
Multicast Communication
(aka. group communication)

Brian Nielsen
bnielsen@cs.aau.dkbnielsen@cs.aau.dk

Communication modes in DS
U i t• Uni-cast
• Messages are sent from exactly one

process to one process
B d t• Broad-cast
• Messages are sent from exactly one

process to all processes on the network.

g={p1,p2, p3}

• Multi-cast
• Messages are sent from exactly one

process to several processes on the
t k (d)

p1

pnetwork (named group).
• Any-cast

• Message is sent to one (eg “best” or
p2

p3

“nearest”) of a set of possible receivers
• Geo-cast:

• Message sent to geographically close g g g p y
neighbors

Example: video-conferencingExample: video conferencing
224.2.0.1

from UREC, http://www.urec.frMulticast address group 224.2.0.1

Reliable Multicast
• Bulk Data

– Corporate data, server cluster (eg. replication), software distribution
– Files, large memory segments
– Static
– Full reliability, no real-time, one sender

St i D t• Streaming Data
– Stock quotes, news, video, audio
– Messages, a/v formats

D i– Dynamic
– Full-to-none reliability reqs, varying real-time reqs, one/few

sender(s)

• Collaborative• Collaborative
– Whiteboard interaction, multimedia conference, gaming
– Short messages, a/v formats
– Dynamic and/or staticDynamic and/or static
– Full-to-moderate reliability reqs, moderate real-time reqs, many

senders

Middleware SystemsMiddleware Systems
• JavaGroups : Reliable, ordered group communication for Java.
• The jGCS library provides a generic interface for GroupThe jGCS library provides a generic interface for Group

Communication.
• PGM (for MSMQ), Pragmatic General Multicast. RFC 3208
• GROF# : Group Oriented Framework for C#. p
• The Group Communication Toolkit (GCT) is a .NET version of

JavaGroups)
• Enterprise “Middleware”Enterprise Middleware

– Tibco:
• Rendezvous “reliable broadcast” or multicast
• 60-second limit probably Nack mechanism60 second limit, probably Nack mechanism
• Routing daemons: subnet and wide-area

– CorbaEvent services (?)
DCS– DCS

LAN IP MulticastLAN IP Multicast
• Class D IP addressClass D IP address
• Hardware support = 1 message is sent

WAN IP-Multicast

128 146 116 0/24128 146 199 0/24 128.146.116.0/24128.146.199.0/24

128.146.222.0/24 128.146.226.0/24

Unicast to multiple receivers

128 146 116 0/24128 146 199 0/24 128.146.116.0/24128.146.199.0/24

ReceiverSender

128.146.222.0/24 128.146.226.0/24

ReceiversReceiver

Unicast

• With 4 receivers sender must replicate theWith 4 receivers, sender must replicate the
stream 4 times.

• Consider good quality audio/video streams• Consider good quality audio/video streams
are about 1.5Mb/s (a T1)
E h dditi l i i th• Each additional receiver requires another
1.5Mb/s of capacity on the sender network

• Multiple duplicate streams over expensive
WAN links

IP - Multicast

128 146 116 0/24128 146 199 0/24 128.146.116.0/24128.146.199.0/24

ReceiverSender

128.146.222.0/24 128.146.226.0/24

ReceiversReceiver

IP-Multicast Efficiencyy
• IP-multicast more Efficient than n sends!

– Source transmits one stream of data for n receiversSource transmits one stream of data for n receivers
– Replication happens inside routers and switches
– WAN links only need one copy of the data, not n copies.

• IP datagram multicast:
– Hosts join/leave on a class D address

IGMP constructs and maintains multicast tree– IGMP constructs and maintains multicast tree

IP-Multicast Failures
• HW- and IP-multicast Failure model ~ UDP

– Omission failuresOmission failures
• Delivery to none
• Delivery to some

N d i t– No ordering guarentees
• Consequetive multicasts may be received ín different order

– At same receiving node
– At different nodes

• However ordering and reliability are required by many• However, ordering and reliability are required by many
applications

• Reliable & Ordered multicast requires “fancy”
algorithms

Replicated Bank AccountReplicated Bank Account
B1 B2 B3

100 100 100

B1 B2 B3

Add(amount)
pct(interest)pct(interest)

Replicated Bank AccountReplicated Bank Account
B1 B2 B3

100 100 100

B1 B2 B3

200 200 200

Add(100) Add(100) Add(100)

00 00 00

Replicated Bank AccountReplicated Bank Account
B1 B2 B3

100 100 100

B1 B2 B3

200 200

Add(100) Add(100)

00 00

UNRELIABLE Multicast ⇒ INCONSISTENCY

Replicated Bank AccountReplicated Bank Account
B1 B2 B3

100 100 100

B1 B2 B3

200 200 110220 220 210

Add(100) Add(100)
Add(100)

00 00 0

t(10) pct(10)
pct(10)

0 0 0

Add(100)pct(10) pct(10)

UNORDERED Multicast ⇒ INCONSISTENCY

Replicated Bank AccountReplicated Bank Account
B1 B2 B3

FIFO-ORDERING

100 100 100

B1 B2 B3

200 200 200220 220 220

Add(100) Add(100) Add(100)

00 00 00

t(10) pct(10) pct(10)

0 0

pct(10) pct(10) pct(10)

FIFO Multicast ⇒ CONSISTENCY??

Replicated Bank AccountReplicated Bank Account
B1 B2 B3

FIFO-ORDERING

100 100 100

B1 B2 B3

200 200 110220 220 210

Add(100) Add(100)
Add(100)

00 00 0

t(10) pct(10)
pct(10)

0 0 0

Add(100)pct(10) pct(10)

FIFO Multicast ⇒ INCONSISTENCY

Replicated Bank AccountReplicated Bank Account
B1 B2 B3

TOTAL ORDERING

100 100 100

B1 B2 B3

200 200 200220 220 220

Add(100) Add(100) Add(100)

00 00 00

t(10) pct(10) pct(10)

0 0 0

pct(10) pct(10) pct(10)

TOTAL Multicast ⇒ CONSISTENCY??

Multicast-APIMulticast API
• X-multicast(g,m)X multicast(g,m)
• X-deliver(m)
• X is one of

Application
(process p)• X is one of

– B: Basic,
– R: Reliable

(p p)

send
multicast

deliver
multicast– R: Reliable

– FO: FIFO,
– CO: Causal MULTICAST PROTOCOL

multicast multicast

CO: Causal,
– TO: Total
– … Incoming

Host OS/ Protocol Stack

…
messages
(Receive)

The Hold-back queue
“stable”

messages
Message

processing

Hold-back

deliver

Delivery queuequeue

When delivery

Incoming

When delivery
guarantees are
met

messages

Basic Multicast
• A basic multicast primitive guarantees

All correct process e ent all deli ers the message as long– All correct process eventually delivers the message, as long
as the sender (multicasting process) does not crash

– A “correct” process = a process that exhibits no failures at any
execution point under considerationexecution point under consideration

– NB: NOT satisfied by HW (IP) multicast

• A straightforward way to implement B-multicast is to use
a reliable one-to-one send operation:

– B-multicast(g,m): for each process p in g, send (p,m).
receive(m) at p: B deliver(m)– receive(m) at p: B-deliver(m).

B-MulticastB Multicast
p3

p2 p4

p1 p5

pp1

•If Pn crashes, message not delivered in p4 and p5

•Hence, Unreliable

Reliable Uni-castReliable Uni cast
• Integrity: A correct process p delivers aIntegrity: A correct process p delivers a

message m at most once. Furthermore, m is
unmodified and was destined for p.

• Validity: If m was sent and the receiver is
correct, it eventually delivers m.

Reliable multicastReliable multicast
• Integrity: A correct process p delivers aIntegrity: A correct process p delivers a

message m at most once. Furthermore,
p ∈group(m) and m was supplied to a multicast
operation by sender(m).

• Validity: If a correct process multicasts
message m, then it will eventually deliver m.

• Agreement: If a correct process delivers m,
h ll h i () illthen all other correct processes in group(m) will

eventually deliver m.
Li V lidit t• Liveness=Validity+agreement

Reliable multicastReliable multicast
Algorithm 1 with B-multicast

Each R-multicast message is sent |g| times, ie O(N2).

Reliable multicastReliable multicast
C t?• Correct?

– Integrity

– Validity

– AgreementAgreement

• Efficient?
⏐ ⏐– NO: each message transmitted ⏐g⏐ times

R-multicast using IP multicastR multicast using IP multicast
• Each process maintains sequence gEach process maintains sequence

numbers
– Sp

g next message to be sent
Rq (f ll) l t t

g
p1

2 3 1
R1

– Rq
g (for all q∈g) latest message

delivered from q

• On R-multicast of m to group g,
4

pi

S1

2 3 1

attach Sp
g and all pairs <q, Rq

g>
• R-deliver in process q happens iff

S =Rp +1
2 3 2

pi

pn
Ri

(m,4,<2,3,1>)

Sm=Rp
g+1

– if Sm<Rp
g+1, process q has seen the

message before,
if S Rp 1 if R Rp f i– if Sm>Rp

g+1 or if Rm>Rp
g for some pair

<q, Rm> in message a message has
been lost

R-multicast using IP multicastR multicast using IP multicast

Data structures at process p:

S p : sending sequence numberSg
p : sending sequence number

Rg
q : sequence number of the latest msg p delivered from q (for each q)

On initialization:

Sg
p = 0, Rg

q= -1, for all q∈g

For process p to R-multicast message m to group g

IP-multicast (g, <m, Sg
p , <Rg> >)

Sg
p ++

On IP-deliver (<m S <R>>) at q from pOn IP deliver (<m, S, <R>>) at q from p

(continued)

R multicast using IP multicastR-multicast using IP multicast

On IP-deliver (<m, S, <R>>) at q from p

save m

if S = Rg
p + 1

then R-deliver (m)

R p ++Rg ++

check hold-back queue

else if S > Rg
p + 1

then store m in hold-back queue

request missing messages endif

difendif

if ∃p. rg
p∈R and rg

p > Rg
p then request missing messages endif

R multicast using IP multicastR-multicast using IP multicast

• 3 processes in group: P, Q, R
• State of process:

– S: Next sequence numberS: Next sequence number
– Rq: Already delivered from Q
– Set of Stored messages! P 2Set of Stored messages!

• Presentation:
P: 2
Q: 3 R: 5
< >

R multicast using IP multicastR-multicast using IP multicast

• Initial state:
P: 0
Q: -1 R: -1
< >< >

Q: 0
P: -1 R: -1
< >

R: 0
P: -1 Q: -1
< >< > < >

R multicast using IP multicastR-multicast using IP multicast

• First multicast by P:
P: 1
Q: -1 R: -1
< m > P: m 0 0 <Q:-1 R:-1>< mp0 > P: mp0, 0, <Q: 1, R: 1>

Q: 0
P: -1 R: -1
< >

R: 0
P: -1 Q: -1
< >< > < >

R multicast using IP multicastR-multicast using IP multicast

• Arrival multicast by P at Q:
P: 1
Q: -1 R: -1
< m > P: m 0 0 <Q:-1 R:-1>< mp0 > P: mp0, 0, <Q: 1, R: 1>

!Q: 0
P: 0 R: -1
< m >

R: 0
P: -1 Q: -1
< >

!

< mp0 > < >

R multicast using IP multicastR-multicast using IP multicast

• New state:
P: 1
Q: -1 R: -1
< m >< mp0 >

Q: 0
P: 0 R: -1
< m >

R: 0
P: -1 Q: -1
< >< mp0 > < >

R multicast using IP multicastR-multicast using IP multicast

• Multicast by Q:
P: 1
Q: -1 R: -1
< m >Q: m 0 <P:0 R: 1> < mp0 > Q: mq0, 0, <P:0, R:-1>

Q: 1
P: 0 R: -1
< mp0 ,mq0 >

R: 0
P: -1 Q: -1
< >p0 , q0 < >

R multicast using IP multicastR-multicast using IP multicast

• Arrival of multicast by Q:
P: 1
Q: 0 R: -1
< m m >Q: m 0 <P:0 R: 1> < mp0 ,mq0 > Q: mq0, 0, <P:0, R:-1>

Q: 1
P: 0 R: -1
< mp0 , ,mq0 >

R: 0
P: -1 Q: 0
< m >p0 , , q0 < mq0 >

R multicast using IP multicastR-multicast using IP multicast

R d t t i i !• R detects missing message!
• When to delete stored messages?

P: 1
Q: 0 R: -1
< m m >< mp0 ,mq0 >

Q: 1
P: 0 R: -1
< mp0 , ,mq0 >

R: 0
P: -1 Q: 0
< m >p0 , , q0 < mq0 >

R multicast using IP multicastR-multicast using IP multicast
• Correct?• Correct?

– Integrity:
• seq numbers (duplicate detection) + checksums in IPseq numbers (duplicate detection) + checksums in IP

multicast

– Validity:
S lf d li d f IP• Self delivery assumed for IP

– Agreement:
• if missing messages are detectedg g
• ⇒ Correct processes multicasts indefinitely
• if copy of message remains available

– IMPROVE IT!IMPROVE IT!

Ordered multicastOrdered multicast
• FIFO orderingP0 P1 P2 g

– If a process multicasts
message m and
subsequently multicasts q y
message m’, every process
will deliver m before m’

Ordered multicastOrdered multicast
• Total orderingP0 P1 P2 g

– If a process delivers
message m before it
delivers m’, then any other , y
process will also deliver m
before m’

Ordered multicastOrdered multicast
• Causal orderingP0 P1 P2

1 g
If multicast(m) “happens-

before” multicast(m’), all
ill d li

m1

m2

m3 processes will deliver m
before m’

The happened before relation (→) causally relates two eventsThe happened before relation (→) causally relates two events.
m1 → m2 Process P2 multicast m2 after it received message m1.
m1 → m3 Process P0 multicast m3 after it multicast message m1.

57 SE 325
m2 → m3 Process P0 multicast m3 concurrently with P2

multicasting m2.
⁄

FIFO multicastFIFO multicast
• Analyse our algorithm for reliable multicast

on top of IP-multicaston top of IP-multicast.
• A process q delivers all messages from p

in p sending order (Sp) by comparing toin p sending order (Sp
g) by comparing to

local expected sequence number Rp
g

(Unreliable) TO multicast(Unreliable) TO-multicast
B i h FIFO• Basic approach as FIFO:

– Uses globally unique IDs instead of per
i ID (FIFO)process unique IDs (as FIFO)

– Receiver: deliver as for FIFO ordering

• Alg. 1: use a (single) sequencer process
• Alg. 2: participants collectively agree on

the assignment of sequence numbers

TO multicast: sequencerTO-multicast: sequencer
r : seq nr of last delivered message

i: Unique message id

rg: seq nr of last delivered message

sg: global unique seq nr

(Unreliable) TO-multicast:
ISIS

A h• Approach:
– Sender:

• B-multicasts message
– Receivers:Receivers:

• Propose sequence numbers to sender
Sender:– Sender:
• uses returned sequence numbers to

generate agreed sequence numbergenerate agreed sequence number

The ISIS algorithm for total
ordering

P2
1 Message

P2

P42
3

1

3 Agreed Seq
1

P12

3 Agreed Seq

P3

3

3

The ISIS algorithmThe ISIS algorithm
• Process q maintains sequence numbers

– Aq
g the largest agreed seq nr q has observed for gA g the largest agreed seq nr q has observed for g

– Pq
g q’s own largest proposed sequence number q

• Process p performs B-multicast(<m,i>,g), p p (, ,g),
where i as a unique identifier for message m.

• Each process q replies p with a proposed
sequence number Pq

g:=max(Aq
g,Pq

g)+1.
• Process p collects proposed sequence numbers

and chooses the largest, let’s call it a. Then p
performs B-multicast(<i,a>,g).

• Each process q in g sets Aq
g:=max(Aq

g,a) and
attach sequence number a to message m

TO multicast: ISIS algTO-multicast: ISIS alg.
• Correct?Correct?

– Processes will agree on sequence number
for a message
S b t i ll– Sequence numbers are monotonically
increasing

– No process can prematurely deliver a
message

• Performance
– 3 serial messages!3 serial messages!

CO multicastCO-multicast
• Each process pi maintains vector clock

i– Vg
i [j] is the number of messages from each process Pj that

happened-before next message to be multicast

• To CO-multicast(m): Pi increments Vg
i [i] and B-() i g []

multicasts(g,< Vg
i,m>)

• Pi CO-delivers(m) from Pj iff
) It h d li d li d b Pa) It has delivered any earlier message send by Pj

Vg
j [j] = Vg

i [j] +1, and
b) It has delived any message that Pj had delivered at the time it

lti t thmulticast the message:
Vg

j [k] ≤ Vg
i [k] +1,k≠j

message: V2=[3,6,2] Receiver V3=[2,5,2]E.g.
I.e p3 needs to deliver a message from p1 first

SummarySummary
• So you thought multi-cast was simple??!!y g p

• Applications have different semantic ordering, reliability
and cost requirementsand cost requirements
– Unreliable / reliable multicast
– FiFo, Causal, Causal-Fifo, Total, …

FiF +T t l (E i)– FiFo+Total (Exercise)
• Many algorithms available with different cost / ordering

tradeoff

• Did you see an algorithm for totally ordered reliable
multicasting ????multicasting ????

ENDEND

