
Web-services

Brian Nielsen
bnielsen@cs.aau.dk

Why Web Services?

Today’s Web
• Web designed for application to human interactions

– Information sharing: a distributed content library.
– Enabled Business-to-costumer e-commerce
– Non-automated B2B interactions

• How did it happen?
– Built on very few standards: http + html
– very few assumptions made about computing platforms
– Result was ubiquity (Existence everywhere at the same time)

Web-
server

Internet

What’s next?
• The Web is everywhere. There is a lot more we can do!

– E-marketplaces
– Open, automated business-to-business e-commerce
– Business process integration on the Web
– Resource sharing, distributed computing.
– Pervasive Embedded Computing

• Current approach is ad-hoc
– Proprietary protocols
– e.g., application-to-application interactions with HTML forms.

• Goal:
– Enable the creation of applications that are built by

combining loosely coupled and interoperable services
– enabling systematic application-to-application interaction

on the Web

Combination of web services

hotel bookinga

Travel Agent

flight bookinga

hire car bookinga
Service

Client

flight bookingb

hotel bookingb

hire car bookingb

Travel agent scenario
1. The client asks the travel agent service for information about a set of services; for

example, flights, car hire and hotel bookings.
2. The travel agent service collects prices and availability information and sends it to

the client, which chooses one of the following on behalf of the user:
(a) refine the query, possibly involving more providers to get more information,
then repeat step 2;
(b) make reservations;
(c) quit.

3. The client requests a reservation and the travel agent service checks availability.
4. Either all are available;

or for services that are not available;
either alternatives are offered to the client who goes back to step 3;
or the client goes back to step 1.

5. Take deposit.
6. Give the client a reservation number as a confirmation.
7. During the period until the final payment, the client may modify or cancel

reservations

Service Oriented Architecture

• Develop large scale applications from
(distributed) collections of smaller
loosely-coupled service providers

Service
Provider

Service
User

Service
Registry

publishsearch/
lookup

Interaction/
messages

What are Web Services
• “A Web service is a software system

designed to support interoperable machine-
to-machine interaction over a network.”

• Distributed computing for the Web:

• Internet-wide
• Platform neutral, open Standards
• Based on ubiquitous software (XML, HTTP)

1980 1985 1990 1995 2000 2005

SUN RPC
CORBA

DCE/RPC + COM
DCOM+ JavaRMI

Web Services

Web Services Components
Web-based Service Oriented Architecture

Web services infrastructure
and components

Security

Service descriptions (in WSDL)

Applications

Directory service

Web Services

XML

Choreography

SOAP

URIs (URLs or URNs) HTTP, SMTP or other transport

Recall XML

URI / URL / URN

• URI (Uniform Resource Identifier): a general
ressource identifier, whose value may be either
URL or URN
– URL: includes resource location information

• http://www.cdk4.net/person
– URN: (Uniform Resource Names): location

independent, rely on lookup service to map them onto
the URLs of resources

• urn:isbn:0-321-26354-5

URI

URL URN

XML
• XML (extensible markup language) is defined by

the World Wide Web Consortium (W3C)
• Both XML and HTML were derived from SGML

(Standardized Generalized Markup Language)
– HTML: tags specify how a browser displays the text
– XML: tags describe the logical structure of the

data
• XML is extensible: users can define their own

tags (HTML uses a fixed set of tags)
• Generic tools:

– parsing, validating, querying, translating, …

XML Definition of a Person

• Element: <name>Smith</name>
• Attribute: id="123456789“
• items represented as elements or attributes:

– An element is generally a container for data
– An attribute is used for labeling that data

<person id="123456789">
<name>Smith</name>
<place>London</place>
<year>1934</year>
<!-- a comment -->

</person >

Name Spaces
• XML name spaces: provide scoping of names to avoid

name-clashes
• URIs are used to identify namespaces (specified in

xmlns attribute)
• URI is a cheap way of getting unique names

– Developer controls hierarchy under the given URI.
– Doesn’t necessarily point to anything

• In the example, pers is shorthand for
http://www.cdk4.net/person

<person pers:id="123456789" xmlns:pers = "http://www.cdk4.net/person“ >
<pers:name> Smith </pers:name>
<pers:place> London </pers:place >
<pers:year> 1934 </pers:year>

</person>

XML-Schema
• A schema defines the legal structure (grammar) of an XML

document
– elements and attributes that can appear in a document,
– how the element are nested and the number of elements,
– whether an element is empty or can include text.

• For each element, it defines the type and default value
• Schema Languages: DTD, XML-Schema
• An XML document may be validated against a schema
• May be transformed (XSLT) Navigated / queried /Language bindings

<xsd:schema xmlns:xsd = URL of XML schema definitions >
<xsd:element name= "person" type ="personType" />

<xsd:complexType name="personType">
<xsd:sequence>

<xsd:element name = "name" type="xs:string"/>
<xsd:element name = "place" type="xs:string"/>
<xsd:element name = "year" type="xs:positiveInteger"/>

</xsd:sequence>
<xsd:attribute name= "id" type = "xs:positiveInteger"/>

</xsd:complexType>
</xsd:schema>

SOAP

SOAP
• Used to mean Simple Object Access Protocol
• From SOAP 1.2 > SOAP is no longer an acronym

• XML-based
– uses XML to represent the contents of request and reply messages
– Platform independent, language independent

• Transport:
– HTTP
– SMTP, FTP, TCP or UDP, (Jabber)

• Language Binding:
– SOAP APIs available for many programming languages,
– Java, Javascript, Perl, Python, .NET, C, C++, C#, and VB
– Programmers do not normally need to concern how SOAP uses XML to

represent messages and HTTP to communicate them

Web Services using SOAP

HTTP POST -
SOAP Request

HTTP RESPONSE -
SOAP Responsen
or SOAL FAIL

Protocol Binding:
eg. SOAP over HTTP

Language Binding
Stub Compiler

Messaging using
XML

Not necessarily request-reply pattern

stub stub

SOAP message Enveloping
envelope

header

body

header element

body element

header element

body element

SOAP Message
Envelope
• specifies global settings, eg encoding.

Header
• Optional
• Ultimate destination
• encryption
• routing & delivery settings
• authentication/authorisation

information
• transaction context
• Other data extensions

Body
• required
• data or message to be processed
• can contain anything that can be

expressed in XML
• containing as many child nodes as

required

<SOAP-ENV:Envelope
xmlns:SOAP-ENV
="http://schemas.xmlso
ap.org/soap/envelope/"
>

< SOAP-ENV:Header>
...

</ SOAP-ENV:Header>

< SOAP-ENV:Body>
...

</ SOAP-ENV:Body>
...

</ SOAP-ENV: Envelope>

IP 2 Location demo

1. http://www.fraudlabs.com/
2. http://www.fraudlabs.com/docs/IP2Proxy

_Web_Service_Documentation.pdf (p10)
3. http://ws.fraudlabs.com/ip2locationwebse

rvice.asmx?wsdl

(In)Efficiency

Sender Receiver

HTTP Request

HTTP Body

XML Syntax

SOAP Envelope

SOAP Body

SOAP Body Block

Textual Integer

0x0b66

•SOAP requests may be 14 times longer than CORBA
•SOAP requests may take 882 times as long as CORBA

SOAP Nodes

Initial
Sender

Ultimate
Receiver

Intermediary Intermediary

Initial
Sender

Intermediary Intermediary

Initial
Sender

Ultimate
Receiver

Intermediary Intermediary

Soap message may be destined to a set of intermediary
nodes as well as an ultimate receiver

•En/de-cryption, compression, load-balancing, access control,
auditing, routing, monitoring

Intermediary Algorithm
1. Receive message
2. Process appropriate header blocks

– Processing possibly produces a fault
3. Remove processed headers
4. Add new headers
5. Send message

WSDL

Web Services Description Language
• WSDL (“Whistle”) W3 standard
• XML-based language describing:

– What functionality is provided?
– How should it be accessed?
– Where is the service located?

1. Implementation language independent interface description
2. Allows advertisement of service descriptions, enables dynamic

discovery and binding of compatible services.
Used in conjunction with UDDI registry

3. Generate compatible client and server stubs.
wsdl2java
Java2wsdl

4. Allows industries to define standardized service interfaces.

WSDL description

• Types: XML schema describing the used data types
• Message: The structure of the messages exchanged
• Interface: Information describing all publicly available functions
• Bindings: Information about the transport protocol to be used
• Services: Address information for locating the specified service

abstract concrete

how where

definitions

types

target namespace

interface bindings servicesmessage

document style request-reply style

1. One-way
2. Request-

response
3. Solicit-

response
4. Notification

WSDL Operation patterns
In only

In-Out

Out-In

Out only

Robust Versions of
in-only and out-
only gives failure
response

IP 2 Location demo

1. http://www.fraudlabs.com/
2. http://www.fraudlabs.com/docs/IP2Proxy

_Web_Service_Documentation.pdf (p10)
3. http://ws.fraudlabs.com/ip2locationwebse

rvice.asmx?wsdl

Recipe Server
• From “An introduction to XML and Web Technologies” by

Anders Møller & Michael I. Schwartzbach
– http://www.brics.dk/ixwt/examples/recipeserver.wsdl
– http://www.brics.dk/ixwt/examples/recipes.xsd
– http://www.brics.dk/ixwt/examples/recipes.xml
– http://www.brics.dk/ixwt/examples/recipes.xsl

• Operations on recipe collection
– getRecipe: returns the collection of recipes stored at the server
– lockRecipe: obtains lock of recipe ID (or fails)
– writeRecipe: upload recipe
– unlockRecipe: Releases given lock

UDDI

UDDI
• Universal Description, Discovery and

Integration
• A UDDI Server acts as a registry for Web

Services and makes them searchable.
– White pages (general information)
– Yellow pages (categories of services)
– Green pages (business rules)

• Accessible as web service and html
• http://soapclient.com/uddisearch.html

The main UDDI data structures

tModel

businessServices

tModel

businessEntity

information

about the publisher

tModel

businessServiceshuman readable

service descriptions
key key

URL

URL

URL

businessServices

information
about a
family of services

human readable

service interfaces

bindingTemplate

bindingTemplate

bindingTemplate
information
about the

key
service interfaces

WS-Extensions

• WS-security, WS-choreography
• WS-flow, WS-reliability, WS-transactions,

WS-membership, WS-CDL, WS-BPEL,
WS-Events, WS-Policy, WS-Routing,…

• “WS*”
– http://www.dotnet-

collective.com/ws_extensions.html

Choreography & Orchestration
• VTA example:

• Choreography = how to interact with the service to
consume its functionality

• Orchestration = how service functionality is achieved
by aggregating other Web Services

VTA
Service

Date

Time

Flight, Hotel

Error

Confirmation

Hotel Service

Flight Service

Date, Time

Hotel

Error

Date, Time

Flight

Error

When the service is
requested

When the service
requests

Outlook

Plateau of
productivity

Slope of
enlightenment

Trough of
disillusionment

Peak of
inflated

expectations
Technology

trigger

Gartner’s ‘Hype’ Curve
Key: Time to “plateau”

Less than two years
Two to five years
Five to 10 years
Beyond 10 years

Biometrics Grid Computing

Web Services

Nanocomputing

Personal
fuel cells

Text-to-
speech

Wireless
LANs/802.11

Virtual
private
networks

Visibility

Maturity

Source: Gartner Group June 2002

Natural-language
search

Identity services

Personal digital
assistant phones

E-tags

Speech recognition in
call centers

Voice over IP
Bluetooth

Public key infrastructure

Speech recognition on desktopsLocation
sensing

WAP/
Wireless
Web

Peer-to-peer
computing

