
Time in Distributed SystemsTime in Distributed Systems

Brian Nielsen
bnielsen@cs.aau.dkbnielsen@cs.aau.dk



Needs for precision timeNeeds for precision time
• Stock market buy and sell ordersStock market buy and sell orders
• Secure document timestamps (with 

cryptographic certification)yp g p )
• Distributed network gaming and training
• Aviation traffic control and position reportingAviation traffic control and position reporting
• Multimedia synchronization for real-time 

teleconferencingte eco e e c g
• Event synchronization and ordering
• Network monitoring measurement and controlNetwork monitoring, measurement and control



Physical Time
1. The sun Today: 1 sec ~ 1 day / 86400

Physical Time

2 An Atom

but rotation of earth slows down 

State transitions in atoms (defined by BIH in Paris)2. An Atom State transitions in atoms (defined by BIH in Paris)
1 sec = time a cesium atom needs for 9 192631 770

state transitions*

* TAI (International Atomic Time)
• A TAI-day is about 3 msec shorter than a day 

BIH (B I t ti l d l‘H ) i t 1 if th diff• BIH (Bureau International de l‘Heure)  inserts 1 sec, if the difference 
between a day and a TAI-day is more than 800 msec
• Definition of UTC = universal time coordinated, being the base of 
any international time measureany international time measure.



UTC broadcasts
•UTC-signals come from shortwave radio broadcasting stations or 

UTC broadcasts
g g

from satellites (GEOS, GPS) with an accuracy of:

• 1.0 msec (broadcasting station)

• 1.0 µsec (GPS)

•>> 1ms (UTC available via phone line) ( p )

•Receivers are available commercially and can be 
connected to PCs



Computer ClocksComputer Clocks
• Each node has its own private physical clock !
• Physical clocks are HW devices that count oscillations of• Physical clocks are HW devices that count oscillations of 

a quartz.
• After a specified number of oscillations, the clock 

increments a register thereby adding one clock-tick to aincrements a register, thereby adding one clock tick to a 
counter the represents the passing of time: Hi(t).

• Resolution: Period between clock updates
• The OS maintains SW Clock by scaling and adding an• The OS maintains SW Clock by scaling and adding an 

offset to it:
Ci(t) = αHi(t) + β.

• C (t) approximates the physical time t at process p C (t)• Ci(t) approximates the physical time t at process pi. Ci(t) 
may be implemented by a 64-bit word, representing 
nanoseconds that have elapsed at time t.

• Successive events can be distinguished if the clock• Successive events can be distinguished if the clock 
resolutions is smaller that the time interval between the 
two events.



Drift and Skew
Clock Skew

Drift and Skew
C1 C2 C3 C4

Network

Clock Skew

• Computer clocks, like any other clocks tend not to be in 
perfect agreement !!

• Clock skew (offset): the difference between the timesClock skew (offset): the difference between the times 
on two clocks |Ci(t) – Cj(t)|

• Clock drift : they count time at different rates
Ordinary quartz clocks drift by 1sec in 11 12 days (10-6– Ordinary quartz clocks drift by ~ 1sec in 11-12 days. (10-6

secs/sec).
– High precision quartz clocks drift rate is ~ 10-7 or 10-8 secs/sec

Differences in material Temperature variation– Differences in material, Temperature variation.



Clock DriftClock Drift
• Clock makers specify a maximum drift rate ρ (rho) sec/sec.
• By definition y

1-ρ ≤  dC/dt   ≤ 1+ρ
where C(t) is the clock’s time as a function of the real time

• Max skew δ:Resynchronize at least every  δ/2ρ seconds



Internal/External SynchronizationInternal/External Synchronization
External synchronization Internal synchronization

• synchronization of process’ clocks Ci
with an authoritative external source 
S.

• synchronization of process’ clocks
Ci with each other. 

0
• Let δ >0 be the synchronization 
bound and S be the source of UTC.

•Let δ >0 be the synchronization 
bound and Ci and Cj are clocks at 
processes pi and pj, respectively.

• Then |S(t) – Ci(t)| < δ for i=1,2,…,N 
and for all real times t.

W th t l k C t

•Then |Ci(t) – Cj(t)| < δ for i,j=1,2,…,N
and for all real times t.

W th t l k C C• We say that clocks Ci are accurate
within the bound of δ

•We say that clocks Ci, Cj agree
within the bound of δ

Note that clocks that are internally synchronized are not necessarily externally 
synchronized. i.e., even though they agree with each other, the drift collectively from the 
external source of time.



Synchronization in a 
synchronous system

In a synchronous system we have:
• known upper (max) and lower (min) bound for communication delay,
• known maximum clock drift,
• known maximum time taken for each computational step.

We synchronize by:
• time server sends its local time t to a client,

t• Ideally, client sets clock to ts +Ttran (Unknown!)
• the client sets its local clock to ts +(max+min)/2.
• Skew is at most (max-min)/2 

t
S

ts

ts
C

min max
t’c= ts+(max+min)/2



Synchronization in an 
asynchronous system

• Christians algorithmChristians algorithm.
• The Berkeley algorithm.

N t k ti t l (NTP)• Network time protocol (NTP).



Cristian’s AlgorithmCristian s Algorithm

• A node is a time server TS (presumably 
with access to UTC).  How can the other 
nodes be sync’ed?

• Periodically, at least every  δ/2ρ seconds, y, y ρ ,
each machine sends a message to the TS 
asking for the current time and the TS g
responds. 



Christians algorithmChristians algorithm
• Client p sends request (mr) to time server S,
• S inserts its time t immediately before reply (mt) is returned,
• p measures how long it takes (Tround=T1 - T0) from mr is send to mt

is received
• p sets its local clock to t+Tround/2.p round

t



Accuracy of Christians algorithmAccuracy of Christians algorithm
• Assume min = minimal message delay
• t is in the interval [T0+min, T1-min]t is in the interval [T0 min, T1 min]
• Uncertainty on t = Tround-2min
• Estimated Accuracy= Tround/2-min

t

min min



Cristian’s AlgorithmCristian s Algorithm
• Monotonicity: 

– Jumps in time backward not permitted
– Jumps forward may be confusing
– Receiver adjusts clock rate α: Ci(t) = αHi(t) + β.

• Improve precisionImprove precision 
– by taking several measurements and taking the 

smallest round trip 
– or use an average after throwing out the large values



The Berkeley AlgorithmThe Berkeley Algorithm
Designed for internal synchronization.

a) The time daemon asks all the other machines for their clock values
b) The machines answers their offset
c) The time daemon tells each how to adjust its clocks



Network time protocolNetwork time protocol
• Synchronization of clients relative to UTC 

on an internet ide scaleon an internet-wide scale
• Reliable, even in the presence of 

extensive loss of connectivityextensive loss of connectivity
• Allow frequent synchronization (relative to 

clock drift)clock drift)
• Tolerant against disturbance
• <1ms within LAN
• 1-10 ms internet scale

read more about 
NTP at http://www.ntp.org
also, check out RFCs 1305 & 2030.



NTP StratumNTP Stratum

•Never synchronizewith 
servers at lover stratumservers at lover stratum



NTP-Modes

• Multicast (for quick LANs low accuracy)

NTP Modes

• Multicast (for quick LANs, low accuracy)
- server periodically sends its actual time to its 
leaves in the LANleaves in the LAN

• Procedure-call (medium accuracy)
- server responds to requests with its actual p q
timestamp
- like Cristian’s algorithm 

• Symmetric mode (high accuracy)
-used to synchronize between pairs of time 
servers with resp. high and low stratum

- In all cases, the UDP is used



Messages exchanged 
between a pair of NTP peers

TTS B Ti-1Ti-2Server B
Time

m m'm m'

Time
TiTi- 3Server A

oi=(Ti 2-Ti 3+Ti 1-Ti)/2 di=Ti 2-Ti 3+Ti-Ti 1

•Exchanges local timestamps to estimate offset oi and delay di

•NTP servere filters pairs <o d > saves 8 latest

oi (Ti-2 Ti-3 Ti-1 Ti)/2 di Ti-2 Ti-3 Ti Ti-1

•NTP servere filters pairs <oi,di>, saves 8 latest 
•Use the oi, with smallest di.(the smaller delay the better accuracy)



Theoretical Foundations
• Inherent characterstic of a distributed system:

Absence of a global clock:– Absence of a global clock:
– Absence of 100% accurately synchronized clocks

– Impact: Due to the absence of global clock, it is 
difficult to reason about the temporal order ofdifficult to reason about the temporal order of 
events in distributed system, e.g. scheduling 
events is more difficult.



Logical Clocks in a DSLogical Clocks in a DS
• What is important is usually not when things 

happened but in what order they happened so the 
integer counter works well in a centralized 
systemsystem.  

• However, in a DS, each system has its own 
logical clock and you can run into problems if onelogical clock, and you can run into problems if one 
“clock” gets ahead of others.  (like with physical 
clocks)c oc s)

• RELIABLE WAY OF ORDERING EVENTS IS 
REQUIRED

• We need a rule to synchronize the logical clocks.



Event OrderingEvent Ordering

Deposit 100 Add Interest 10%

BA

• A=100; B=100;
• A’=(100+100)+10%=220 
• B’=(100+10%)+100=210

f• Updates need to be performed in the same order at 
all sites of a replicated database.



Events and Logical ClocksEvents and Logical Clocks

• Leslie Lamport’s 1978 paper: TimeLeslie Lamport s 1978 paper: Time, 
Clocks, and the Ordering of Events in 
Distributed SystemsDistributed Systems.
– Theoretical Foundation

Logical Clocks– Logical Clocks
– Partial and Total Event Ordering

– Towards distribute mutual exclusion
MUST KNOW FOR ANY COMPUTER– MUST KNOW FOR ANY COMPUTER 
SCIENTIST



System ModelSystem Model
• A distributed system is a collection P of sequential 

processes pi, i= 1,2,…N.
• A process pi has state si

E h t f ti• Each process pi executes a sequence of actions 
• Sending a message; 
• Receiving a message; 

P f i i t l t ti th t lt it t t• Performing an internal computation that alters its state si; 
• The sequence of events within a single process pi are 

totally ordered e ie’

• The history of process pi is the sequence of events that

ei
0 ei

1 ei
2 ei

4ei
3

The history of process pi is the sequence of events that 
takes place therein 
history(pi) = hi = <ei

0,ei
1,ei

2,…>



Happened Before Relation
• The happened-before relation captures the causal 

d d i b t tdependencies between events, 
1. a b  if a and b are events in the same process and a 

occurred before boccurred before b.
2. a b  if a is the event of sending a message m in a 

process and b is the event of receipt of the same 
message m by another process.

3. If a b and b c, then a c, i.e. happened before 
relation is transitiverelation is transitive.

• That is, past events causal affects future events



Concurrent EventsConcurrent Events

• Two distinct events a and b areTwo distinct events a and b are 
concurrent (a||b) if not (a b or b a). 

• We cannot say whether one event• We cannot say whether one event 
happened-before
F t t d b i di t ib t d• For any two events a and b in a distributed 
system, either  a b,  b a  or  a||b.



ExampleExample

p1p1

a b m1

p2

c d m2

Physical
time

p3
e f

• a b and a c and b f 
• b f and e f  Does e b? 



Logical Clocksg
• There is a clock Ci at each process pi

• The clock C can be thought of as a function• The clock Ci can be thought of as a function 
that assigns a number Ci(a) to any event a, 
called the timestamp of event a, at picalled the timestamp of event a, at pi

• These clocks can be implemented by 
counters and have no relation to physical p y
time.



Conditions Satisfied by the y
System of Clocks

• For any events a and b: if  a b , then C(a)<C(b).

• implies the following two conditions:
– [C1] For any two events a and b in a process Pi, if a 

occurs before b, then  Ci(a) < Ci (b).
– [C2] If a is the event of sending a message m in process 

P and b is the event of receiving the same message m atPi and b is the event of receiving the same message m at 
process Pj, then  Cj (a) < Cj(b).



Implementation Rules

• [IR1] Before Pi timestamps an event[IR1] Before Pi timestamps an event
Ci:= Ci+1

• [IR2a] P sends m: [IR1] and piggy back• [IR2a] Pi sends m: [IR1] and piggy-back 
timestamp t=Ci: m’=<m, t>
[IR2b] P i ’ < t>• [IR2b] Pj receives m’=<m, t>:
Cj:=max(Cj, t), followed by [IR1]



Lamport clocks exampleLamport clocks example

21

b

2

a

1

1m
p1

c

3

d

4

m2

p2
Physical

time

f

2

5

e

1
p3

fe

NOTE:  C(e)<C(b), but not e b



Total Ordering of EventsTotal Ordering of Events

• Lamport’s happened before relation defines anLamport s happened before relation defines an 
irreflexive partial order among the events.

• Total ordering (denoted by =>) can be obtained g ( y )
by using process-id to break tie if timestamps 
are equal: 

• a => b iff  
1. Ci(a) < Cj(b) or 
2. Ci(a) = Cj(b) and Pi<Pj

• Allows processes to agree on order 
everywhere based on timestamp



Total Order Lamport Timestampsp p

(1,1) (2,1)

(3,2)

(4,2)

(1,3) (5,3)

• The order will be (1,1), (1,3), (2,1), (3,2) etc



Exercise: Lamport ClocksExercise: Lamport Clocks 

A a    b                     c

B d          e

C
f                          g   

• Assuming the only events are message send 
and receive, what are the clock values at 
events a-g?



Vector ClocksVector Clocks
• Lamport: e f  implies C(e) < C(f)

V l k f iff C( ) C(f)• Vector clocks: e f  iff C(e) < C(f)
• Allows nodes to order events in happens-before 

order based on time stampsorder based on time-stamps

• Vector timestamps: Each node maintains an• Vector timestamps: Each node maintains an 
array of N counters

• Vi[i] is the local clock for process pii[ ] p pi
• In general, Vi[j] is the latest info the node has on 

what pj‘s local clock is.



Implementation Rules

• [VC1] Initially Vi[j]=0 for i j = 1 N[VC1] Initially Vi[j] 0 for i,j  1…N 
• [VC2] Before Pi timestamps an event: 

V [i] := V [i] +1Vi[i] := Vi [i] +1
• [VC3] Pi sends m: piggy-back vector 

ti t t V ’ < t>timestamp t=Vi: m’=<m, t>
• [VC4] Pj receives m’=<m, t>

Vi[j] :=max(Vi[j] , ti[j]), I!=j



Comparison of Vector ClocksComparison of Vector Clocks

Comparing vector clocksComparing vector clocks
• V = V´ iff V[j] = V´[j] for all j=1,2,…,N.

V V´ iff V[j] V´[j] f ll j 1 2 N• V ≤ V´ iff V[j] ≤ V´[j] for all j=1,2,…,N.
• V < V´ iff V ≤ V´ and V ≠ V´.



Vector clocks illustratedVector clocks illustrated

(2 0 0)(1 0 0)

b

(2,0,0)

a

(1,0,0)

1m
p1

c

(2,1,0)

d

(2,2,0)

m2

p2
Physical

time

f

2

(2,2,2)

e

(0,0,1)
p3

fe

NOTE e and b are not related



Vector Clock ExerciseVector Clock Exercise
• Assuming the only events are send and g y

receive:
• What is the vector clock at events a-f?What is the vector clock at events a f?
• Which events are concurrent?

a fA

B

a

b         e

f

C c         d



ENDEND


