
ReplicationReplication

Brian Nielsen
bnielsen@cs.aau.dkbnielsen@cs.aau.dk

Service ImprovementsService Improvements
• Replication is a key technology to enhance

iservice
Client Replica

3
Replica

Replicated
service

Client

Replica
1

Replica
2

• Performance enhancement
• Fault toleranceFault tolerance
• Availability

Service ImprovementsService Improvements
• Performance enhancement

– Load-balance
– Proximity-based response
– Read queries can be executed in parallel
– Example

h i DNS / fil (NFS/AFS)• caches in DNS servers / file servers (NFS/AFS)
• replicated web servers

– Load pattern may determine if performanceLoad pattern may determine if performance
improves

• E.g R/W ratio
• Beware updates may be costly (consistency)

Service ImprovementsService Improvements
• Increase availability

– Server failures, Network partitions, p
– Availability (Uptime): 1 – pn:

– The availability of the service that have n replicated
servers each of which would crash in a probability of pservers each of which would crash in a probability of p

N (p=0.05) Availability Down time

1 95% 18 days / Y

F lt t l

2 99.75% 1 day / Y

3 99.99 1h / Y

4 99.999 3 min / Y

• Fault tolerance
– Guarantee strictly correct behavior despite a certain

number and type of faultsnumber and type of faults
– Strict data consistency between all replicated servers

Basic Architectural ModelBasic Architectural Model
• Requirements

– Transparency: clients need not be aware of multiple p y p
replicas.

– Consistency: data consistency among replicated files.

Client Replica
Manger

Front
E d

Ideally: single copy behavior

Manger

Replica
Manger

End

Client Replica
Manger

Front
End

ReplicationReplication

• Difference between replication and caching• Difference between replication and caching
– A replica is associated with a server, whereas a cache with client.
– A replicate focuses on availability, while a cache on locality

A replicate is more persistent than a cache is– A replicate is more persistent than a cache is
– A cache is contingent upon a replica

• Advantages
I d il bilit / li bilit– Increased availability/reliability

– Performance enhancement (response time and network traffic)
– Scalability and autonomous operation

• Requirements
– Transparency: no need to be aware of multiple replicas.
– Consistency: data consistency among replicated files.

OperationsOperations
• Client performs operations on a

replicated object obj.m(…) 10p j j ()
– Executed atomically

• “state machine objects”: state
depends only on initial state and 20

a.add(10)

depends only on initial state and
sequence of operations
(deterministic function)
– Precludes that operations depend on

20

a.add(5)a.interest(10%)

– Precludes that operations depend on
external inputs such as system clock
and sensor values

• Updates vs. queries (read-only)

22 25

Updates vs. queries (read only)

• Single operations vs. sequence
(t ti (15 5))(transactions (15.5))

Basic Architectural ModelBasic Architectural Model
•Requirements

–Transparency: no need to be aware of multiple replicas

General Phases in an Replication alg :

Transparency: no need to be aware of multiple replicas.
–Consistency: data consistency among replicated files.

General Phases in an Replication alg.:
1. Request: client sends request to a

manager (via front-end).
2 Coordination: decide on deliveryClient Replica

Manger
Front
E d 2. Coordination: decide on delivery

order of the request.
3. Execution: process a client request

but not permanently commit it.

Manger

Replica
Manger

End

p y
4. Agreement: agree on outcome and

if the execution will be committed
5. Response: respond to the client

Client Replica
Manger

Front
End

(via front end)

Group CommunicationGroup Communication

• Group membership service
– Create and destroy a group.

Add or withdraw a replica manager– Add or withdraw a replica manager
to/from a group.

– Detect a failure.
N tif b f

Replica
Manger

– Notify members of group
membership changes.

– Provide clients with a group
dd

Client
Replica
Manger

address.
• Message delivery

– Absolute ordering

Replica
Manger

Replica
– Consistent ordering

Replica
Manger

group

Fault ToleranceFault Tolerance

Fault-toleranceFault tolerance

• Provide uninterrupted correct serviceProvide uninterrupted correct service
even in the presence of server failures

• A service based on replication is correct if• A service based on replication is correct if
it keeps responding despite failures,

d if li t t t ll th diff• and if clients cannot tell the difference
between the service they obtain form an
i l t ti ith li t d d t dimplementation with replicated data and
one provided by a single correct replica

(C i t)manager (Consistency).

An example of inconsistency
b li i

• Each of computer A and B maintains replicas of two
bank accounts x and y

between two replications
bank accounts x and y

• Client accesses any one of the two computers,
updates synchronized between the two computersy

X Y X YSynchronize

Server A

X Y

Server B

X Yy

Client 2 Client 1

An example of inconsistency
b li ibetween two replications

Initially x=y=$0

Client1:

tB l (1)

Client2:
Initially x y $0

setBalanceB(x,1)
Server B failed…

setBalanceA(y,2)

()getBalanceA(y)=2

getBalanceA(x)=0time
• Inconsistency happens since computer B fails

before propagating new value to computer A

Linearizability (Lamport)
• The interleaved sequence of operations

Linearizability (Lamport)

– Assume client i performs operations: oio,oi1,oi2,…
– Then a sequence of operations executed on one replica

that issued by two clients may be: o20 o21 o10 o22 o11that issued by two clients may be: o20,o21,o10,o22,o11,…

• Linearizability criteria
The interleaved sequence of operations meets the– The interleaved sequence of operations meets the
specification of a (single) correct copy of the objects

– The order of operations in the interleaving is consistent
with the real times at which the operations occurred in
the actual execution

LinearizabilityLinearizability
Ti < Tj

• Rule:
– mi must be delivered before mj if Ti < Tj

Ti

i j

• Implementation:
– A clock synchronized among machines
– A sliding time window used to commit

mi Tj

i

g
message delivery whose timestamp is in
this window.mi

mj

• Drawback
– Too strict constraint
– No absolute synchronized clock

mj

y
– No guarantee to catch all tardy messages

Physical time

• Example of “a single correct copy of the
Linearizability … continued

• Example of a single correct copy of the
objects”

A correct bank account– A correct bank account
• For auditing purposes, if one account update occurred

after another, then the first update should be observed
if th d h b b dif the second has been observed

• Linearizability is not for transactions
C l th i t l i f i di id l– Concern only the interleaving of individual
operations

• The most strict consistency between replicas• The most strict consistency between replicas
– Linearizability is hard to achieve

Sequential consistency
(L)

• Sequential consistency criteria
(Lamport)

– The interleaved sequence of operations meets
the specification of a (single) correct copy of the
objects

– The order of operations in the interleaving is
i i h h d i hi h hconsistent with the program order in which each

individual client executed them
Client 1: o o• Client 1: o10,o11,…

• Client 2: o20,o21,o22,…
• Consistent order o20 o21 o10 o22 o11Consistent order o20,o21,o10,o22,o11,…

An example of sequential
iconsistency

Client1: Client2:
Initially x=y=$0 Real

Time Logical
Client1:

setBalanceB(x,1)

Client2:

3

Order sequence

getBalanceA(y)=0

getBalance (x)=0

1
2

setBalanceA(y,2)

getBalanceA(x)=0 2
4

• An interleaving operations at server A:
getBalanceA(y)=0;getBalanceA(x)=0;setBalanceB(x,1); setBalanceA(y,2)

D N t ti f li i bilit– Does Not satisfy linearizability
– Satisfy sequential consistency

Sequential ConsistencySequential Consistency
• Rule:

– Messages received in the same
order (regardless of their
timestamp).Ti

Ti < Tj

• Implementation:
– A message sent to a sequencer,

assigned a sequence number, and
f

mj Tj

Ti

finally multicast to receivers
– A message retrieved in

incremental order at a receivermi

mj

• Drawback:
– Still strong ordering requirement
– A centralized algorithm

mi

Two-Phase Commit ProtocolTwo Phase Commit Protocol

INIT

Worker 2
INIT

Commit

Coordinator

INIT

Worker 1

READY

Vote-request
Vote-commit

Vote-request
WAIT

Commit
Vote-request

READY

Vote-request
Vote-commit

Vote-request
READY

Global-commit
Ack

Global-abort
Ack

Vote-abort

ABORT COMMIT

Vote-abort
Global-abort

Vote-commit
Global-commit

READY

Global-commit
Ack

Global-abort
Ack

Vote-abort

ABORT COMMIT
ABORT

ABORT COMMIT

Another possible cases:
The coordinator didn’t receive all vote-commits. → Time out and send a global-abort.The coordinator didn t receive all vote commits. Time out and send a global abort.
A worker didn’t receive a vote-request. → All workers eventually receive a global-abort.
A worker didn’t receive a global-commit. → Time out and check the other work’s status.

Multi-copy Update ProblemMulti copy Update Problem

• Read-only replication
– Allow the replication of only immutable files.

• Primary backup replication
– Designate one copy as the primary copy and all the

others as secondary copies.
• Active backup replication

– Access any or all of replicas
• Read-any-write-all protocol
• Available-copies protocolp p
• Quorum-based consensus

Primary-Backup (Passive)
R li iReplication

1. Request: The front end sends a
request to the primary replica

Client Replica
Manger

Replica

Front
End

Primary
Backup

request to the primary replica.
2. Coordination:. The primary takes

the request atomically.
3 Execution: The primary executes

Client

Replica
Manger

Replica
Manger

Front
End

3. Execution: The primary executes
and stores the results.

4. Agreement: The primary sends the
updates to all the backups and

Manger
Backup receives an ack from them.

5. Response: reply to the front end.

Advantage: an easy implementation linearizable coping with n 1 crashesAdvantage: an easy implementation, linearizable, coping with n-1 crashes.
Disadvantage: large overhead/delay when primary
Allowing reading from backups => sequential consistency
Handover: 1) detect falure 2) agree on performed operations 3) andHandover: 1) detect falure, 2) agree on performed operations, 3) and
elect unique new primary 4) inform clients to switch!

Active ReplicationActive Replication

R t Th f t d RTO1. Request: The front end RTO-
multicasts to all replicas.

2. Coordination:. All replica take the
t i th ti l d

Client Replica
Manger

Front
End

request in the sequential order.
3. Execution: Every replica executes

the request.Client

Replica
Manger

Replica
Front
End

4. Agreement: No agreement needed.
5. Response: Each replies to the front.

Replica
Manger

End

Advantage:Advantage:
•achieve sequential consistency,
•cope with (n/2 – 1) byzantine failures using majority + message signing
•Hot-standby
Disadvantage: no more linearizable, RMs are state machines

Read-Any-Write-All ProtocolRead Any Write All Protocol

• Read
– Perform read at any one of the Read from any one of them

replicas
• Write

– Perform on all of the replicas

Client Replica
Manger

Front
End

y

W it t ll f th • Sequential consistency
• Cannot cope with even a single

crash (by definition)

Replica
Manger

Replica

Write to all of them

Client Replica
Front
End Replica

Manger
Replica
Manger

End

Available-Copies ProtocolAvailable Copies Protocol
• ReadRead

– Perform on any one of the
replicas

• WriteRead from any one of them Write
– Perform on all available

replicas
• Recovering replica

Client Replica
Manger

Front
End

y

Write to all available replicas g p
– Bring itself up to date by

coping from other servers
before accepting any user

t

Replica
Manger

Replica

p

X
Client Replica

Front
End request.

• Better availability
• Cannot cope with network

partition (Inconsistency in two

Replica
Manger
Replica
Manger

End

partition. (Inconsistency in two
sub-divided network groups)

Quorum-Based ProtocolsQuorum Based Protocols
Quorum Constriants
1. Intersecting R/W #replicas in read quorum + #replicas in write quorum > n
2 W it j it # li i it > /2

Read quorum

2. Write majority: #replicas in write quorum > n/2
• Read

– Retrieve the read quorum

Client

Replica
MangerFront

End

Replica
Manger

Replica
Manger

q
– Select the one with the latest

version.
– Perform a read on it

WriteReplica
Manger

Client Front
End

Replica
Manger

Replica
Manger

• Write
– Retrieve the write quorum.
– Find the latest version and

increment it
Replica
Manger

Replica
Manger

Write quorum

increment it.
– Perform a write on the entire

write quorum.
• If a sufficient number of replicas p

from read/write quorum fails, the
operation must be aborted.

Read-any-write-all: r = 1, w = n

ISIS SystemISIS System

• Process group: see page 4 of this ppt file
• Group view

1 Joins the group multicastp1

p2

Joins the group

multicast

multicast

p3

p4

crashed

Partially multicast messages
must be discarded

multicastrejoins

• Reliable multicast
Causal multicast: see pages 5 & 6 of MPI ppt file

p4
Multicast to
available processes

– Causal multicast: see pages 5 & 6 of MPI ppt file
– Atomic broadcast: see page 7 of this ppt file

High AvailabilityHigh Availability

High availability vs. fault
l

• Fault tolerance
tolerance

– Strict (sequential) consistency
• all replicas reach agreement before passing control

to clientto client

• High availability
Obtain access to a service for as much time as possible– Obtain access to a service for as much time as possible

– Reasonable Response time
R l d i t (l d t)– Relaxed consistency (lazy update)

• Reach consistency until next access
• Reach agreement after passing control to client• Reach agreement after passing control to client

– Eg: Gossip, Bayou, Coda

High Availability ServicesHigh Availability Services

• Obtain access to a service for as muchObtain access to a service for as much
time as possible

• Provide reasonable response times• Provide reasonable response times
• Possibly relax the consistency

i t t lirequirements to replicas

Operations in a gossip serviceOperations in a gossip service
Service

RM RM

RM

gossip
RM RM

Query, prev Val, new Update, prev Update id

Q V l

FE

U d t

FE
Vector

timestamps

Query Val Update
Clients

Phases in Gossip
• Request

– The front end sends the request to a replica manager
• Query: client may be blocked

Phases in Gossip

• Update: unblocked
• Coordination

– Suspend the request until it can be apply
M i i th t t f th li• May receive gossip messages that sent from other replica managers

• Execution
– The replica manager executes the request

A t• Agreement
– exchange gossip messages which contain the most recent updates

applied on the replica
• Exchange occasionally• Exchange occasionally
• Ask the particular replica manager to send when some replica manager

finds it has missed one
• Response

– Query: Reply after coordination
– Update: Replica manager replies immediately

(Recall) Vector Clocks(Recall) Vector Clocks
• Lamport: e f implies C(e) < C(f)
• Vector clocks: e f iff C(e) < C(f)
• vector timestamps: Each node maintainsvector timestamps: Each node maintains

an array of N counters
• V [i] is the local clock for process p• Vi[i] is the local clock for process pi

• In general, Vi[j] is the latest info the node
h h t ‘ l l l k ihas on what pj‘s local clock is.

Implementation Rules

• [VC1] Initially Vi[j]=0 for i j = 1 N[VC1] Initially Vi[j] 0 for i,j 1…N
• [VC2] Before Pi timestamps an event:

V [i] := V [i] +1Vi[i] := Vi [i] +1
• [VC3] Pi sends m: piggy-back timestamp t=Vi:

’ < t>m’=<m, t>
• [VC4](Merge) Pj receives m’=<m, t>

Vi[i] :=max(Vi[i] , ti[i])

Comparison of Vector ClocksComparison of Vector Clocks

Comparing vector clocksComparing vector clocks
• V = V´ iff V[j] = V´[j] for all j=1,2,…,N.

V V´ iff V[j] V´[j] f ll j 1 2 N• V ≤ V´ iff V[j] ≤ V´[j] for all j=1,2,…,N.
• V < V´ iff V ≤ V´ and V ≠ V´.

Vector Timestamps and
Causal ViolationsCausal Violations

• C receives message (2,1,0) then (0,1,0)
• The later message causally precedes the

first message if we define how to compare
timestamps right

A

B

CC

(Recall) Vector Clocks(Recall) Vector Clocks
b

(2,0,0)

a

(1,0,0)

m
p1 ba

1m

(2,1,0) (2,2,0)
p2

Physical
timec d m2

(2,2,2)(0,0,1)

2

p

time

fe
p3

• Vector clocks: e f iff C(e) < C(f)
• Vi[i] is the local clock for process pi

• In general V [j] is the latest info the node• In general, Vi[j] is the latest info the node
has on what pj‘s local clock is.

The front end’s version timestamp
• Client Communication

– Access the gossip service

The front end s version timestamp

Access the gossip service
• Update any set of RMs
• Read from any RM

– Communicate with other clients directlyCommunicate with other clients directly
• Causal Updates

– A vector timestamp at each front end contains an entry
f h lifor each replica manager

– Attached to every message sent to the gossip service or
other front ends
Wh f t d i– When front end receives a message

• Merge the local vector timestamp with the timestamp in the
message

F t d V t ti t• Front end Vector timestamp:
– Reflect the version of the latest data values accessed by

the front end

Basic Gossip OperationBasic Gossip Operation

Ti are vector time-stamps
Perform operations in causal order

RMk

If (Tj > Tk)
update RMk

else
discard the gossip message

Ti are vector time-stamps

RMj
(Tj)

RMi
(Ti)

Gossip
discard the gossip message

()

FE
(Tf) FE

Query, Tf Value, Ti Update, Tf Update id

If (Tf < Ti) If (Tf > Tj)(Tf)

Client Client

Query Value Update

If (Tf < Ti)
return value

else {
waits for RMi to be updated
or

If (Tf > Tj)
update RMj

else {
update Client
oror

query RMj/RMk}
or
ignore and update RMj}

A gossip replica manager, showing its
main state componentsp

Replica
timestamp

Replica log
Other replica managers

Gossip
messages

timestamp

Replica manager

Replica timestamp Value timestamp
Stable

Timestamp table

Update log Value

Executed operation table

Stable

updates

Updates
OperationID Update Prev

FE
OperationID Update Prev

FE

Gossip Manager StateGossip Manager State
Replica Replica log

Other replica managers

Gossip
messages

p
timestamp

Replica log

Replica manager

Replica timestamp Value timestamp

Timestamp table

Value timestampReplica timestamp

Timestamp table

Update log Value

Executed operation table

Stable

updates
Value

Executed operation table

Update log

p

Updates

p

p

FE
OperationID Update Prev

FE

V l
Replica Manager State

• Value
• Value timestamp

– Represent the updates that are reflected in the value

p g

Represent the updates that are reflected in the value
– E.g., (2,3,5): the replica has received 2 updates from 1st FE, 3

updates from 2nd FE, and 5 updates from 3rd FE

• Update log• Update log
– Record all received updates; stable update; gossip propagated

• Replica timestampp p
– Represents the updates that have been accepted by the replica

manager

• Executed operation tableExecuted operation table
– Filter duplicated updates that could be received from front end and

other replica managers

• Timestamp table• Timestamp table
– Contain a vector timestamp for each other replica manager to

identify what updates have been applied at these replica managers

Queries (Reads)
• When the query q reach the RM

If < l TS

Queries (Reads)

– If q.prev <= valueTS
• Return immediately
• The timestamp in the returned message is valueTSThe timestamp in the returned message is valueTS

– Otherwise
• Pend the query in a hold-back queue until the q y q

condition is satisfied
• E.g. valueTS = (2,5,5), q.prev=(2,4,6): one update

from replica manager 2 is missingfrom replica manager 2 is missing

• When query return
– frontEndTS:= merge(frontEndTS valueTS)frontEndTS: merge(frontEndTS, valueTS)

Causal Update 1
• A front end sends the update as

– <u.op(par-list), u.prev, u.id>

Causal Update 1
p(p), p ,

• u.prev: the timestamp of the front end

• When replica manager i receives the update
Di d– Discard

• If the update has been in the executed operation table or is in the
log

– Otherwise, save it in the log
• Replica timestamp[i]++
• logRecord= <i, ts, u.op, u.prev, u.id>

– Where ts =u.prev, ts[i]=replica timestamp[i]

– Pass ts back to the front end
• frontEndTS=merge(frontEndTS, ts)

Causal Update 2
• Check if the update becomes stable

Causal Update 2

– u.prev <= valueTS
– Example: a stable update at RM 0

• ts=(3,3,4), u.prev=(2,3,4), valueTS=(2,4,6)

• Apply the stable update
– Value = apply(value, r.u.op)
– valueTS = merge(valueTS, r.ts) (3,4,6)

t d t d { id}– executed = executed ∪{r.u.id}

Sending Gossip
• Exchange gossip message

Estimate the missed messages of one replica

Sending Gossip

– Estimate the missed messages of one replica
manager by its timestamp table

– Exchange gossip messages periodically orExchange gossip messages periodically or
when some other replica manager ask

• The format or a gossip messageThe format or a gossip message
– <m.log,m.ts>
– m.log: one or more updates in the source g p

replica manager’s log
– m.ts: the replica timestamp of the source replica

manager

Receiving Gossip 1
1. Check the record r in m.log

Discard if r ts <= replicaTS

Receiving Gossip 1

– Discard if r.ts <= replicaTS
• The record r has been already in the local log or has been

applied to the value

– Otherwise, insert r in the local log
• replicaTS = merge (replicaTS, m.ts)

2 Find out the stable updates2. Find out the stable updates
– Sort the updates log to find out stable ones, and apply

to the value according to the “≤” (thus happens-before) g (pp)
order

3. Update the timestamp table
– If the gossip message is from replica manager j, then

merge(tableTS[j],m.ts)

Receiving Gossip 2
• Discard useless (have been received

h) d t i th l

Receiving Gossip 2

everywhere) update r in the log
– if tableTS[i][c] >= r.ts[c], then discard r

i th li th t t d• c is the replica manager that created r
• For all i

rm0 {2 4 6}
rm1 {2,3,6}
rm0 {2,4,6}

rm2 {2,5,6} C=1{ , , }
r.ts={1,3,5}

logRecord {i,ts,u.op,u.prev,u.id}

Gossiping
• How often to exchange gossip messages?

Mi t h d

Gossiping

– Minutes, hours or days
• Depend on the requirement of application

• How to choose partners to exchange?• How to choose partners to exchange?
– Random

Deterministic– Deterministic
• Utilize a simple function of the replica manager’s

state to make the choice of partner
– Topological

• Mesh, circle, tree
G hi l– Geographical

Discussion of Gossip
architecture

• the gossip architecture is designed to provide a highly available
iservice

• clients with access to a single RM can work when other RMs are
inaccessible

but it is not suitable for data such as bank accounts– but it is not suitable for data such as bank accounts
– it is inappropriate for updating replicas in real time (e.g. a conference)

• scalability
as the number of RMs grow so does the number of gossip messages– as the number of RMs grow, so does the number of gossip messages

– for R RMs, the number of messages per request (2 for the request and
the rest for gossip) = 2 + (R-1)/G

• G is the number of updates per gossip message
• increase G and improve number of gossip messages, but make latency

worse
• for applications where queries are more frequent than updates, use some

read-only replicas, which are updated only by gossip messages

Optimistic approachesOptimistic approaches
• Provides a high availability by relaxing the g y y g

consistency guarantees
• When conflicts are rare
• Detect conflicts

– Relies domain specific conflict detection and
resolutionresolution

– Inform user
• Egg

– Bayou data replication service
– CODA file system

C S– CVS

ENDEND

Data replication in BayouData replication in Bayou
• Provides a high availability by relaxing the consistency g y y g y

guarantees
• Relies domain specific conflict detection and resolution
• Bayou Guarantees• Bayou Guarantees

– Eventually, every replica manager receives the same set of
updates and eventually applies those updates in such a way that
the replica manager’s databases are identical.the replica manager s databases are identical.

• Approach:
– Any user can make updates, and all the updates are applied and

recorded at whatever RM they reachrecorded at whatever RM they reach.
– When updates received at any two RM’s are merged, the RM’s

detect and resolve conflicts, using any domain specific
dependency check and merge procedure.p y g p

Committed and tentative
updates in Bayou

C itt d T t ti

t t t

Committed Tentative

t tc0 c1 c2 cN t0 t1 tit2 ti+1

Tentative update ti becomes the next committed update
fand is inserted after the last committed update cN.

Bayou SystemBayou System

Primary T0 Tn+1TnT3T2T1CNC2C1C0

Committed Tentative

• To make a tentative update
committed:RM RM

S fi – Perform a dependency check
• Check conflicts
• Check priority

– Merge Procedure
Cancel tentative updates

FE FE

Sent first
Sent later

FEFE
• Cancel tentative updates
• Change tentative updates

Client Client

TnT3

Client

T1

Client

T0

Secretary and other employees:
book 3pm

Executive: book 3pm

MotivationMotivation

The Coda Filesystem
• Limits of AFS

The Coda Filesystem

– Read-only replica
• The objective of Codaj

– Constant data availability
• Coda: extend AFS on• Coda: extend AFS on

– Read-write replica
• Optimistic strategy to resolve conflicts• Optimistic strategy to resolve conflicts

– Disconnected operation

Distribution of processes in
the Andrew File System

Workstations Servers

VenusU VenusUser
program

Vice
UNIX kernel

Venus
Network

UNIX kernel

User
program

Vice

UNIX kernel

Venus
UNIX kernel

User
program
UNIX kernel

The Coda architecture
• Venus/Vice

– Vice: replica manager

The Coda architecture

– Vice: replica manager
– Venus: hybrid of front end and replica manager

V l t (VSG)• Volume storage group (VSG)
– The set of servers holding replicas of a file

lvolume

• Available volume storage group (AVSG)
– Vice know AVSG of each file

• Access a fileAccess a file
– The file is serviced by any server in AVSG

Coda Operation
• On close a file

– Copies of modified files are broadcast in parallel to all of
th i th AVSG

Coda Operation

the servers in the AVSG
– Allow file modification when the network is partitioned
– When network partition is repaired, new updates are

reapplied to the file copies in other partition
• Meanwhile, file conflict is detected

• Disconnected operationDisconnected operation
– When the file’s AVSG becomes empty, and the file is in

the cache
– Updates in the disconnected operation apply on the– Updates in the disconnected operation apply on the

server later on when AVSG becomes nonempty
• if there are conflicts, resolve manually

Replication StrategyReplication Strategy
• Coda version vector (CVV)

Attached to each version of a file– Attached to each version of a file
– Each element of the CVV is an estimate of the number

of modifications performed on the version of the file that p
is held at the corresponding server

• Example: CVV = (2,2,1)()
– The replica on server1 has received 2 updates
– The replica on server2 has received 2 updates
– The replica one server3 has received 1 updates

Coda File SystemCoda File System

1. Normal case:
• Read-any, write-all protocol
• Whenever a client writes back its file, it increments the file version at each server.

2. Network disconnection:
• A client writes back its file to only available servers.
• Version conflicts are detected (not resolved) automatically when network is reconnected

3. Client disconnection:
• A client caches as many files as possible (in hoard walking).

W W W
Version[2,2,3] Version[3,3,2] Version[3,3,2]

• A client works in local if disconnected (in emulation mode).
• A client writes back updated files to servers (in reintegration mode).

emulation

Server 3 Server 2 Server 1

Version[1,1,1] Version[1,1,1] Version[1,1,1]
Version[2,2,2] Version[2,2,2] Version[2,2,2]

[, ,]

hoard

reintegration

emulation

Server 3 reintegration

Construction of CVV
• When a modified file is closed

– Multicast the file with current CVV to AVSG

Construction of CVV

– Multicast the file with current CVV to AVSG
– Each server in AVSG increase the corresponding

element of CVV, and return it to the client
– The client merge all returned CVV as the new CVV, and

distribute it to AVSG

RM

{2,2,1}

{2,2,1}

{3,2,1}

client RM
{2,2,1}

{2,2,1}
{3,3,1}

RM{3,3,2}{3,3,2}

Example
• File F is replicated at 3 servers: s1,s2,s3

VSG={s1 s2 s3}

Example

– VSG={s1,s2,s3}
– F is modified at the same time by c1 and c2
– Because network partition, AVSG of c1 is {s1,s2}, AVSG

of c2 is {s3}of c2 is {s3}
• Initially

– The CVVs for F at all 3 servers are [1,1,1]
• C1 updates the file and close

– the CVVs at s1 and s2 become [2,2,1]
• There is an update applied on s1 and s2 sinceThere is an update applied on s1 and s2 since

beginning
• C2 updates the file twice

– The CVV at s3 become [1 1 3]The CVV at s3 become [1,1,3]
• There are two updates applied on s3 since beginning

Example contd.
• When the network failure is repaired

– C2 modify AVSG to {s1,s2,s3} and requests the CVVs

Example contd.
y { , , } q

for F from all members of the new AVSG
– Let v1 be CVV of a file at server1, and v2 the CVV of the

fil t 2file at server2
– v1>=v2, or v1<=v2 : [2,2,2] vs [2,2,1] no conflict
– Neither v1>=v2, nor v2>=v1: conflicte e , o co c
– C2 find [2,2,1]<>[1,1,3], that means conflict happens

• Conflict means concurrent updates when network
partitioned

– C2 manually resolve the conflict

Venus - statesVenus states
Hoarding: Filling up cache in
advance with appropriate filesadvance with appropriate files
•LRU
•users specified prioritized list Transfer updates to AVSG
•“Bracketing” tool •Conflict: server copy has

priority (store conflicting
files in separate directory

Behavior of server
emulated on client

y
for manual resolution)

ENDEND

Distributed Systems
Lecture 11Lecture 11
Replication

Josva Kleist
Unit for Distributed Systems andUnit for Distributed Systems and

Semantics
Aalborg UniversityAalborg University

ReplicationReplication

• Fault toleranceFault tolerance
• Increased availability

I d f• Increased performance

RequirementsRequirements

• Replication transparencyReplication transparency
• Consistency (possibly in a modified form)

AssumptionsAssumptions

• Asynchronous system in which processesAsynchronous system in which processes
may fail only by crashing.

• No network partitions• No network partitions.
• Replica managers apply operations

blrecoverably.
• Sometimes we require a replica manager

to be a state machine.

A basic architectural model
for the management offor the management of

replicated dataRequests and

FE

replies

C RM RM

ServiceClients Front ends

ReplicaC
managersRMFE

General replication modelGeneral replication model

• CoordinationCoordination
• Execution

A t• Agreement
• Response

CoordinationCoordination

• FIFO: If FE issues request r then r´ thenFIFO: If FE issues request r then r , then
any correct RM that handles r´ handles r
before itbefore it.

• Causal: If the issue of request r happens
before req r´ then any correct RM thatbefore req r , then any correct RM that
handles r´ handles r before it.
T t l If t RM h dl b f ´• Total: If a correct RM handles r before r´,
then any correct RM that handles r´
h dl b f ithandles r before it.

Services provided for process
groups

Group
ddaddress

expansion

L

Multicast

Group
send

Group membership

Leave

Multicast
communication Fail Group membership

management

Join

Process group

ViewsViews

• We need a consistent perception of who isWe need a consistent perception of who is
a member of a group.

• A view is a list of who is member of a• A view is a list of who is member of a
group.
Th b hi i d li• The group membership service delivers
views to the members of a group.

Requirements for view
delivery

• Ordering: If a process P delivers view(g)Ordering: If a process P delivers view(g)
and then view´ (g), then no Q, deliver
view´ (g) before view(g)view (g) before view(g).

• Integrity: If a process P delivers view(g),
then P2 view(g)then P2 view(g).

• Non-triviality: If a process Q joins a group
d i b i d fi it l h bland is or becomes indefinitely reachable

from process P¹Q, then eventually Q is
l i th i th t P d lialways in the view that P delivers.

Similarly, if the group partitions and
i titi d th t ll th

View synchronous group
communication

• Agreement: Correct processes deliver theAgreement: Correct processes deliver the
same set of messages in any given view.

• Integrity: If process P delivers message m• Integrity: If process P delivers message m,
then P will not deliver m again.
Furthermore if P2 group(m) and m wasFurthermore, if P2 group(m) and m was
supplied to a multicast operation by
sender(m)sender(m).

• Validity: Correct processes always deliver
th th t th d If ththe messages that they send. If the
system fails to deliver a message to any

Q th it tifi th i i

View-synchronous group
communication

p
p crashes

p
p crashes

a (allowed). b (allowed).

p

q

r

q

r

view (q, r)view (p, q, r) view (q, r)view (p, q, r)

p

q

p

q

p crashes
c (disallowed). d (disallowed).

p crashes

q

r

view (p q r)

q

r

view (q, r)view (p q r)view (q, r)view (p, q, r) (q,)view (p, q, r)view (q, r)

Fault-toleranceFault tolerance

• Provide a service that is correct event inProvide a service that is correct event in
the presence of server failures.

• A service based on replication is correct if• A service based on replication is correct if
it keeps responding despite failures,

d if li t t t ll th diff• and if clients cannot tell the difference
between the service they obtain form an
i l t ti ith li t d d t dimplementation with replicated data and
one provided by a single correct replica

(li ti t)manager (replication transparency).

Consistency problemsConsistency problems

Linear consistencyLinear consistency

• The interleaved sequence of operationsThe interleaved sequence of operations
meets the specification of a (single)
correct copy of the objectscorrect copy of the objects.

• The order of the operations in the
interleaving is consistent with the real timeinterleaving is consistent with the real time
at which the operations occurred in the
actual executionactual execution.

Sequential consistencySequential consistency

• The interleaved sequence of operationsThe interleaved sequence of operations
meets the specification of a (single)
correct copy of the objectscorrect copy of the objects.

• The order of the operations in the
interleaving is consistent with the programinterleaving is consistent with the program
order in which each individual client
executed themexecuted them.

Sequential consistencySequential consistency

The passive (primary-backup)
model for fault tolerance

Primary

FEC RM

Primary

RM

Backup

FEC

Backup
RM

Backup

Passive replicationPassive replication

• Request: FE issues the requestRequest: FE issues the request,
containing a unique ID, to the primary RM.

• Coordination: The primary RM takes each• Coordination: The primary RM takes each
request atomically, in the order in which it
receives it It checks the unique identifierreceives it. It checks the unique identifier
to catch duplicate requests, and if so
simply re sends the responsesimply re-sends the response.

• Execution: The primary RM executes the
t d t threquest and stores the response

• Agreement: If the request is an update

Active replicationActive replication

RM

FE CFEC RM

RM

Active replicationActive replication

• Request: The FE issues the requestRequest: The FE issues the request,
containing a unique ID, to the group of
RM’s using a totally ordered reliableRM s, using a totally ordered, reliable
multicast primitive. The FE is assumed to
fail by crashing at worst It does not issuefail by crashing at worst. It does not issue
the next req. until it has received a
responseresponse.

• Coordination: The group communication
system delivers the request to everysystem delivers the request to every
correct RM in the same total order.
E ti E h RM t th t

High availability servicesHigh availability services

• Obtain access to a service for as muchObtain access to a service for as much
time as possible.

• Provide reasonable response times• Provide reasonable response times.
• Possibly relax the consistency

i t t lirequirements to replicas.

Case study: The gossip
architecure

• Provide high availablity by replicating dataProvide high availablity by replicating data
close to users.

• Provide clients with a consistent service• Provide clients with a consistent service
over time.
All f l d i t b t• Allow for relaxed consistency between
replicas:
– Causal,
– forced (total and causal),
– immediate (consistent to any other update at

all RM’s).

Query and update operations
in a gossip serviceService

RM RM

RM

gossip
RM RM

Query, prev Val, new Update, prev Update id

Q V l

FE

U d t

FE
Vector

timestamps

Query Val Update
Clients

Query and update operations in a gossip
iservice

Service

RM

gossip
RM RM

Query prev Val new Update prev Update id

gossip

FE

Query, prev Val, new

FE

Update, prev Update id

Query Val Update
Clients

Front ends propagate their timestamps
whenever clients communicate directlyy

Service

RM RM

RM

gossipRM RM

FE FEVector
timestamps

Clients

A gossip replica manager, showing its
main state componentsp

Replica
timestamp

Replica log
Other replica managers

Gossip
messages

timestamp

Replica manager

Replica timestamp Value timestamp
Stable

Timestamp table

Update log Value

Executed operation table

Stable

updates

Updates
OperationID Update Prev

FE
OperationID Update Prev

FE

Gossip processing of queries
and updates

• Request: A FE sends a request to a singeRequest: A FE sends a request to a singe
RM. A FE can communicate with different
RM’sRM s.

• Answer: If the req is an update then the
RM replies as soon as it has received theRM replies as soon as it has received the
update.
C di ti Th RM th t i• Coordination: The RM that receives a
request does not process it until it can

l th t di t thapply the request according to the
required ordering constraints. This may
i l i i d t f th RM’

GossipGossip

• Execution: The RM executes the requestExecution: The RM executes the request.
• Answer: If the req is a query then the RM

replies at this pointreplies at this point.
• Agreement: The RM update one another

b h i i hi hby exchanging gossip messages, which
contain the most recent messages they
h i dhave received.

Main components of a gossip
replica manager

Gossip

Replica
timestamp

Replica log
Other replica managers

Gossip
messages

Replica manager

Timestamp tableTimestamp table

Replica timestamp

Update log

Value timestamp

Value
Stable

Timestamp table

Value

Value timestamp

Update log

Replica timestamp

Timestamp table

Update log Value

Executed operation table

updates
Value

Executed operation table

Update log

Updates
OperationID Update Prev

FE FE

Case study: BayouCase study: Bayou

• Provides a high availability by relaxing theProvides a high availability by relaxing the
consistency guarentees.

• Relies domain specific conflict detection• Relies domain specific conflict detection
and resolution.

Bayou guaranteeBayou guarantee
Eventually, every replica manager receives the same set
of updates and eventually applies those updates in such p y pp p
a way that the replica manager’s databases are identical.

ApproachApproach

• Any user can make updates and all theAny user can make updates, and all the
updates are applied and recorded at
whatever RM they reachwhatever RM they reach.

• When updates received at any two RM’s
are merged the RM’s detect and resolveare merged, the RM s detect and resolve
conflicts, using any domain specific
criteriacriteria.

Committed and tentative
updates in Bayou

C itt d T t ti

t t t

Committed Tentative

t tc0 c1 c2 cN t0 t1 tit2 ti+1

Tentative update ti becomes the next committed update
fand is inserted after the last committed update cN.

Case study: CodaCase study: Coda

• A descendant of the Andrews file systemA descendant of the Andrews file system.
• Coda allow a file to be replicated (in AFS

on read only files could be replicated)on read-only files could be replicated).
• Coda allows for for portable computers to

b di t d hil till h ibecome disconnected while still having
access to their files.

TerminologyTerminology

• The ser of servers holding replicas of a fileThe ser of servers holding replicas of a file
volume is known as the volume storage
group (VSG)group (VSG).

• The set of servers available to a client
wishing to open a file is called a availablewishing to open a file is called a available
volume storage group (AVSG).
A li t i id d di t d if it• A client is considered disconnected if its
AVSG is empty.

WorkingsWorkings

• On opening a file a client request the fileOn opening a file, a client request the file
from one of the servers in its AVSG.

• Call back promices are (as in AFS) used• Call-back-promices are (as in AFS) used
to inform a client of a modified file.
O l i fil th difi d fil i• On closing a file, the modified file is
broadcast to all servers in the AVSG.

Replication strategyReplication strategy

• Each version of file is attached a CodaEach version of file is attached a Coda
version vector (CVV).

• A CVV is a vector timestamp containing• A CVV is a vector timestamp containing
one element for each server in the file’s
VSGVSG.

• Allows detection of conflicts:
– If the CVV at one site is greater then or equal

to all the corresponding CVVs at other sites,
then there is no conflict between the replicasthen there is no conflict between the replicas
of the file.
On the other hand if two CVVs are not related

End of showEnd of show

Front ends propagate their
timestamps whenever clientstimestamps whenever clients

communicate directlyService

RM RM

RM

gossipRM RM

FE FEVector
timestamps

Clients

Transactions on replicated
data

Client + front end Client + front end

d it(B 3)

UT

BgetBalance(A)

deposit(B,3);

A BB BA A

Replica managers
Replica managers

A

Available copiesAvailable copies

Client + front end Client + front end

deposit(A,3);

UT

getBalance(B)

Replica managers

p (,);

deposit(B,3);
getBalance(A)

B

A B

Replica managers M

BA

X PY N

Network partitionNetwork partition
Client + front end Client + front end

withdraw(B, 4)
deposit(B,3);

UT
Network
partition

Replica managers
B

BB B

Gifford’s quorum concensus
examples

Example 1Example 2Example 3

Latency Replica 1 75 75 75Latency Replica 1 75 75 75
(milliseconds)Replica 2 65 100 750

Replica 3 65 750 750
Voting Replica 1 1 2 1p
configuration Replica 2 0 1 1

Replica 3 0 1 1
Quorum R 1 2 1
i 1 3 3sizes W 1 3 3

Derived performance of file suite:

Read Latency 65 75 75

Blocking probability0.01 0.0002 0.000001
Write Latency 75 100 750

Blocking probability0.01 0.0101 0.03

Two network partitionsTwo network partitions

R li

Network partitionTTransaction

Replica managers

VX Y Z

Virtual partitionVirtual partition

Replica managers

Virtual partition Network partition

X V Y ZX V Y Z

Two overlapping virtual
partitions

Virtual partition V1 Virtual partition V2

Y X V Z

Creating a virtual partitionCreating a virtual partition
Phase 1:

• The initiator sends a Join request to each potential member.The initiator sends a Join request to each potential member.
The argument of Join is a proposed logical timestamp for the new
virtual partition.
• When a replica manager receives a Join request, it compares
the proposed logical timestamp with that of its current virtual
partition.

– If the proposed logical timestamp is greater it agrees to join
and replies Yes;and replies Yes;

– If it is less, it refuses to join and replies No.
Phase 2:

• If the initiator has received sufficient Yes replies to have read p
and write quora, it may complete the creation of the new virtual
partition by sending a Confirmation message to the sites that
agreed to join. The creation timestamp and list of actual members

t tare sent as arguments.
• Replica managers receiving the Confirmation message join
the new virtual partition and record its creation timestamp and list
of actual members

