Multicast Communication
(aka. group communication)

Brian Nielsen
bnielsen@cs.aau.dk



Communication modes in DS

* Uni-cast
* Messages are sent from exactly one
process to one process

Broad-cast

- Messages are sent from exactly one g={P1,p2, P}
process to all processes on the network.
Multi-cast PO
 Messages are sent from exactly one
process to several processes on the
network (named group). P3

Any-cast P2 -—
 Message is sent to one (eg “best” or O
“nearest”) of a set of possible receivers

Geo-cast:

 Message sent to geographically close
neighbors



Example: video-conferencing

224.2.0.1

=== Multicast address group 224.2.0.1 from UREC, http://www.urec.fr






Reliable Multicast
 Bulk Data

— Corporate data, server cluster (eg. replication), software distribution
— Files, large memory segments
— Static

— Full reliability, no real-time, one sender

« Streaming Data
— Stock quotes, news, video, audio
— Messages, a/v formats
— Dynamic
— Full-to-none reliability regs, varying real-time reqgs, one/few
sender(s)

« Collaborative
— Whiteboard interaction, multimedia conference, gaming
— Short messages, a/v formats
— Dynamic and/or static

— Full-to-moderate reliability regs, moderate real-time regs, many
senders



Middleware Systems

JavaGroups : Reliable, ordered group communication for Java.

The jGCS library provides a generic interface for Group
Communication.

PGM (for MSMQ), Pragmatic General Multicast. REC 3208
GROF# : Group Oriented Framework for C#.

The Group Communication Toolkit (GCT) is a .NET version of
JavaGroups)

Enterprise “Middleware”
— Tibco:
* Rendezvous “reliable broadcast” or multicast
* 60-second limit, probably Nack mechanism
* Routing daemons: subnet and wide-area

— CorbaEvent services (?)
— DCS




LAN IP Multicast

* Class D IP address
 Hardware support = 1 message is sent




WAN IP-Multicast

ey 128.146.199.0/24 128.146.116.0/24 ===

0 & & [

T
N

128.146.222.0/24 @5 Fap | | Ty 128.146.226.0/24

=
-,

L==

_’ =

el

-, 5585




Unicast to multiple receivers

AhAA

Sender
128.146.222.

y——="

==
0 @@=

128.146.199.0/24

ﬁ
ﬁ
ﬁ

128.146.116.0/24 gv
I

0/24

® <

-,

-,

Receiver

| égj

Receiver

128.146.226.0/24

|—u— —uj

-,

3

Receivers

-,



Unicast

With 4 receivers, sender must replicate the
stream 4 times.

Consider good quality audio/video streams
are about 1.5Mb/s (a T1)

Each additional receiver requires another
1.5Mb/s of capacity on the sender network

Multiple duplicate streams over expensive
WAN links



IP - Multicast

A

el

Sender
128.146.222.0/24

55

Receiver

-,

128.146.199.0/24

128.146.116.0/24 £===%
B

¥ <

Eﬁ; é | | é;

Receiver

128.146.226.0/24

|—U<— —»ﬁ—\

-,

3

Receivers

-,



IP-Multicast Efficiency

* |P-multicast more Efficient than n sends!
— Source transmits one stream of data for n receivers
— Replication happens inside routers and switches
— WAN links only need one copy of the data, not n copies.

* |P datagram multicast:
— Hosts join/leave on a class D address
— IGMP constructs and maintains multicast tree



|P-Multicast Failures

« HW- and IP-multicast Failure model ~ UDP

— Omission failures
* Delivery to none
« Delivery to some

— No ordering guarentees

» Consequetive multicasts may be received in different order

— At same receiving node
— At different nodes

« However, ordering and reliability are required by many
applications

 Reliable & Ordered multicast requires “fancy”
algorithms



Replicated Bank Account

pct(interest) Q O



Replicated Bank Account

B1 B2

Add(lOO)W Add(100)

© @



Replicated Bank Account

Add(lOO)\ d(100)

= O

UNRELIABLE Multicast = INCONSISTENCY



Replicated Bank Account

B1 B2

pct(10)
Add(100)

Add(100)
pct(10)

UNORDERED Multicast = INCONSISTENCY



Replicated Bank Account
FIFO-ORDERING

Add(100) Add(100)
pct(10) pct(10)

FIFO Multicast = CONSISTENCY??



Replicated Bank Account
FIFO-ORDERING

B1 =
Add(100) Add(100) pct(10)
pct(10) 10) Add(100)

FIFO Multicast = INCONSISTENCY



Replicated Bank Account
TOTAL ORDERING

B1 3
Add(100) Add(100) Add(100)
0ct(10) 10) pct(10)

TOTAL Multicast = CONSISTENCY??



Multicast-API

« X-multicast(g,m)
» X-deliver(m)
« Xis one of

Application
(process p)

— B: Basic, A
_ send deliver
— R: Reliable multicast multicast
— FO: FIFO,
MULTICAST PROTOCOL
— CO: Causal, oo —
ost rotoco tac
— TO: Total

Incoming
messages

(Receive)



The Hold-back queue

“stable”
messages |~ ~

Message
S S - processing

~

Adeliver

Hold-back
queue

Delivery queue

When delivery
guarantees a

Incoming
messages



Basic Multicast

A basic multicast primitive guarantees

— All correct process eventually delivers the message, as long
as the sender (multicasting process) does not crash

— A “correct” process = a process that exhibits no failures at any
execution point under consideration

— NB: NOT satisfied by HW (IP) multicast

« A straightforward way to implement B-multicast is to use
a reliable one-to-one send operation:

— B-multicast(g,m): for each process p in g, send (p,m).
— receive(m) at p: B-deliver(m).



B-Multicast

-\

X

If P, crashes, message not delivered in p, and p.

‘Hence, Unreliable



Reliable Uni-cast

* Integrity: A correct process p delivers a
message m at most once. Furthermore, m is
unmodified and was destined for p.

« Validity: If m was sent and the receiver is
correct, it eventually delivers m.



Reliable multicast

Integrity: A correct process p delivers a
message m at most once. Furthermore,

P egroup(m) and m was supplied to a multicast
operation by sender(m).

Validity: If a correct process multicasts
message m, then it will eventually deliver m.

Agreement: If a correct process delivers m,
then all other correct processes in group(m) will
eventually deliver m.

Liveness=Validity+agreement



Reliable multicast
Algorithm 1 with B-multicast

P

P
i Fy ¥
h—

F 1’ 4(5 .!' [ 2 A &F 3 57 = o 2 (_'i {t‘t/ i g u_f' i"y [ 3
Received .= {};

For process p to R-multicast message m to group g
B-multicast(g, m); // p € g 1s included as a destination

On B-deliver(m) at process g with g = group(m)

if (me Received)

then
Received := Received U {m };
if (q # p) then B-multicast(g, m); end if
R-deliver m;

end if

Each R-multicast message is sent |g| times, ie O(N?).



Reliable multicast

 Correct?

— Integrity

— Validity

— Agreement
« Efficient?

— NO: each message transmitted |g\ times



R-multicast using IP multicast

« Each process maintains sequence g
numbers
— SP, next message to be sent
— R4, (for all geg) latest message
delivered from q
 On R-multicast of m to group g,
attach SP,and all pairs <q, R9,>

* R-deliver in process g happens iff
Sm:Rpg+1
— if S,<RP,+1, process g has seen the
message before,
— if S,>RP;+1 or if R, >RP, for some pair
<g, R,> in message a message has
been lost

Pn



R-multicast using IP multicast

N

frod Ny Y, [ )
N2
1 ]

11

18

Y aVaevlavtarla
A A AN ATASS

ot d
e k|
A&

Py gy
i Sy
A\ AW

5w
[
A &

‘i‘ 8
R
B

iy,
v

Nt

ber

send

P .

INg sequence num

g

sequence number of the latest msg p delivered from q (for each q)

q.
g -

1, for all geg

p_
g _O’qu

(@)
Q.

N
=)

P talale
e Yo |
L4

Nt T had Wl N

3
i
i

o

Yy
£1
{8 |

4
4 g T

e RN |
b Gl S

[ LN

11

e VaVaYala
A TATA A S

IP-multicast (g, <m, S;° , <R;> >)

S

P ++

9

—

P
»

o2 T e ne
& et
T\~

(@,
Sy,
\ D

(continued)



R-multicast using IP multicast

P U N o i V4 N 5 Py \ ¢ ~

I Wy L ALy | & Y S, @ Lod ™ ™} MAT N OTrAAYYY M

AL A =y A= i/ § "7 > SR ] e L) BERJEAR OB

News” H St v S gy Yy LI N J SAe \q 18 i B~
H H

then R-deliver (m)
Rgp ++
check hold-back queue
else if S>R,"+1
then store m in hold-back queue
request missing messages  endif
endif

if Ap. rgpeR and " > R;P then request missing messages endif



R-multicast using IP multicast

« 3 processes in group: P, Q, R
« State of process:

— S: Next sequence number
— R, Already delivered from Q

— Set of Stored messages! P 9
* Presentation: C<2>3 RS




R-multicast using IP multicast

 |nitial state:

P. 0

Q:-1 R:-1

<>
Q: 0 R: 0
P.-1 R:-1 P.-1 Q:-1
<> <>




R-multicast using IP multicast

* First multicast by P:

P: 1
Q:-1 R:-1
/ R
Q: 0 \ R: 0
P.-1 R:-1 P.-1 Q:-1
<> <>




R-multicast using IP multicast

* Arrival multicast by P at Q:

P. 1
Q:-1 R:-1
/ B
\!
Q: 0 R: 0
P:0 R:-1 P.-1 Q:-1
<my, > <>




R-multicast using IP multicast

* New state:

P. 1

Q:-1 R:-1

<my, >
Q: 0 R: 0
P:0 R:-1 P.-1 Q:-1
<My, > <>




R-multicast using IP multicast

* Multicast by Q:




R-multicast using IP multicast

« Arrival of multicast by Q:
P. 1

Q:0 R:-1
Q: 1 / R: 0

P:0 R: -1 ‘ P:-1 Q: 0
< mp()’ ’mq() > < qu >




R-multicast using IP multicast

* R detects missing message!
 When to delete stored messages?

P: 1

Q:0 R:-1

< Mgy My >
Q1 R: 0
P:0 R:-1 P:-1  Q:0
<My, Mgy > <My, >




R-multicast using IP multicast

 Correct?
— Integrity:

 seqg numbers (duplicate detection) + checksums in IP
multicast

— Validity:
« Self delivery assumed for IP

— Agreement:

« if missing messages are detected
« = Correct processes multicasts indefinitely
« if copy of message remains available

-  IMPROVE IT!



Ordered multicast

PO P1 P2 * FIFO ordering

. —>¢ — If a process multicasts
| ' ' message m and
’ : subsequently multicasts

message m’, every process
will deliver m before m’




Ordered multicast

PO P1 P2  Total ordering

— If a process delivers
message m before it
delivers m’, then any other
process will also deliver m
before m’




Ordered multicast

L P1 P2 « Causal ordering

gg\)‘ % If multicast( m ) “happens-
| , ' before” multicast( m’), all

m3 . .
processes will deliver m
before m’

The happened before relation (—) causally relates two events.

ml - m2 Process P2 multicast m2 after it received message ml.
ml - m3 Process PO multicast m3 after it multicast message m1.
m2 A~ m3 Process PO multicast m3 concurrently with P2

multicasting m2.



FIFO multicast

* Analyse our algorithm for reliable multicast
on top of IP-multicast.

* A process q delivers all messages from p
in p sending order (SP;) by comparing to
local expected sequence number RP



(Unreliable) TO-multicast

« Basic approach as FIFO:

— Uses globally unique IDs instead of per
process unique IDs (as FIFO)

— Receiver: deliver as for FIFO ordering

« Alg. 1: use a (single) sequencer process

* Alg. 2: participants collectively agree on
the assignment of sequence numbers



TO-multicast: sequencer

nitialization. r_ .= 0; rye seq nr of last delivered message

I Unique message id

Al I
ca F N

s 3 gl o — 1’1
EF I, L) Wit o —‘a ()M 7
x & bt

On B-d@!éver(ﬁ“order”, i, §>) with g = group(m)

wait until <m, i> in hold-back queue and § = »_+ 1;
TO-deliver m; /I (after deleting it from the hold-back queue)

r_o=3S5;
g Yy

e | o o e e |

k

= e

.
s.. global unique seq nr

e F B g { ) . g

Ly 4””»‘*“»‘1,,{,5!5-‘ ML o e 1

S

P ™ ¥ i L - o N 7 N

{Jn B-gdefiveri<gm. 1> u ith oy == .muurmrr/ml

T EFTUAC L VRS 1 ~FF ey kb x VYV LEFE ;.,. < b (/nj t\“':f/:

B-multicast(g, <“order”, i, s >)

=5 +
Sg 1T S, 1;



(Unreliable) TO-multicast:

ISIS

* Approach:

— Sender:
* B-multicasts message

— Recelvers:
 Propose sequence numbers to sender

— Sender:

e uses returned sequence numbers to
generate agreed sequence number



The ISIS algorithm for total
ordering

1 Message



The ISIS algorithm

Process g maintains sequence numbers
— A4, the largest agreed seq nr g has observed for g
— P9, d’s own largest proposed sequence number g

Process p performs B-multicast(<m,i>,qg),
where | as a unique identifier for message m.

Each process g replies p with a proposed
sequence number P9 ;:=max(Ady,P9,)+1.
Process p collects proposed sequence numbers
and chooses the largest, let's call it a. Then p
performs B-multicast(<i,a>,q).

Each process g in g sets Av:=max(A9;,a) and
attach sequence number a to message m



TO-multicast: ISIS alg.

e Correct?

— Processes will agree on sequence number
for a message

— Sequence numbers are monotonically
iIncreasing

— No process can prematurely deliver a
message

* Performance
— 3 serial messages!



CO-multicast

« Each process p; maintains vector clock

— Vgi [i] is the number of messages from each process P; that
happened-before next message to be multicast

»  To CO-multicast(m): P;increments V/ [i] and B-
multicasts(g,< V4,m>)
* P;CO-delivers(m) from P; iff
a) It has delivered any earlier message send by P;
V4 [1=V,'[1 +1, and
b) It has delived any message that P, had delivered at the time it

multicast the message:
V4 [K] = V{'[K] +1,k#

E.g. message: V2=[3,6,2] Receiver V3=[2,5,2]
|.e p3 needs to deliver a message from p1 first



Summary

So you thought multi-cast was simple??!!

Applications have different semantic ordering, reliability
and cost requirements

— Unreliable / reliable multicast

— FiFo, Causal, Causal-Fifo, Total, ...

— FiFo+Total (Exercise)

Many algorithms available with different cost / ordering
tradeoff

Did you see an algorithm for totally ordered reliable
multicasting ??77?



END



