
Peer-to-peer SystemsPeer-to-peer Systems

Brian Nielsen
bnielsen@cs.aau.dkbnielsen@cs.aau.dk

Client-ServerClient Server
• Centralized • Bottleneck
• Functional specialization
• Central administration

• Single point of failure

NFS
Client

NFS
Client

NFS
Server

NFS
Client

NFS
Client

Peer2PeerPeer2Peer
• Peer = “Equal Partner”
• Peers are “equal” computers located at the

border of the network
• Logical “overlay network” on top of IP networkLogical overlay network on top of IP network

NFS
Host

NFS
Host

IP-network

Host

NFS
Host

NFS
Host NFSNFS

Host

Aim of peer-to-peer systemsAim of peer to peer systems
• Sharing of data and resources at verySharing of data and resources at very

large scale
– No centralized and separately managed p y g

servers and infrastructure
– Share load by using computer resources

(d CPU) t ib t d b “E d(memory and CPU) contributed by “End-
hosts” located at the edges of the internet”

• Security• Security
• Anonymity

BackgroundBackground
• Pioneers:Pioneers:

– Napster,
– Gnutella, FreeNet

• Hot / new research topic:
– Infrastructure

• Pastry, Tapestry, Chord, Kademlia,..

– Application:
• File sharing: CFS PAST [SOSP’01]• File sharing: CFS, PAST [SOSP 01]
• Network storage: FarSite [Sigmetrics’00], Oceanstore

[ASPLOS’00], PAST [SOSP’01]
M lti t H ld [H tOS’01] B [NOSDAV’01] CAN• Multicast: Herald [HotOS’01], Bayeux [NOSDAV’01], CAN-
multicast [NGC’01], SCRIBE [NGC’01]

Napster: centralized,
replicated index

peers

Napster serverNapster server
Index1. File location

2. List of peers

request
3. File request

Index

p
offering the file

4. File delivered
5. Index update

Gnutella-FloodingGnutella Flooding
•Unstructured Overlay Network: Each node knows a set of other nodes
•Flood overlay network with query: Who has file X?ood o e ay e o que y o as e

Ch t i tiCharacteristics
• Distributed

– Participants distributed across the internet
All contributes with resources– All contributes with resources

• Decentralized control
– no central decision point
– no single point of failure
– dynamic: unpredictable set of participants

• Self-organizingSelf organizing
– No permanent infrastructure
– No centralized administration

S i i i / l• Symmetric communication/roles
– Same functional capabilities

Common issuesCommon issues

O i i t i l t k• Organize, maintain overlay network
– node arrivals

node failures– node failures
• Resource allocation/load balancing
• Efficient Resource localization• Efficient Resource localization
• Locality (network proximity)

Idea: generic P2P middleware (aka “substrate”)

ArchitectureArchitecture

IVYOceanStore P2P application layer?

P2P substrate

pp y

API

DHT
P2P substrate
(self-organizing
overlay network)

TCP/IP Internet

y)

Basic interface for
distributed hash table (DHT)

• Peer-to-peer object location and routing substratep j g
• Distributed Hash Table: maps object key to a live

node
put(GUID, data)
The data is stored in replicas at all nodes responsible for the object identified by GUID.
remove(GUID)
Deletes all references to GUID and the associated data.
value = get(GUID)value = get(GUID)
The data associated with GUID is retrieved from one of the nodes responsible it.

• Pastry (developed at Microsoft Research
Cambridge/Rice) is an example of such an
i f t tinfrastructure.

Example DHTExample DHT
• Nodes are given a GUID

(Globally Unique ID)(y q)
• Data values are identified by a

“key” GUID
• Store (key, value) pairs(y) p
• Key computed as hash of value

– Hash-key(“Die Hard.mpg”) = 28
• Store data at node whose id is

numerically closest to key
• Each node receives at most K/N

keys
• Keys are >= 128 bits

– Hash-key (http://www.
research.microsoft. com/~antr) =
4ff367a14b374e3dd99f (hex)4ff367a14b374e3dd99f (hex)

Secure Hash FunctionSecure Hash Function
• Aka. Secure digest,
• Given data item M h=H(M)• Given data item M, h=H(M)
• Properties

1 Given M h is easy to compute1. Given M, h is easy to compute
2. Given h, M is hard to compute
3. Given M, it is hard to find M´ s.t H(M)=H(M’)3. Given M, it is hard to find M s.t H(M) H(M)

• Uniqueness: For two items M, M’ it is unlikely
that H(M)=H(M’)() ()

• Tamperproof: Contents of M cannot be modified
and produce same hash-keyp y

• E.g MD5, SHA-1

Exhaustive Routing

E h ti

Exhaustive Routing
d471f1Exhaustive

Routing Table
f d 65 1f

d462ba
d467c4

d471f1

for node 65a1fc
Node ID IP
65a1fc self(127.0.0.1)

d4213f

65a1fc self(127.0.0.1)
65a1ff 123.4.4.9
65a20f 47.122.99.7 d13da3
… …
d13da3 123.4.4.8
… …
d4213f 10 10 34 56

65a1fc
65a1ff

65a20fd4213f 10.10.34.56
… … 2 Million Nodes=2Million entries =2M*(128+32)/8

bytes= 40MB+data!!!!!!!!!
Impossible to collect and maintain

Circular routingCircular routing
0 FFFFF....F (2128-1)

•Each node knows the l left and l right neigbors
•Leaf set (size 2l):

D471F1

D467C4
D46A1CCircular Routing

•Leaf-set (size 2l):
•Route to node closest to target

D46A1Cg
Table for node 65A1FC

Node
ID

IP

D13DA3

Left l 47.122.99.7

Left l-1 123.4.4.9

…

L ft 1 132 32 32 40

65A1FC

D13DA3Left 1 132.32.32.40

self self(127.0.0.1)

Right1 123.4.4.8

… …

Right l 10.10.34.56

2 Million nodes, l = 4 => 2M/(2*4) = 125000 hops!!!

PastryPastry

• Pastry (developed at Microsoft Research Cambridge/Rice) is an
example of DHT

G i 2 l ti d ti b t t (DHT)Generic p2p location and routing substrate (DHT)

• Self-organizing overlay network (join, departures, locality repair)
• Consistent hashingConsistent hashing
• Lookup/insert object in < log2

b N routing steps (expected)
• O(log N) per-node state
• Network locality heuristics

“Scalable, fault resilient, self-organizing,
locality aware, secure” (according to authors)y ,

Pastry: Object distributionPastry: Object distribution
O2128 - 1

Consistent hashing
O2 1

objId/key
128 bit circular id space

nodeIds (uniform random)nodeIds (uniform random)

objIds/keys (uniform random)
d Id

Invariant: node with
numerically closest nodeId

nodeIds

maintains object

Pastry: Object
insertion/lookup
O2128 - 1

Msg with key X is
routed to live node

X with nodeId
closest to X

Problem:
l t ticomplete routing

table not feasible

Route(X)

Longest Common PrefixLongest Common Prefix
• Two numerically close IDs are also close nodes y

in the overlay network •D471F1
•D471F3

D47889•D47889
•D99888
•999999

• The longer the common prefix the closer
together (on logical ring)

• View address as hierarchy• View address as hierarchy
• Cluster nodes with numerically ID close
• The closer ⇒ more routing info ⇒ denser• The closer ⇒ more routing info ⇒ denser

routing table

Prefix RoutingPrefix Routing
Eg. Simple ID = 4 digit (range 0-3) string

Routing Table for A:

NB: asociated IP not shown
*= ”don’t care” = select any (preferably close) node with matching prefix

Pastry: RoutingPastry: Routing

d462b
d467c4

d471f1

d46a1c
d462ba

d4213f

Properties
• log2

b N steps
• O(log N) state

Route(d46a1c) d13da3

• O(log N) state
65a1fc

Pastry routing table for node 65A1Pastry routing table for node 65A1
NB: n = associated IP

EX. Route
•65A1
•6544

Common Prefix Length p=2
Distinguising digit i = 4
Next-hop = R[p,i] = IP of 654* //index includes 0

from:
to:

P t L f tPastry: Leaf sets

Each node maintains IP addresses of
the nodes with the L numerically
closest larger and smaller nodeIds,
respectively.
• routing efficiency/robustness
• fault detection (keep-alive)• fault detection (keep-alive)
• application-specific local coordination

Pastry: Routing procedurePastry: Routing procedure
If (destination is within range of our leaf set)

forward to numerically closest memberforward to numerically closest member
else

let p = length of shared prefix g
let i = value of l-th digit in D’s address
if (R[p,i] exists)

f d t R[i]forward to R[p,i]
else

forward to a known node thatforward to a known node that
(a) shares at least as long a prefix p
(b) is numerically closer than this node() y

Pastry: RoutingPastry: Routing

Tradeoff

• O(log N) routing table size
2b * l bN + 2l– 2b * log2

bN + 2l
• O(log N) message forwarding steps

– log2
b N

Pastry: Locality propertiesPastry: Locality properties
• Overlay network not related to geography or network distance (IP

hops, RTT,..)
• Risk very long/slow transmissions in overlay networkRisk very long/slow transmissions in overlay network
• Prefer to route via nodes in nearby in network distance

Proximity invariant:
Each routing table entry refers to a node “nearby”Each routing table entry refers to a node “nearby”
to the local node among
all nodes with the appropriate nodeId prefix.

Assumption: scalar proximity metricAssumption: scalar proximity metric
• e.g. ping/RTT delay, # IP hops
• traceroute, subnet masks
• a node can probe distance to any other node

(I l t DB i t ti t f IP dd)• (Incomplete DB on registration country of IP addresses)

• Maintain “Neighbor-set” of network distance nearby nodes

Pastry: Node additionPastry: Node addition
d471f1

X=d46a1c
d462ba

d4213f

Z=d467c4

New node: X=d46a1c d4213fNew node: X d46a1c

Route(d46a1c) d13da3

A = 65a1fcImportant Observation:
•common prefix of X and intermediate node i
increases by one at each hop
•Use i’s routing column i as initial choice for X row i

Pastry: Node addition
N d X t t “ b ” d A

Pastry: Node addition
• New node X contacts “nearby” node A
• A routes “join” message to X, which arrives to Z,

closest to Xclosest to X
• X obtains leaf set from Z, i’th row for routing table

from i’th node from A to Z
• X informs any nodes that need to be aware of its

arrival
– X also improves its table locality by requesting

neighborhood sets from all nodes X knows
– In practice: optimistic approachIn practice: optimistic approach

Node departure (failure)Node departure (failure)

• Leaf set repair (eager – all the time):
– Send heart-beat messages to (left) leaf-setSend heart beat messages to (left) leaf set

members
– request set from furthest live node in set

• Routing table repair (lazy – upon failure):
– get table from peers in the same row, if not found –

f hi hfrom higher rows
• Neighborhood set repair (eager)

Pastry: Average # of hopsPastry: Average # of hops
4.5

3

3.5

4

of
 h

op
s

2

2.5

e
nu

m
be

r

0.5

1

1.5

A
ve

ra
ge

Pastry
Log(N)

0
1000 10000 100000

Number of nodes

|L|=16, 100k random queries

Number of nodes

ENDEND

