for the (partitioned) output 
data are done by the process.

Useful for our Model-checker.

?
!



26

27-02+03-03-2008 Alexandre David, MVP'08 26

Exploratory Decomposition

15-puzzle example

Suitable for search algorithms. Partition the search space into smaller parts 
and search in parallel. We search the solution by a tree search technique.



27

27-02+03-03-2008 Alexandre David, MVP'08 27

Search



28

27-02+03-03-2008 Alexandre David, MVP'08 28

Performance Anomalies

Work depends on the order of the search!

Happens in our Model-checker.!



29

27-02+03-03-2008 Alexandre David, MVP'08 29

Speculative Decomposition
Self-reading

Dependencies between tasks are not 
known a-priori.

How to identify independent tasks?
Conservative approach: identify tasks that are 
guaranteed to be independent.
Optimistic approach: schedule tasks even if we 
are not sure – may roll-back later.

Not possible to identify independent tasks in advance. Conservative 
approaches may yield limited concurrency. Optimistic approach = speculative. 
Optimistic approach is similar to branch prediction algorithms in processors.



30

27-02+03-03-2008 Alexandre David, MVP'08 30

Speculative Decomposition 
Example

?

More aggregate work is done. Problem is to send inputs to the next stages 
speculatively. Could be the case that two different kinds of outputs are 
possible for A and A could start C,D,E twice.

Other approaches are possible that combine different techniques: hybrid 
decompositions.


