Distributed Systems Conclusions & Exam

Brian Nielsen bnielsen@cs.aau.dk

 A distributed system is the one in which hardware and software components at networked computers communicate and coordinate their activity only by passing messages.

Consequences

- Concurrent execution of processes
 - Users work independently & share resources
 - non-determinism, race-conditions, synchronization, mutex, deadlock, liveness, …
- No global clock
 - Each computer has its own clock
 - There are limits to the accuracy with which computers in a network can synchronize their clocks
- No global state
 - Coordination is done by message exchange
 - Generally, there is no single process in the distributed system that would have a knowledge of the current global state of the system

• Units may fail independently.

- Network faults can result in the isolation of computers that continue executing
- A system failure or crash might not be immediately known to other systems

Why a Distributed System?

- Resource Sharing
- Functional distribution
 - computers have different functional capabilities yet may need to share resources
 - Client / server
 - Data gathering / data processing
- Inherent distribution in application domain
 - cash register and inventory systems for supermarket chains
 - computer supported collaborative work
- Economics
 - collections of microprocessors offer a better price/ performance ratio than large mainframes

Why a Distributed System?

- Load balancing
 - assign tasks to processors such that the overall system performance is optimized
- Replication of processing power
 - independent processors working on the same task
- Increased Reliability
 - Exploit independent failures property and
 - Redundancy

Why Not?

- Multiple Points of Failures
 - Leslie Lamport: "a distributed system is is one in which the failure of a computer you didn't even know existed can render your own program unusable"
- Complexity
 - Advanced solutions to
 - Concurrency, asynchrony, non-determinism,
 - paritial-failures,
 - message passing, performance bottlenecks
- Security
- Administration (multiple adm. organizations)

Trends

• Increasing Integration and Convergence from the very small to the very big

Ubiquitous Computing

- "existing or being everywhere at the same time"
- Embedding computation into the environment and everyday objects would enable people to interact with information-processing devices more naturally and casually than they currently do, and in ways that suit whatever location or context they find themselves in.

Mobile Internet

 Mobile Agents, Autonomic Computing: autonomous active objects, runtime code migration, service discovery, content distribution and delivery, contextaware computation, intelligence

Large-scale global computing

- Scalable, secure, heterogeneous middleware with QoS provisioning
- GRIDS, cluster computing
- Web-Services

p2p

Web 3.0

Source: Radar Networks & Nova Spivack, 2007 – www.radarnetworks.com

Study Regulations

Purpose: That the student obtains knowledge about concepts in distributed systems, knowledge about their construction, and an understanding of advantages and disadvantages of their use.

Contents:

- •Structure of distributed systems.
- •Distributed algorithms.
- •Distributed and parallel programming.
- •Fault tolerance.

•Examples of one or more distributed systems.

Course Plan

Lecture	Торіс
1	Introduction to Distributed Systems
2	Programming Models I
3	Programming Models II
4	Distributed File Systems
5	Peer2peer Systems
6	Clock Synchronization
7	Distributed Mutual Exclusion & Election
8	Multicast communication
9	Consensus and study-exercises
10	Replication
13	Study Exercise
11	Web Services
12	Introduction to Grid Computing (Guest Lecture by Josva Kleist)
14	Study Exercise
15a	Conclusions and Exam Information
15b	Exam Questioning Hour / Spørgetime

Learning Goals

- The student must at the concluding examination be able to
 - document knowledge and overview of the involved topics and concepts within distributed systems
 - use correct professional terminology in speech and writing
 - document knowledge about the fundamental properties of distributed systems, their architecture, and explain their consequences on system behavior and design
 - describe/explain basic prototypical distributed problems and distributed algorithms to solve these,
 - compare and evaluate different distributed algorithms and solutions wrt. semantic guarantees/precision, performance and fault-tolerance properties
 - demonstrate skills in realizing/implementing simple distributed systems or algorithms typically in the form of a distributed application.

The Exam

- PE Course
 - Evaluated as part of project exam with your project as starting point
 - Your examiner may include relevant material from the course
 - Know the pensum, consider studying the relevant chapters more intensively
- SE-Course
 - 20 min, Oral, pass-no pass grade with
 - random choice among 10 known topics
 - Read pensum intensively and do selected exercises, and the study exercise

Exam Questions

- **1. Time in distributed systems [11.1-11.4].** Discuss algorithms to achieve clock synchronization in distributed system, with emphasis on either logical time or physical time.
- 2. Mutex and elections [12.1-12.3] Discuss the problems in performing mutual exclusion and leader election in distributed systems, and show mutex or leader elections algorithms.

3. Multicast [12.4]

What are the advantages of multicast communication? Discuss either reliable multicast or ordered multicast algorithms (in both cases remember to discuss semantic models).

4. Byzantine generals [12.5]

Explain what the Byzantine generals problem is. Present impossibility result for 3 Byzantine generals, 1 faulty as well as the solution for 4 Byzantine generals, 1 faulty.

5. Remote Method Invocation [5.1-5.2, 5.5]

Give an introduction to the idea of RMI, and discuss the implementation principles.

6. Distributed file systems [8.1-8.3]

Discuss what is the goal of distributed files systems, and describe SUN NFS.

7. Replication [15.1-15.4]

Discuss the use of replication to achieve either fault tolerance or increased availability.

8. Peer2peer [10.1-10.5]

Discuss the goal of Peer-to-Peer systems, and describe how searches in a Pastry net is performed.

- 9. Study-exercise
- 10 Study_avarcies

