(How to Implement)
Basic Communication

B Operations

Alexandre David
1.2.05

iOverview

c ?ne;to-all broadcast & all-to-one reduction
4.1).

= All-to-all broadcast and reduction (4.2).

= All-reduce and prefix-sum operations (4.3).

= Scatter and Gather (4.4).

= All-to-All Personalized Communication (4.5).

= Circular Shift (4.6).

= Improving the Speed of Some
Communication Operations (4.7).

Collective Communication
Operations

= Represent regular communication patterns.

= Used extensively in most data-parallel
algorithms.

= Critical for efficiency.
= Available in most parallel libraries.

= Very useful to “get started” in parallel
processing.

Collective: involve group of processors.

The efficiency of data-parallel algorithms depends on the efficient
implementation of these operations.

Recall: t,+mt, time for exchanging a m-word message with cut-through
routing.

All processes participate in a single global interaction operation or subsets of
processes in local interactions.

Goal of this chapter: good algorithms to implement commonly used
communication patterns.

Reminder

= Result from previous analysis:

= Data transfer time is roughly the same
between a// pairs of nodes.

« Homogeneity true on modern hardware
(randomized routing, cut-through routing...).
- L+mt,
= Adjust ¢, for congestion: effective ¢,

= Model: bidirectional links, single port.

= Communication with point-to-point
primitives.

Broadcast/Reduction

= One-to-all broadcast:

= Single process sends identical data to all (or
subset of) processes.

= All-to-one reduction:
= Dual operation.

= Pprocesses have m words to send to one
destination.

= Parts of the message need to be combined.

Reduction can be used to find the sum, product, maximum, or minimum of sets
of numbers.

&Broadcast/ Reduction

pe

Broadcast Reduce

19+26-03-2008 Alexandre David, MVP'08 6

This is the logical view, what happens from the programmer’s perspective.

One-to-All Broadcast —
Ring/Linear Array

= Naive approach: send sequentially.
= Bottleneck.
= Poor utilization of the network.

= Recursive doubling:
= Broadcast in logp steps (instead of p).
= Divide-and-conquer type of algorithm.
= Reduction is similar.

Source process is the bottleneck. Poor utilization: Only connections between
single pairs of nodes are used at a time.

Recursive doubling: All processes that have the data can send it again.

iRecursiVe Doubling
g ZK,’ 3
&—6—
2 1
3 B

Note:

*The nodes do not snoop the messages going “through” them. Messages are
forwarded but the processes are not notified of this because they are not
destined to them.

*Choose carefully destinations: furthest.
*Reduction symmetric: Accumulate results and send with the same pattern.

Example: Matrix*Vector
T;];lt:?:; [l]‘|pulI Vector . 1) 1-sall
[i P B B
E : E E = One-to-all broadcast
d R iR iR R "
p A P P 2) Compute
p ‘p ' p " P, P, | Matrix
P, RETE IS e BRSE
Output E | |
R 3) All->1

Although we have a matrix & a vector the broadcast are done on arrays.

One-to-All Broadcast — Mesh

= Extensions of the linear array algorithm.
= Rows & columns = arrays.
= Broadcast on a row, broadcast on columns.
= Similar for reductions.
= Generalize for higher dimensions (cubes...).

iBroadcast on a Mesh

K K

19+26-03-2008 Alexandre David, MVP'08 11

1. Broadcast like linear array.

2. Every node on the linear array has the data and broadcast on the columns
with the linear array algorithm, in parallel.

One-to-All Broadcast —
Hypercube

= Hypercube with 29 nodes = d-dimensional
mesh with 2 nodes in each direction.

= Similar algorithm in d steps.
= Also in logp steps.
= Reduction follows the same pattern.

12

12

!LBroadcast on a Hypercube

(110) 3

(010)

(000)

(111

Better for congestion: Use different links every time. Forwarding in parallel

again.

13

All-to-One Broadcast — Balanced
Binary Tree
= Processing nodes = leaves.

= Hypercube algorithm maps well.
= Similarly good w.r.t. congestion.

14

14

Broadcast on a Balanced Binary

Figure 4.7 One-to-all broadcast on an eight-node tree.
19+26-03-2008 Alexandre David, MVP'08 15

Divide-and-conquer type of algorithm again.

15

Algorithms

= So far we saw pictures.
= Not enough to implement.
= Precise description
» to implement.
» to analyze.
= Description for hypercube.

= Execute the following procedure on all the
nodes.

16

For sake of simplicity, the number of nodes is a power of 2.

16

iBroadcast Algorithm

procedure ONE_TO_ALL_BC(d, my_id, X)

1.

) begi . i

gurr‘é%ﬁ;: ; Izm§n§l9n 111 /= Setall o bits of mask to 1 */

4. fo! d — 1 downto 0 do /* Quter loop */

5 . 011 1:QQ%i; G0Qsk 100 +

6. hen /* If lower i bits of my_id are 0 */
E

8

9.
10.
198

12.

13. endelse:;
14. endif

15. endfor:

16. end ONE_.TO_ALL_BC

my _id is the label of the node the procedure is executed on. The procedure
performs d communication steps, one along each dimension of the hypercube.

Nodes with zero in i least significant bits (of their labels) participate in the
communication.

17

iBroadcast Algorithm

procedure ONE_-TO_ALL_BC(d, my_id, X)

1.

2. begin

3. mask =27 — 1, /* Set all d bits of mask to 1 */
4. fori :=d — |1 downto 0 do /* Outer loop */

5. : 1+ QQL i QPQQ,».-;; 100 %

6. en /*If lower / bits of my_id are 0 */
7.

8.

9,

10. els

11.

12.

13. en

14. endif

15. endfor;

16. end ONE_.TO_ALL_BC

my _id is the label of the node the procedure is executed on. The procedure
performs d communication steps, one along each dimension of the hypercube.

Nodes with zero in i least significant bits (of their labels) participate in the
communication.

!LBroadcast Algorithm

procedure ONE_-TO_ALL_BC(d, my_id, X)

1.

2. begin

3. mask =27 — 1, /* Set all d bits of mask to 1 */
4. fori :=d — |1 downto 0 do /% Outer loop */

s. / /* Set bit i QPQQ;S,& 00 *

6. en /*If lower / bits of my_id are 0 */
7.

8.

9,

10.

11.

12.

13. en

14. endif

15. endfor;

16. end ONE_TO_ALL_BC

my _id is the label of the node the procedure is executed on. The procedure

performs d communication steps, one along each dimension of the hypercube.

Nodes with zero in i least significant bits (of their labels) participate in the
communication.

Notes:

*Every node has to know when to communicate, i.e., call the procedure.

*The procedure is distributed and requires only point-to-point synchronization.
*Only from node 0.

19

LL Algorithm For Any Source
1. procedure GENERAL_ONE_TO_ALL_BC(d, my_id, source, X)
23 begin
3.
4. mask 29 —1;
5. fori :=d — 1 downto O do /* Outer loop */
6. mask 1= mask XOR 2'; /* Set bit i of mask to 0 #/
7. if ND masik) = 0 then
8. AND 2 en
9. virtual _dest XOR 2';
10. send X t
I# Convert virfual_dest to the label of the physical destination */
1. else
12. virtual _source _virtual _id XOR 2
13. receive X from
/* Convert virtual_source to the label of the physical source */
14, endelse:
15. endfor;
16. end GENERAL_ONE_TO_ALL_BC
20

XOR the source = renaming relative to the source. Still works because of the
sub-cube property: changing 1 bit = navigate on one dimension, keep a set of
equal bits = sub-cube.

- Reduce Algorithm

| procedure ALL_TO_ONE_REDUCE(d, my_d, m, X, sum)
2 begin
3t for j :=0tom — | do sum|j] := X[j]:
4, mask = 0;
5 fori :=0tod — | do
/# Select nodes whose lower 7 bits are 0 */
6 if (my_id AND mask) = 0 then
72 if (my_id AND 2') £ 0 then
8. msg_destination := mv_id XOR 2':
" In a nutshell:
1. reverse the previous one.
12. TECEIVE A ITOM Mg SONTCe,
13. for j:=0tom — 1 do
14. sum(j] :=sum[j] + X[j]:
15. endelse:
16. mask := mask XOR 2'; /* Set bit i of mask to 1 */
17. endfor:

18. end ALL_.TO_.ONE_REDUCE

21

21

iCost Analysis

p processes — logp steps (point-to-point
transfers in parallel).

Each transfer has a time cost of

141, m.

Total time: T=(*.#t,m)logp.

22

22

All-to-All Broadcast and
Reduction

= Generalization of broadcast:
= Each processor is a source and destination.

= Several processes broadcast different
messages.

= Used in matrix multiplication (and matrix-
vector multiplication).

= Dual: all-to-all reduction.

23

How to do it?

If performed naively, it may take up to p times as long as a one-to-all
broadcast (for p processors).

Possible to concatenate all messages that are going through the same path

(reduce time because fewer).

23

All-to-All Broadcast and

iReduction

All-to-all broadcast

M,

All-to-all reduction |/(_}\.
= \'_/

Figure 4.8 All-to-all broadcast and all-to-all reduction.

19+26-03-2008 Alexandre David, MVP'08

M(] Mf’)

O ®

o Ay
24

24

iAII-to-AII Broadcast — Rings

0[7 1jo

etc...

19+26-03-2008 Alexandre David, MVP'08

25

All communication links can be kept busy until the operation is complete
because each node has some information to pass. One-to-all in logp steps, all-
to-all in p-1 steps instead of p logp (naive).

How to do it for linear arrays? If we have bidirectional links (assumption from
the beginning), we can use the same procedure.

iAII-tO-AII Broadcast Algorithm

procedure ALL_.TO_ALL_BC_RING(my_d, my_msg, p, result)

begi D
z Ring: mod p.

: eceive & send - point-to-point.

result .= my_msg

Wor - Initialize the loop.
fori:=1top—1do
send msg to right;
receive msg from left;

Forward msg.
Accumulate result.

endfor;
end ALL_TO_ALL_BC_RING

19+26-03-2008

Algorithm 4.4 All-to-all broadcast on a p-node ring.
Alexandre David, MVP'08 26

26

iAII-tO-AII Reduce Algorithm

1. procedure ALL_TO_ALL_RED_RING(my_id, my_msg, p, result)
2. begin

3. left := (my-id — 1) mod p:

4. right == (my_d + 1) mod p:

5. recy =0,

0. fori:=1top—1do

il j = (my_id + i) mod p;

g e f:'mh,,,m;r, DM Accumulate and forward.
9. send remp to left;

10. receive recv from right;

11. endfor:

12.

Last message for my._id.
13. end ALL.TO_ALL_RED_RING

Algorithm 4.5 All-to-all reduction on a p-node ring.
19+26-03-2008 Alexandre David, MVP'08 27

27

lI-to-All Reduce — Rings
o 212[3[43[e[7]

2|3]4]5]6]7]

EEEECEREECE

19+26-03-2008

7)

[2[2]

-

2| 3/[4/j5] 6 7|

-
3
~

o]t

3//4]5|6| 7

Alexandre David, MVP'08

ERE

N

5617]

28

28

‘_-‘ éll-to-AII Reduce — Rings
[da[l3[4[5[6[7] 1] 2[3[4[5[6]7]

CEEECEDH
D (®)

2[2[2] | [EA

-
5[5] | | Bl
&

(1) (2)
K NV
GEE L EE A ICREECEE
|0 1] 2] 3]|4]|5| 6| 7 |0[1]2]3]4]5]6]7]
19+26-03-2008 Alexandre David, MVP'08

29

p-1 steps.

29

All-to-All Broadcast — Meshes

= Two phases:
= All-to-all on rows — messages size m.
= Collect sqrt(p) messages.

= All-to-all on columns — messages size
sqrt(p)*m.

30

30

iAII-to-AII Broadcast — Meshes

™
A
~
Y,
)

() QI

Lo
AN
P
.
1
1.0

I
1 (
~

i \
1 ! =
|
% | = b o
i
i i
i 1
i 1
i i
i i
i |
i i
i '
i i
i i
’ i
i i
i 1
.
=\ =
Bl = =)
AN 1
N
i i
i 1
i i
i i
i i
: i
i i
i i
i i
i i
i i
i |
LI i
N =
€. e 2
L I
i i
! ;

31

Algorithm

19+26-03-20

~

procedure ALL_.TO_ALL_.BC_MESH(my_id, my_nsg, p, resulr)
begin

/* Communication along rows */

£)
4,
5t
0.
i3
8.
9.
10.
1.

lefi :=my_id — (my_id mod /P) 4+ (my-id — l)mod /p:
right := my_id — (my_id mod /p) + (my_id + 1) mod ,/p:
result = my_msg:
msg = result;
fori:=1to /p—1do

send msg to right;

receive msg from left;

result == result U msg;
endfor:

/* Communication along columns */

12
13.
14.
15.
16.
17.
18.
19.
20.

up = (my_id — /p) mod p.
down = (my_id + /p) mod p:
msg = resulr,
fori:=1to /p— 1do

send msg to down;

receive msg from up;

result = result \J msg;
endfor:

end ALL_.TO_ALL_.BC_MESH

32

32

All-to-All Broadcast -
Hypercubes

= Generalization of the mesh algorithm to
logp dimensions.

= Message size doubles at every step.
= Number of steps: logp.

33

Remember the 2 extremes:

sLinear array: p nodes per (1) dimension — p".

*Hypercubes: 2 nodes per logp dimensions — 2'°9,

And in between 2-D mesh sqrt(p) nodes per (2) dimensions — sqrt(p)?.

33

All-to-All Broadcast — Hypercubes

(6.7} 6,
— -

(¢} Distribution before the third step (dy Final distribution of messages

19+26-03-2008 34

34

iAIgorithm

1. procedure ALL_TO_ALL_BC_HCUBE(my_id. my_msg, d, result)

2. begin

3. result = my_msg:

4. fori :=0tod — 1 do Loop on the dimensions
5. partner = my_id XOR 2';

6. send resuli to partner, Exchange messages

7. receive msg from pariner,

8. result ;= result U msg; Forward (double size)
9 endfor:

10. end ALL_.TO_ALL_BC_HCUBE

Algorithm 4.7 All-to-all broadcast on a d-dimensional hypercube.

35

At every step we have a broadcast on sub-cubes. The size of the sub-cubes

doubles at every step and all the nodes exchange their messages.

35

All-to-All Reduction — Hypercubes

1
2
3
4
5.
6
7
8

9.

10.
I1.
12
13.
14.
15.
16.
17.

procedure ALL_TO_ALL_RED_HCUBE(my_id, msg, d. result)

begin
recloe =0
fori:=d—1to0do _ Similar pGTTel"n
partner = my_id XOR 2'; 9
j =my.id AND2; in reverse order.

k = (my_id XOR 2') AND 2';
senloc = recloe + k

recloc = recloc + j;

send msglsenloc .. senloc + 2" — 1] to partmer,
receive remp|0 .. 2" — 1] from partner;

for j:=0to2 — 1 do -
msglrecloc + j| = msglrecloc + j] +temp[j]: Combine results

endfor;
endfor:
result :=msg[my_id]:
end ALL_.TO_ALL_.RED_HCUBE

Algorithm 4.8 AII-lo—aIn a d-dimensional hypercube. AND and XOR are bitwise
logical-and and exclusive-or operations, respectively.

36

36

Cost Analysis (Time)

= Ring:
. T=(t, +tm)p-1)
= Mesh:

« T=(t, + t,m)Np-1)+(t. + t,mp) (p-1)
= 2ts(p—1) +
= Hypercube:

logp

— logp steps
= T= te - 2014, gpsteps ‘
;(- m) message of size 2-/m.
=t;logp +Hitantp = | 1

Lower bound for the communication time of all-to-all broadcast for parallel
computers on which a node can communicate on only one of its ports at a time
= t,m(p-1). Each node receives at least m(p-1) words of data. That’s for any
architecture.

37

The straight-forward algorithm for the simple ring architecture is interesting: It
is a sequence of p one-to-all broadcasts with different sources every time. The
broadcasts are pipelined. That's common in parallel algorithms.

We cannot use the hypercube algorithm on smaller dimension topologies
because of congestion.

37

Contention for a single
channel by multiple
messages

Figure 4.12 Contention for a channel when the communication step of Figure 4.11(c) for the hy-
percube is mapped onto a ring.
19+26-03-2008 Alexandre David, MVP'08 38

Contention because communication is done on links with single ports.
Contention is in the sense of the access to the link. The result is congestion on
the traffic.

38

All-Reduce

all buffers on every node.

broadcast.

o O O O

= Different from all-to-all reduce.
O O O O

= Each node starts with a buffer of size m.
= The final result is the same combination of

= Same as all-to-one reduce + one-to-all

.—>1234

1234

1234

1234

39

All-to-all reduce combines p different messages on p different nodes. All-

reduce combines 1 message on p different nodes.

39

All-Reduce Algorithm

= Use all-to-all broadcast but

=« Combine messages instead of concatenating
them.

= The size of the messages does not grow.
= Cost (in logp steps): T=(t.+t,/m)logp.

40

40

Prefix-Sum

= Given p numbers 7,1,,...,1, ; (one on each
node), the problem is to compute the
sums s, = Jk_, n;for all kK between 0 and
p-1.

= Initially, 77, is on the node labeled 4, and at
the end, the same node holds S,.

41

This is a reminder.

41

iPrefix-Sum Algorithm

l. procedure PREFIX_SUMS_HCUBE(my_d, my_number, d. result)
2. begin

3. result :== my_number:

4, msg = resuli,

5. fori :=0tod — 1 do

6. partner = my_id XOR 27 All-reduce
7. send msg (o partner;

8. receive munber from partner,

9. msg = msg + number;

10.

L1. endfor:

12. end PREFIX_SUMS_HCUBE

Algorithm 4.9 Prefix sums on a ¢-dimensional hypercube.

19+26-03-2008 Alexandre David, MVP'08

42

42

iPrefix-Sum

Buffer = all-reduce sum |

19+26-03-2008

6|54

0[1]2|3]

Alexandre David, MVP'08

65| 4
0
10|
y 4
4]7]6|
E
1/0|3]2|

43

Figure in the book is messed up.

43

Scatter and Gather

= Scatter: A node sends a unique message
to every other node — unigue per node.

= Gather: Dual operation but the target node
does not combine the messages into one.

M,

M1 Scatter

Mo JGather M| M| M,
© ©®© @ - © ©® @

44

Do you see the difference with one-to-all broadcast and all-to-one reduce?
Communication pattern similar.

Scatter = one-to-all personalized communication.

(a) Initial distribution of messages (b) Distribution before the second step

/\

o A
/- 4.5 / ’ /
(0.1) (R0 " Y
{ p———]{ |)
(c) Distribution before the third step (d) Final distribution of messages

45

The pattern of communication is identical with one-to-all broadcast but the size
and the content of the messages are different. Scatter is the reverse operation.
This algorithm can be applied for other topologies.

How many steps? What’s the cost?

Cost Analysis

= Number of steps: logp.
= Size transferred: pm/2, pm/4,...,m.

= Geometric sum 1 1
PP P
p+2+4+...+2n p 1_1
2
p. P p 1 1
— 4. +—=2p(1- -p=2p(l-—)-p=p-1
> ' o7 p(2n+1) p p(ZIO) p=p

(2n+1 — 21+Iogp — 2 p)
= Cost 7=tlogp+t,m(p-1).

46

The term t,m(p-1) is a lower bound for any topology because the message of
size m has to be transmitted to p-1 nodes, which gives the lower bound of
m(p-1) words of data.

All-to-All Personalized
Communication

= Each node sends a distinct message to
every other node.

———

Mo, My -
™M | M|
0l - e
Mool M50 (M0 — Mog] [Moaf |Mogl

19+26-03-2008 Alexandre David, MVP'08

47

See the difference with all-to-all broadcast?
All-to-all personalized communication = total exchange.
Result = transpose of the input (if seen as a matrix).

47

&Example: Transpose

Figure 4.17 All-to-all personalized communication in transposing a 4 x 4 matrix using four pro-

cesses.
19+26-03-2008 Alexandre David, MVP'08

48

48

iTotaI Exchange on a Ring

0[1]2]3]4

19+26-03-2008

4
0]1]2[3]4]|5]
(4) 3) [o[1]2[3]4]5]
0[1[2]4[5]

Alexandre David, MVP'08

49

49

Total Exchange on a Ring

0[1]2]5]

1[2[5

5)< (4)e 3
o[1]4]5] o34]5

OAZE . (a3l A
0 > 1 > 2
N

I
m
1

19+26-03-2008 Alexandre David, MVP'08

50

50

Cost Analysis

= Number of steps: p-1.
= Size transmitted: m(p-1),m(p-2)...,m.

p-1
T=t(p-1)+) it,m=(t, +t,mp/2)(p-1)
i=1

Optimal

51

In average we transmit mp/2 words, whereas the linear all-to-all transmits m
words. If we make this substitution, we have the same cost as the previous
linear array procedure. To really see optimality we have to check the lowest
possible needed data transmission and compare it to T.

Average distance a packet travels = p/2. There are p nodes that need to
transmit m(p-1) words. Total traffic = m(p-1)*p/2*p. Number of link that support
the load = p, to communication time 2 t,m(p-1)p/2.

51

iTotaI Exchange on a Mesh

fi! fi! :i!
¥ o
(o) o @

Alexandre David, MVP'08

We use the procedure of the ring/array.

52

iTotaI Exchange on a Mesh

© @ @
HH&
o O

eeeeeeeeeeeeeeeeeee

We use the procedure of the ring/array.

53

iTotaI Exchange on a Mesh

®

=N
)

19+26-03-2008 Alexandre David, MVP'08

o)

54

We use the procedure of the ring/array.

54

Cost Analysis

= Substitute p by 1 (number of nodes per
dimension).

= Substitute message size m by mvp.
= Cost is the same for each dimension.

= T=(2t+t,mp)(vp-1)

55

We have p(Vp-1)m words transferred, looks worse than lower bound in (p-1)m
but no congestion. Notice that the time for data rearrangement is not taken into
account. It is almost optimal (by a factor 4), see exercise.

55

Total Exchange on a Hypercube

= Generalize the mesh algorithm to logp
steps = number of dimensions, with 2
nodes per dimension.

= Same procedure as all-to-all broadcast.

56

56

*Total Exchange on a Hypercube

Pl K

19+26-03-2008 @ Alexan dre David, MVP'08 57

57

iTotaI Exchange on a Hypercube

19+26-03-2008 Alexandre David, MVP'08 58

58

iTotaI Exchange on a Hypercube
[] _—

19+26-03-2008 Alexandre David, MVP'08 59

59

*Total Exchange on a Hypercube

HH
HH
g ® 7

is
ol e
anlas EERSE

19+26-03-2008 Alexandre David, MVP'08 60

60

Cost Analysis

= Number of steps: logp.

= Size transmitted per step: pm/2.
» Cost: 7=(t.+t, mp/2)logp.

= Optimal? | NO

Average distance = (‘logp)/2. Total traffic =
p*m(p-1)*logp/2.

= Number of links = plogp/2.

= Time lower bound = t,m(p-1).

= Each node sends and receives m(p-1) words.

61

Notes:

1.
2.
3.

No congestion.
Bi-directional communication.

How to conclude if an algorithm is optimal or not: Check the possible

lowest bound and see if the algorithm reaches it.

61

An Optimal Algorithm

= Have every pair of nodes communicate
directly with each other — p-1
communication steps — but without
congestion.

= At /7 step node /communicates with node
(i xor j)with E-cube routing.

62

62

*Total Exchange on a Hypercube
By =

19+26-03-2008 Alexandre David, MVP'08 63

63

*Total Exchange on a Hypercube

19+26-03-2008 Alexandre David, MVP'08 64

64

*Total Exchange on a Hypercube

H!i n:".
| fa= -
=g
] B
(5.5 - B

19+26-03-2008 Alexandre David, MVP'08 65

*Total Exchange on a Hypercube
nE

. By

L P e an

o
I
1 I
mukns W
! e |
19+26-03-2008 Alexandre David, MVP'08 66

66

*Total Exchange on a Hypercube
ﬁ i

19+26-03-2008

Alexandre David, MVP'08

67

67

iTotaI Exchange on a Hypercube

g, ® %"

5 Pt
STe ——okm
e BE .

19+26-03-2008 Alexandre David, MVP'08 68

Point: Transmit less, only to the needed node, and avoid congestion with E-
cube routing.

Cost Analysis

= Remark: Transmit less, only what is
needed, but more steps.

= Number of steps: p-1.

= [ransmission: size m per step.

= Previous algorithm better for small
messages.

69

This algorithm is now optimal: It reaches the lowest bound.

69

Circular Shift

= It's a particular permutation.

(i+q) mod p (in a set of p nodes).

= Useful in some matrix operations and
pattern matching.

= Ring: intuitive algorithm in min{q,p-q}
neighbor to neighbor communication
steps. Why?

= Circular g-shift: Node /7sends data to node

70

A permutation = a redistribution in a set.
You can call the shift a rotation in fact.

70

Circular 5-shift
oh a mesh.

q mod Vp on rows
compensate
Lq / Vplon colums

19+26-03-2008

(18] (13 14) 15)
> >

12—+ 13 14— 15

(L] [E]] {10y 3 1y

L]

4y 5 [} (k]

4 e § e ¢ e 7

I 4, 1 1 1

II»" ; |-1- ; |-3- } I.\. \
—) —

ll(I - J

(a) Initial data distribution and the
first communication step

|r |¢ It
|¢ |¢ it

I

[} [L1]
4 Y — 7
Y/ [k} ([h4]

0 — —Y3

() Column shifts in the third communication step

(b) Step to compensate for backward row shifts

(d) Final distribution of the data

71

71

Circular Shift on a Hypercube

= Map a linear array with 27 nodes onto a
hypercube of dimension d.

= Expand g shift as a sum of powers of 2
(e.g. 5-shift = 20+22),
= Perform the decomposed shifts.

= Use bi-directional links for “forward” (shift
itself) and “backward” (rotation part)...
logp steps.

72

Backward and forward my be misleading in the book.

Interesting but not best solution, no idea why it's mentioned if the optimal

solution is simpler.

72

Or better: 6

Direct //;'7_/{
E-cube routing.
g-shiftsona |2 5
8-node = PYrT
hypercube.

19+26-03-2008

73

Exercise: Check the E-cube routing and convince me that there is no
congestion.

Communication time = t,+t,m in one step.

73

Improving Performance

= So far messages of size m were not split.

= If we split them into p parts:

= One-to-all broadcast = scatter + all-to-all
broadcast of messages of size m/p.

= All-to-one reduction = all-to-all reduce +
gather of messages of size m/p.

= All-reduce = all-to-all reduction + all-to-all
broadcast of messages of size my/p.

74

74

