
ConsensusConsensus

Brian Nielsen
bnielsen@cs.aau.dkbnielsen@cs.aau.dk

Consensus problemsConsensus problems
• Examples

– Mutex: which process is granted access
– Reliable and ordered Multicast
– Election

Ab t/ d i h ttl l h– Abort/proceed in space shuttle launch
– Consistent credit/debit bank account

• Fault Tolerance
C h O i i– Crash, Omission

– Byzantine (Arbitrary) failures
– No message signing

• Message signing limits the harm a faulty process can do• Message signing limits the harm a faulty process can do
• Problems

– Consensus
– Byzantine generals– Byzantine generals
– Interactive consistency

RedundancyRedundancy
•Components (sensors / memory / processors/processes)
may faily
•Critical systems: space / nuclear / train control
•Increase availabiliy ⇒ Dublicate components/functionality

sensing
p1s1 actuation

Agreed
actuation

10
Close
valve

p2s2 Agree-
ment

actuation
10 Close

valve

p3s3 20 Open
valve

ExampleExample
• The PASS (PrimaryThe PASS (Primary

Avionics Software
System) developed
by IBM in 1981, was
used in a space
h ttlshuttle
– Could have been done

on one computeron one computer
– But 4 separate

processors were used
for fault-tolerance

• Voting on the outcome

Space Shuttle DS hardwareSpace Shuttle DS hardware

RadiationRadiation
• The Natural (and Hostile) Radiation Environment Poses ()

a Significant Threat to Many Electronic Devices
– Single Event Upset (SEU), Single Event Latchup (SEL), …

VIN

VOUT
VSSVDD

Gate

Radiation
(proton, ion, neutron, …) VIN

VOUT
VSSVDD

Gate

VIN

VOUT
VSSVDD

Gate

Radiation
(proton, ion, neutron, …)

Radiation
(proton, ion, neutron, …)

VOUT

n+ n+

n-well

p+ p+p+ n+

SSDD

Source Drain Source

+

+ +
- - -

Upset occ rs if

VOUT

n+ n+

n-well

p+ p+p+ n+

SSDD

Source Drain Source

VOUT

n+ n+

n-well

p+ p+p+ n+

SSDD

Source Drain Source

+

+ +
- - -

+

+ +
- - -

Upset occ rs ifUpset occ rs if

p-type substrate

+
+

+
+

- --Upset occurs if
channel current turned on

Latchup occurs if
parasitic current loop initiated

p-type substratep-type substrate

+
+

+
+

- -- +
+

+
+

- --Upset occurs if
channel current turned on

Latchup occurs if
parasitic current loop initiated

Upset occurs if
channel current turned on

Latchup occurs if
parasitic current loop initiated

Tribble, A. C., The Space Environment – Implications for Spacecraft Design, 2nd Ed.,
(Princeton NJ: Princeton University Press 2003)(Princeton, NJ: Princeton University Press, 2003).

Consensus in a synchronous
systems w. crash failures

Communication ModelCommunication Model
2p

1p 3p3p

4p5p

•Reliable point-to-point communication
•Pairwise channels (complete graph)•Pairwise channels (complete graph)
•Synchronous system

B-Multicast
2p

a

B Multicast

1p 3p

a
a

3p
aa

4p5p

Send a message to all processors in one round

Concurrent Multicast
2p

a

Concurrent Multicast

1p 3p

a

a
b

3p
aa

b

b

4p5p
b

b

•More processes can multicast at the same•More processes can multicast at the same
round

Concurrent Multicast
2p a,b

Concurrent Multicast

1p 3p
b

a,b3p

4p5p
a

a,b
a

Crash FailuresCrash Failures

Faulty
2p

aFaulty
processor

1p 3p

a
a

3p
aa

4p5p

Un-reliable multicast

Faulty
2p

a

Un reliable multicast

Faulty
processor

1p 3p

a

3p
a

4p5p

B-multicast is unreliable
•Some of the messages are never
delivered, if sender crashes

Un-reliable multicast

Faulty
2p a

Un reliable multicast

Faulty
processor

1p 3p3p

4p5p a

Crash-failures
Round

1
Round

2
Round

3
Round

4
Round

5

Crash failures

1p
1

1p 1p
2 3

1p
4

1p
5

2p

3p
2p

3p
2p

3p
2p 2p

3p 3p3p

4p

3p

4p

3p

4p 4p 4p
3p 3p

F il
5p 5p 5p 5p 5p

Failure
After failure the process disappears from the network

Consensus for three
processes

P2P1
d1:=proceed d2:=proceed

P2P1

v1=proceed v2=proceed

Consensus algorithmg

S l ti f ti

P3

v3=abort

(crashes)

Selection function:
•di=majority(v1,…,vn)

3

•di=minimum(v1,…,vn)
•…

ConsensusConsensus
• Termination: Eventually each correct process piTermination: Eventually each correct process pi

sets its decision variable di.
• Agreement: The decision value of all correct g

processes is the same: if pi and pj are correct
and have entered their decided state, then di=djj
(for all i,j2 1..N).

• Integrity: If the correct processes all proposed
h l h i hthe same value, then any correct process in the

decided state has chosen that value.

ConsensusConsensus
0

Start

1 44

2 3

Everybody has an initial proposed value vi

Consensus
3

Finish

Consensus

3 33

3 3

Agreement: Everybody decides on the
l d d (f ll i j2 1 N)same value: di=dj (for all i,j2 1..N)

Consensus
Start Finish

Consensus

1 1

1 1 1 1

1 1 1 1

Integrity: If the correct processes all proposed
the same value, then any correct process in the
decided state has chosen that value

An Algorithm?
Each proces pi:

An Algorithm?

1 B m lticast its al e to all processes

ac p oces pi

1. B-multicast its value to all processes
2. Decide on the minimum

(only one round is needed)(only one round is needed)

An Algorithm?
0

Start

An Algorithm?

1 44

2 3

An Algorithm?
0

B-multicast values
0,1,2,3,4

0 1 2 3 40 1 2 3 4

An Algorithm?

1 4

0,1,2,3,40,1,2,3,4

4

2 3 0,1,2,3,4

0,1,2,3,4

An Algorithm?
0

Decide on minimum
0 1 2 3 40 1 2 3 4

0,1,2,3,4

An Algorithm?

0 0

0,1,2,3,40,1,2,3,4

0

0 0 0,1,2,3,4

0,1,2,3,4

An Algorithm?
0

Finish

An Algorithm?

0 00

0 0

An Algorithm?
Start Finish

An Algorithm?

0 0

1 3 0 0

2 4 0 0

Without Failures, this algorithm gives consensus
If everybody starts with the same initial value, everybody decides on
that value (minimum)

Consensus w. Crash FailuresConsensus w. Crash Failures
The simple algorithm doesn’t work

E hEach proces pi :

1. B-multicast value to all processors
2 Decide on the minimum2. Decide on the minimum

Consensus w. Crash Failures
0

Start fail
0

Consensus w. Crash Failures

1 40

0

4

2 3

Not all processes receives the proposed
value from the failed process

Consensus w. Crash Failures
0Communicated values

fail

Consensus w. Crash Failures

1 4
0,1,2,3,4 1,2,3,4

4

2 31,2,3,4 0,1,2,3,4

Consensus w. Crash Failures
0Decide on minimum

fail

Consensus w. Crash Failures

0 1
0,1,2,3,4 1,2,3,4

1

1 01,2,3,4 0,1,2,3,4

Consensus w. Crash Failures
0Finish fail

Consensus w. Crash Failures

0 11

1 0

No Consensus!!!

f-resiliencyf resiliency

• f-resilient consensus algorithmf-resilient consensus algorithm
– Guarentees consensus with up to f failed

processprocess

Example 3-resiliencyExample 3 resiliency

The input and output of
a 3-resilient consensus algorithm

Example:
g

0
Start Finish

10

1 2

1

1 2

4 3 1

An f-resilient algorithm
Round 1:

An f resilient algorithm

Each process B-multicast its value

Round 2 to round f+1:
B lti t i d lB-multicast any new received values

End of round f+1:
Decide on the minimum value receivedDecide on the minimum value received

Consensus in a synchronous
system

A round isA round is
completed in T secs
⇒ synchronous y
system

Example
0

Start

Example

1 44

2 3

f=1 failures, f+1 = 2 rounds needed

Example: f=1
0Round 1

0
fail

Example: f 1

1 40

00,1,2,3,4 1,2,3,4
4

(new values)

2 31,2,3,4 0,1,2,3,4

B-multicast all values to everybodyB multicast all values to everybody

Example: f=1
Round 2

Example: f 1

0,1,2,3,4 0,1,2,3,4
1 44

0,1,2,3,4 0,1,2,3,4
2 3

B multicast all new values to everybodyB-multicast all new values to everybody

Example: f=1
Finish

Example: f 1

0 0
0,1,2,3,4 0,1,2,3,4

0

0 00,1,2,3,4 0,1,2,3,4

Decide on minimum value: forall i: di=0,

Example run 1: f=2
0Start

Example run 1: f 2

1 44

2 3

Example: f=2 failures f+1 = 3 rounds neededExample: f=2 failures, f+1 = 3 rounds needed

Example run 1: f=2
0

Round 1 Failure 1
Example run 1: f 2

1 40
1,2,3,4 1,2,3,4

4

2 31,2,3,4 0,1,2,3,4

B-multicast all values to everybodyB multicast all values to everybody

Example run 1: f=2
0

Round 2 Failure 1
Example run 1: f 2

1 4
0,1,2,3,4 1,2,3,4

4

2 31,2,3,4 0,1,2,3,4

Failure 2

B-multicast new values to everybody

Failure 2

B multicast new values to everybody

Example run 1: f=2
0

Round 3 Failure 1
Example run 1: f 2

1 4
0,1,2,3,4 O, 1,2,3,4

4

2 30,1,2,3,4 0,1,2,3,4

Failure 2

B-Multicast new values to everybody

Failure 2

B Multicast new values to everybody

Example run 1: f=2
0

Finish Failure 1
Example run 1: f 2

0 0
0,1,2,3,4 O, 1,2,3,4

0

0 30,1,2,3,4 0,1,2,3,4

Failure 2

Decide on the minimum value

Failure 2

Decide on the minimum value

Example run 2: f=2
0

Start

Example run 2: f 2

1 44

2 3

Example run 2: f=2
0

Round 1 Failure 1
Example run 2: f 2

1 40
1,2,3,4 1,2,3,4

4

2 31,2,3,4 0,1,2,3,4

B-multicast all values to everybodyB multicast all values to everybody

Example run 2: f=2
0

Round 2 Failure 1
Example run 2: f 2

1 4
0,1,2,3,4 0,1,2,3,4

4

2 30,1,2,3,4 0,1,2,3,4

B-multicast new values to everybody

At the end of this round all processesRemark: At the end of this round all processes
know about all the other values

Remark:

Example run 2: f=2
0

Round 3 Failure 1
Example run 2: f 2

1 4
0,1,2,3,4 0,1,2,3,4

4

2 30,1,2,3,4 0,1,2,3,4

Failure 2

B-multicast new values to everybody

Failure 2

(no new values are learned in this round)

Example run 2: f=2
0

Finish Failure 1
Example run 2: f 2

0 0
0,1,2,3,4 0,1,2,3,4

0 30,1,2,3,4 0,1,2,3,4

Failure 2

Decide on minimum value

Failure 2

Observation
1 2 3 4 5 6Round

Observation

Example:Example:
5 failures,
6 rounds6 rounds

N f ilNo failure

If th f f il d f+1 d thIf there are f failures and f+1 rounds then
there is a round with no failed process

Need for f+1RoundsNeed for f+1Rounds
• At the end of the round with no failure:

(f)– Every (non faulty) process knows about all the values
of all other participating processes

– This knowledge doesn’t change until the end of the
l ithalgorithm

• Therefore, at the end of the round with no
failure:

everybody would decide the same value
• The exact position of this ‘good’ round is not p g

known:
– In worst-case we need f+1 rounds

Worst-case Scenario
Round 1

Worst case Scenario

aip aip

kp

before process fails it sends its value aipbefore process fails, it sends its value a
to only one process

ip
kp

Worst-case Scenario
Round 1 2

Worst case Scenario

a mp
ip

kp
ip

before process fails it sends value akpbefore process fails, it sends value a
to only one process

kp
mp

Worst-case Scenario
Round 1 2 f3

Worst case Scenario

………

np

fp
a np

f

At th d f d f l pAt the end of round f only one process
knows about value a

np

Worst-case Scenario
Round 1 2 f3 decide

Worst case Scenario

b

………

npa np

P d id d ll thpProcess may decide a, and all other
processes may decide another value (b)

np

Worst-case Scenario
Round 1 2 f3 decide

Worst case Scenario

b

………

npa np

Th f f d t hTherefore f rounds are not enough
At least f+1 rounds are needed

A Lower BoundA Lower Bound
• Theorem

–Any f-resilient consensus
algorithm requires at least f+1algorithm requires at least f+1
rounds

Byzantine FailuresByzantine Failures

The Byzantine generals
problem

• Turkish invasion into Byzantium
B ti l h t tt k t l– Byzantine generals have to agree on attack or retreaval

– The enemy works by corrupting the soldiers
– Byzantine generals are notoriously treacherous ...y g y
– The loyal generals have to prevent traitors from spoiling a

coordinated attack
Messengers are sent to each other camps– Messengers are sent to each other camps

– Orders are distributed by exchange of messages, corrupt soldiers
violate protocol at will

– But corrupt soldiers can’t intercept and modify messages
between loyal troops

– The gong sounds slowly: there is ample time for loyal soldiers toThe gong sounds slowly: there is ample time for loyal soldiers to
exchange messages (all to all)

Byzantine FailuresByzantine Failures

Faulty
2p

aFaulty
processor

1p 3p

a
b

v =a 3p
c

v1=a

4p5p
•Aka. Arbitrary Faults

•Different processes receive different values
•Ommision failures
•Crash Failure

Byzantine Failures
Round

1
Round

2
Round

3
Round

4
Round

5
Round

6

Byzantine Failures

1p

2p
1p

2p
1p

2p
1p

2p
1p

2p
1p

2p2p

3p
2p

3p
2p

3p
2p 2p

3p 3p
2p

3p

4p 4p 4p 4p 4p 4p

Failure
5p 5p 5p 5p 5p

Failure
5p

a u e
After failure a byzantine process may
continue functioning in the network

a u e

Three byzantine generalsThree byzantine generals
p1 (Commander)p1 (Commander)

Attack! Attack!

p2 p3

•Commanding general says attack or retreat!•Commanding general says attack or retreat!
•Processes may fail arbitrarily
•Processes must reach consensusProcesses must reach consensus

Byzantine GeneralsByzantine Generals

• Termination: Eventually each correctTermination: Eventually each correct
process sets its decision variable.

• Agreement: The decision value of all• Agreement: The decision value of all
correct process is the same: if pi and pj are
correct and have entered their decidedcorrect and have entered their decided
state, then di=dj (for all i,j2 1..N).
I t it If th d i t• Integrity: If the commander is correct,
then all correct processes decide on the

l th t th d dvalue that the commander proposed.

A TheoremA Theorem
• N processes must tolerate f-faultsN processes must tolerate f faults
• There is no f-resilient algorithm if N≤3f
• Outline• Outline

1. Impossibility with 3 processes case,
2 Impossibility if N≤3f2. Impossibility if N≤3f
3. An algorithm for N≥3f+1 in synchronous

systemsy
4. Impossibility of consensus in asynchronous

systems

Impossibility of
Th B i G lThree Byzantine Generals

Notation:
p1 (Commander) p1 (Commander)

Notation:
1:v ~ p1 says 1
2:1:v ~ p2 says p1 says v

p2 p3

1:v1:v

p2 p3

2:1:v

1:x1:w

2:1:w
p2 p3 p2 p3

3:1:u 3:1:x

Faulty processes are shown shaded

1. Left: p2 gets conflicting information. Which is correct?
2. If commander is correct p2 and p3 must decide v accordingly (integrity)
3 Ri ht S t i ll t d id d t d id3. Right: Symmetrically, p2 must decide w and p3 must decide x
4. An algorithm cannot distinguish scenarios: No Agreement

Impossibility of
N 3f B i G l

1 npp K
1q

N≤3f Byzantine Generals

31q

2q3q 2q3q
3
21

3
nn pp K

+nn pp K
1

3
2 +
3

Reduction:
Each process q simulates N/3 processes
using algorithm X

Impossibility of
N 3f B i G l

1 npp K
1q

N≤3f Byzantine Generals

31q

2q3q 2q3q
3
21

3
nn pp K

+nn pp K
1

3
2 +

f l3 fails

When a ‘q’ fails n/3 then processes fail tooWhen a q fails n/3 then processes fail too

Impossibility of
N 3f B i G l

1 npp K
1qFinish of

N≤3f Byzantine Generals

31q
algorithm X k

kk
kk

k
all decide k

2q3q kk

k

2q3q
3
21

3
nn pp K

+nn pp K
1

3
2 +

kk
k kk

k

3 fails
algorithm X tolerates n/3 failures

Impossibility of
N 3f B i G l

1qFinal decision
N≤3f Byzantine Generals

1q
k

2q3q

fails

k

fails
We reached consensus with 1 failure
P i l h I ibl !!!Previously shown Impossible!!!
algorithm X cannot exist

Four byzantine generalsFour byzantine generals

(C d) (C d)p1 (Commander)

1:v1:v
1:v

p1 (Commander)

1:w1:u
1:v

p2 p3

1:v

3:1:u
2:1:v

4:1:v 4:1:v

p2 p3

1:v

3:1:w

4:1:v 4:1:v

2:1:u

3:1:w2:1:v 3:1:w2:1:u

Faulty processes are shown shaded
p4 p4

p2 and p4 agrees:p2 and p4 agrees:
d2 =majority (v,v,u)=v
d4 =majority (v,v,w)=v

p2, p3, and p4 agrees:
d2= d2 = d4 =majority (v,u,w)=⊥
⇒Use common default value

Cost of Byzantine GeneralsCost of Byzantine Generals

• Requires f+1 roundsRequires f+1 rounds,
• Sends O(n f+1) messages

If di it l i t l ti i t• If we use digital signatures a solution exist
with O(n2) messages (f+1 rounds)
– False claims not possible:
– If ”p says v” other processes can detect if ”q

says p says w”
• Truely arbitrary failures are rare.

Impossibility of Consensus in p y
asynchronous systems

• No algorithm exists to reach consensus
– (Concensus may possibly (very often) be reached, but cannot

always guaranteed)
– Neither for crash or byzantine failues

Eg Two army problem:• Eg. Two-army problem:
– There is some program continutation that avoids consensus

• No guaranteed solution to
B ti l bl• Byzantine generals problem

• Interactive consistency
• Totally ordered reliable multicast

Two-Army ProblemTwo Army Problem

Arbitrarily slow processes (or channels) are
indistinguishable from crashed ones (omission)

Workarounds in an
asynchronous system

• Masking faults:Masking faults:
– restart crashed process and use persistent storage
– Eg recovery files like in databasesg y

• Use failure detectors:
– make failure fail-silent by discarding messages

• Probabilistic algorithms:
– conceal strategy for adversary

ENDEND

