
A Ravenscar-Java Profile Implementation

Hans Søndergaard
Vitus Bering Denmark

University College
DK-8700 Horsens

hso@vitusbering.dk

Bent Thomsen & Anders P. Ravn
Department of Computer Science

Aalborg University
DK-9220 Aalborg Ø

{bt, apr}@cs.aau.dk

ABSTRACT
This paper presents an implementation of the Ravenscar-Java
profile. While most implementations of the profile are reference-
implementations showing that it is possible to implement the
profile, our implementation is aimed at industrial applications. It
uses a dedicated real-time Java processor, since we want to
investigate if the Ravenscar-Java profile, implemented on a Java
processor, is efficient for real applications. During the
implementation some ambiguities and weaknesses of the profile
were uncovered. However, test examples indicate that the profile
is suitable for development of realistic real-time programs.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features; D.3.4 [Programming Languages]: Processors – Run-
time environments; D.4.1 [Operating Systems]: Process
Management - Scheduling, Threads; J.7 [Computer
Applications]: Computers in Other Systems – Real time.

General Terms
Design, Languages, Performance.

Keywords
Ravenscar-Java profile, Real-time Java, Java processor, Industrial
application.

1. INTRODUCTION
Java was originally developed as a programming language for
embedded systems [11]; but it was the Internet that propelled Java
into mainstream computing, because there was a need for a
language that was portable and truly object-oriented, eliminating
the error-prone programming of memory allocation and pointer
manipulation. However, precisely those features made it less
suited for predictable, real-time embedded systems: The virtual
machine, that gave portability, was considered inefficient both in
terms of time and space. Furthermore, the automatic garbage
collection and dynamic class loading made it impossible to
analyse and predict execution time and memory consumption.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
JTRES '06, October 11–13, 2006, Paris, France.
Copyright 2006 ACM 1-59593-544-4/06/10…$5.00.

However, since its appearance in 1995, Java has spread
tremendously as a software development language; it is used to
program all kinds of software from servers to smart cards, and it is
now the first (and often the only) language for young
programmers joining the industry. Concurrently, software for
embedded systems has been a major growth area, because there is
consumer demand for more and more sophisticated products
based on embedded intelligence.

Programming dependable, real-time systems is already hard for
simple functionalities, and when more intelligence is added, it
means functionality, which is very costly and error prone to code
in assembler or C/C++. Embedded system development needs to
benefit from the major advances in object-oriented programming
technology that have emerged over the past decade, and one way
of doing this is to bring Java back to the application domain for
which it was developed.

There is essentially only one way to get a more predictable
language, namely to select a set of features which makes it
controllable. A major step in that direction was the Real-Time
Specification for Java (RTSJ) published in 2000 [18, 5]; many
new features were introduced to make it suitable for real-time
applications. However, RTSJ is complex, trying to address
advanced dynamic scheduling techniques, new types of memory
and has a difficult asynchronous transfer of control mechanism.
RTSJ is thus targeted at larger systems, e.g. the RTSJ
implementation from Sun requires a dual UltraSparc III or higher
with 512 MB memory and the Solaris 10 operating system [23].

We are interested in smaller systems, for example Java enabled
mobile phones; in fact, there are already more Java-enabled
phones than PCs [21]. In phones, the Java 2 Micro Edition
(J2ME) is used. It has a virtual machine layer (with or without an
OS), a configuration layer, e.g. CDC or CLDC, and a profile
layer, e.g. MIDP, which defines the allowable features. Here, and
in other small scale systems, the Ravenscar-Java profile [17] for
Real-Time Java fits nicely. It defines a subset of RTSJ suitable for
a J2ME implementation on top of a real-time virtual machine with
the CLDC configuration layer. The key aim of the profile is to
define a subset of RTSJ “that meets the temporal requirements of
high-integrity real-time systems” [17].

The Ravenscar-Java profile has been further refined and
commented [14, 26, 13, 19], but it has been implemented a few
times only [10], and the experience of using the Ravenscar-Java
profile for the development of industrial embedded systems with
real-time requirements is limited.

Ravenscar-Java may not yet have been used for industrial cases,
because it needs implementations on platforms that are suitable

for the application area. In order to explore this thesis, we have
implemented the Ravenscar–Java profile on a Java processor, the
aJ-100, from aJile Systems [12, 1], which aims at such
applications.

The contributions of this paper are thus
• an implementation of the Ravenscar-Java profile on the aJ-

100 platform,
• a comparison of test examples using the Ravenscar-Java

profile and the original aJile API, and
• an assessment of the Ravenscar-Java profile itself, and its

suitability for the aJ-100 processor.

The remainder of this paper is structured as follows: A short
overview of the Ravenscar-Java profile is given in Section 2.
Section 3 identifies some of the most interesting properties of the
processor and describes those properties in relation to the
Ravenscar-Java profile implementation. Section 4 describes key
aspects of the implementation. In Section 5 we compare
Ravenscar-Java profile test examples with similar aJile API test
examples. Section 6 assesses the Ravenscar-Java profile itself and
its suitability for the aJ-100 processor. Conclusion and future
work (Section 7) completes the paper.

2. THE RAVENSCAR-JAVA PROFILE
This profile was first proposed in 2001 [17], inspired by the
Ravenscar profile for Ada [6], and the profile is still evolving [14,
26, 13]. It is essentially a subset of RTSJ. Where RTSJ has 68
interfaces and classes, the Ravenscar-Java profile has only about
30 interfaces and classes, including some classes not found in
RTSJ. Besides making Ravenscar-Java smaller and simpler than
RTSJ, a reason for introducing it was to make the programs
predictable and analysable wrt. memory utilization and timing.

2.1 The computational model
A Ravenscar-Java application has two phases: an initialization
phase and a mission phase, shown in Figure 1.

Figure 1. The two execution phases (The figure is adapted

from Kwon, Wellings, and King [14])

In the initialization phase all objects needed for the lifetime of the
application are created and initialized in immortal memory,
including all real-time threads. This phase is not time-critical and
is executed by an Initializer thread with maximum priority.

In the mission phase the real-time threads and event handlers are
running concurrently. This phase is time critical and the priorities
of the threads are less than the maximum priority which is
reserved for the Initializer thread.

A Ravenscar-Java Virtual Machine is not supposed to support
garbage collection. In fact a Ravenscar-Java VM does not have to
have heap memory. Instead the Ravenscar Java profile defines
three types of memory areas: immortal memory, linear time
scoped memory and raw memory. When the underlying VM has a
heap area, the heap can be used as immortal memory if the
garbage collector can be switched off.

2.2 Overview of the Ravenscar-Java classes
The classes in the profile fall into four groups:
• real-time thread classes, which include

o Initializer (for the initialization phase)
o PeriodicThread (for periodic activities)

• sporadic event handler classes, which include
o SporadicEvent (for software triggered events)
o SporadicInterrupt (for hardware triggered events)
o SporadicEventHandler

• memory classes, which include
o ImmortalMemory (for objects with lifetime equal to the

lifetime of the application)
o LTMemory (linear time scoped memory for object

allocation during the mission phase)
o RawMemoryAccess (for raw memory access)

• time classes, which include
o AbsoluteTime, RelativeTime.

We shall focus on the two first groups, since they are most
dependent on the processor.

3. THE aJ-100 PROCESSOR
The aJ-100 processor from aJile Systems [1] is based on the 32-bit
JEM2 Java chip developed by Rockwell-Collins. It is a 100 MHz
direct execution Java processor, “designed for real-time
embedded applications that require high-performance” [2]. The
aJ-100 is characterized by being:
• a pure Java microcontroller that uses Java bytecode as its

native instruction set,
• a real-time processor with an embedded real-time multi-

threading kernel microcoded in hardware, including a priority
pre-emptive scheduler with 32 priority levels, a priority ceiling
protocol and periodic threads,

• supporting two concurrent JVM units, and
• having all common embedded peripherals: I/O Ports, Serial

Interface, Timers, etc.
The direct bytecode execution means that the performance of an
application on aJ-100 is comparable to a C application for a
similar 32-bit microcontroller. The microcoded kernel means that
aJile does not require an extra RTOS software layer. Furthermore,
the thread switch is very fast, less than 1 µs.

In our implementation of the Ravenscar-Java profile we only use
one of the two JVM units, together with its access to the global
raw memory.

Figure 2. The aJile architecture with use of one JVM

When JVM0 is applied with real-time constraints, the garbage
collector can be disabled.

The aJile processor uses a runtime system based on J2ME, CLDC
1.0 [3]. As a supplement to the CLDC library, the aJ-100
processor has a special aJile Java API to access the processor; it
includes about 85 interfaces and classes, e.g. PeriodicThread,
rawJEM (low level access to physical memory), and GpioPin
(controls general purpose IO pins).

The processor must be mounted on a board providing the
necessary hardware infrastructure. In our test setup we use the
JStik board from Systronix [24], with 2MBytes SRAM.

Processor specific development tools are: JEM Builder, a
graphical build tool for static linking and configuration and
Charade, a tool for loading and starting the JVMs on aJ-100.
Charade has various test facilities. These are the only tools that
are aJile specific. In other words, any “standard” Java
development tool, such as Eclipse or NetBeans, can be used for
programming and generating Java bytecode.

4. IMPLEMENTATION OF RAVENSCAR-
JAVA PROFILE
This section describes in more detail, how we implement the
Ravenscar-Java profile on the aJ-100 processor using the aJile
API. This API is also written in Java, but is often lower level.

4.1 Implementation of the real-time threads
The class hierarchies for the real-time threads are shown in
Figure 3. The real-time threads in Ravenscar are subclasses
of java.lang.Thread.

Figure 3. The class hierarchies for the real-time threads

As an example we show the implementation of the Initializer
thread with max priority:
package javax.ravenscar;
public class Initializer extends RealtimeThread

{
 public Initializer()
 {
 super(new PriorityParameters (
 PriorityScheduler.getMaxPriority()),
 null, ImmortalMemory.instance(), null);
 }
}

4.1.1 Periodic threads on aJ-100
Periodic threads have to be set up for periodic activation. For this
aJ-100 has an internal cyclic data structure, called a piano roll. It
keeps the activation information for the different periodic threads.
The PianoRoll class from the aJile API initializes and starts
executing the piano roll:
package com.ajile.jem;
public class PianoRoll
{
 public PianoRoll(int duration, int beat);
 public PianoRoll(long duration,int durationNanos,
 long beat, int beatNanos);
 public static void start();
}

The aJile API also has a PeriodicThread class:
package com.ajile.jem;
public class PeriodicThread extends
java.lang.Thread
{
 public PeriodicThread();
 public void makePeriodic(int period,
 int initDelay, int priority, Thread userTCB);
 public static void cycle();
 // equivalent to waitForNextPeriod() in RTSJ
}

Here, the makePeriodic method sets up a periodic thread, before
it is started. The parameter initDelay is the time delay between
the cycle start of the piano roll and the first activation of the
periodic thread.

When all the periodic threads and the piano roll have been
initialized with the correct values of beat, duration, periods,
initDelays and priorities, and then started, the periodic threads are
dispatched by the priority pre-emptive thread scheduler. Upon
each tick of the beat timer, the periodic threads at the current
index of the piano roll are activated, and the piano roll index is
incremented to the next entry in the cyclic piano roll.

Table 1. Example with three periodic threads

Periodic thread Period Init delay Priority
a 3 0 max
b 3 1 max
c 4 0 max-1

This is illustrated in Table 1 with three periodic threads, and
Figure 4 shows the corresponding piano roll structure.

 pianoroll-index

 0 1 2 3 4 5 6 7 8 9 10 11
max a b a b a b a b
max-1 c c c
..
min

Figure 4. The corresponding piano roll structure

beat-interval

p
r
i
o
r
i
t
i
e
s

Threads a and b have the same period of 3, thread c has a period
of 4. The thread priorities are chosen to be rate monotonic.

In each beat interval only one thread of each priority is activated.
Hence, multiple periodic threads of different priorities can be
readied simultaneously, but if there are multiple periodic threads
of the same priority, only one of them will be chosen to run [4].
To overcome this problem, different periodic threads with the
same priority (and period) are usually given different initial
offsets. If the beat is chosen as the time unit (in msecs or
nanosecs), then the following setup conditions must hold:
(P1) 0 < beat ≤ 65 msec
(P2) duration = n * beat, for some integer n

These piano roll conditions reflect that the aJ-100 has a 16 bit
timer register with a tick of 1µs, and the duration of the roll must
be a multiple of the beat.

For every periodic thread, the following must hold:
(T1) beat ≤ period ≤ duration
(T2) period * k = duration, for some integer k

(T3) period = m * beat, for some integer m

(T4) initDelay = p * beat, for some integer p

(T5) 0 ≤ initDelay < period
(T6) initDelay + period ≤ duration

These conditions ensure that the piano roll gives correct periodic
activation of the threads.

Finally, for each pair of periodic threads with equal periods and
equal priorities, we must have:
(E1) initDelayi ≠ initDelayj
This ensures that both threads are activated.

4.1.2 Implementation of Ravenscar-Java periodic
threads
To hide and control all this complexity, some auxiliary classes
were developed, including some with methods for rate monotonic
priority setup of periodic threads. This is carried out during the
initialization phase. These classes are organized as shown on
Figure 5.

Class Setup is a singleton class. It sets up the piano roll,
including the calculation of beat and duration. It attaches the
periodic threads, including a calculation of init delays, to the
piano roll. Class SetupInfo contains the necessary information
about a periodic thread (or a sporadic event/interrupt). Class
CheckCyclicSetup checks all the setup conditions, as described
above, including a rate monotonic setup. The decision to use rate
monotonic setup is discussed in Section 6.1.

The Ravenscar-Java PeriodicThread class encapsulates the
aJile periodic thread:
package javax.ravenscar;
public class PeriodicThread extends
 NoHeapRealtimeThread
{
 private com.ajile.jem.PeriodicThread aJileTh;
 private SetupInfo info;
 ...
 private class aJilePeriodicThread extends
 com.ajile.jem.PeriodicThread
 {
 public void run()
 {
 // run until start time:
 for(long count = info.startTime/info.period;
 count > 0; count--) {
 PeriodicThread.waitForNextPeriod();
 }

 // run from start time:
 for (;;) {
 logic.run();
 PeriodicThread.waitForNextPeriod();
 }
 }
 }

 public PeriodicThread (PriorityParameters pp,
 PeriodicParameters p, Runnable logic)
 {
 super (pp,p,ImmortalMemory.instance(),logic);
 aJileTh = new aJilePeriodicThread();
 }

Figure 5. Class diagram for auxiliary classes for setup

 public final void run()
 {
 info = Setup.getInstance().getSetupInfo(this);
 aJileTh.makePeriodic (period, priority, …);
 aJileTh.start();
 }
 static boolean waitForNextPeriod()
 {
 com.ajile.jem.PeriodicThread.cycle();
 return true;
 }
}

A (somewhat controversial) decision is to let
waitForNextPeriod always return true as suggested in [26].
We discuss this further in section 6.1

4.2 Event and event handler implementation
The Ravenscar-Java profile only specifies sporadic events, and
distinguishes between
• software-generated: class SporadicEvent
• hardware-generated: class SporadicInterrupt.
The class structure is shown in figure 6.

Sporadic events and interrupts have a minimum interarrival time
(MIT). The profile does not say anything about the latest
permissible completion time (deadline) of the associated
schedulable object. Therefore this latest permissible completion
time is assumed to be equal to MIT. This is consistent with the
periodic threads, where the deadline is assumed to be equal to the
period.

If MIT is interpreted in the same way as the period T, then the
two types of schedulable objects can be assigned priorities using
the rate monotonic priority assignment in both cases. However,
should a deadline be added to sporadic events, a deadline
monotonic priority assignment is feasible. Note, the sporadic
event handlers do not enter into the piano roll structure. We return
to this point in Section 6.

4.2.1 Event and event handling on aJ-100
To handle hardware-generated events Ravenscar-Java defines the
notion of a happening. A happening is a string which has to be
mapped to the underlying hardware events.

aJ-100 has 40 General Purpose Input/Output (GPIO) pins. The
aJile API provides the GpioPin class, an instance of which
controls one pin [3] to support them. Each pin is identified by a

predefined constant in the GpioPin class. This pin identifiier is
converted to a string defining the happening for the
SporadicInterrupt class. A GpioPin object has an attached
eventhandler which implements the interface
TriggerEventListener. Its triggerEvent metod is called
when an external event occurs on the pin. This interface is as
follows:
package com.ajile.events;
public interface TriggerEventListener
{
 void triggerEvent();
}

This aJile specific GPIO event and event handling have been
hidden in two classes (also see Figure 7):
class GpioPinInfo holds and sets up information about a
GPIO pin, and
class SetupGpioPin holds the information for up to 40 GPIO
pins.

The most interesting in the implementation is the addHandler
method in class SetupGpioPin. This method creates and adds a
TriggerEventListener object to a GPIO pin, see Figure 7, and
it is called by the addHandler method in the
SporadicInterrupt class.

4.2.2 Implementation of event handlers
The thread permanently bound to BoundAsyncEventHandler,
see Figure 6, is implemented as a private inner class
NoHeapRealtimeThread:
private class NoHeapRtThread extends
 NoHeapRealtimeThread
{
 NoHeapRtThread (PriorityParameters priority,
 Runnable logic)
 {
 super (priority, null, null, logic);
 }

 public void run ()
 {
 for (;;) {
 synchronized (handlerThread) {
 try { wait(); }
 catch (InterruptedException e) { }
 }
 logic.run(); // the logic to run each time
 } // an event occurs
 }
}

Figure 6. Class diagram for sporadic events and interrupts

Figure 7. Class diagram for external events – linking up to aJile I/O.

This thread is created and started by the constructor of the
BoundAsyncEventHandler. The call of wait suspends the
thread.
When an external event occurs on the GPIO pin, the
triggerEvent method in TriggerEventlistener calls
handleAsyncEvent in class SporadicEventHandler, see
Figure 7. This class, initialized with the minimum interarrival
time between events, has the method handleAsyncEvent
implemented as follows:
public class SporadicEventHandler extends
 BoundAsyncEventHandler
{
 private long oldTime, newTime, minArrivalTime,
 deltaT;
 ..
 public final void handleAsyncEvent()
 {
 newTime = rawJEM.getTime();
 deltaT = newTime - oldTime;
 oldTime = newTime;
 if (deltaT >= minArrivalTime)
 super.handleAsyncEvent();
 }
}

Just when minArrivalTime is less than or equal to deltaT, the
handleAsyncEvent in BoundAsyncEventHandler notifies the
handler thread:
void handleAsyncEvent()
{
 synchronized (handlerThread)
 handlerThread.notify();
}

Note that we ignore events that occur too often.

4.3 Implementation of memory classes
Since Ravenscar-Java specifies no garbage collection and aJile
allows the garbage collector to be switched off, the heap is used
for immortal memory. This means that the implementation of
class ImmortalMemory is empty.

Linear time scoped memory, LTMemory, is intended for object
allocation during the mission phase. However, because there is

much uncertainty about the semantics of scoped memory, and
especially uncertainty on how to use it [13, 19, 8], we only
implement immortal memory and raw memory.

To access the raw memory we implement the following two
classes from RTSJ:

RawMemoryAccess
RawMemoryFloatAccess.

The classes contain methods for accessing a raw memory area
through simple types (and arrays thereof): byte, short, int,
long, float and double. To implement the methods we use
the rawJEM class from the aJile API [3]. We only show one
example:
public byte getByte(long offset) throws
 OffsetOutOfBoundsException,
 SizeOutOfBoundsException
{
 check (offset, SIZE_OF_BYTE);
 // atomic get:
 return rawJEM.getByte((int)(base+offset));
}

As we see, the methods are nearly the same, but the
rawJEM.getByte method from the aJile API is low level and has
no bounds checks.

4.4 Implementation of time classes
The time classes are implemented in accordance with RTSJ. Time
is measured from program start, because aJile has no real-time
clock for absolute time with automatic switch to a battery backup
supply.

5. COMPARISON OF TEST EXAMPLES
In this section we compare test examples wrt. execution time,
initialization and code size, using the Ravenscar-Java profile and
the aJile API.

Because periodic threads are central for real-time programs, and
in the aJile API implemented with many low level settings [22],
we focus on periodic threads.

The loop in the periodic threads is implemented in nearly the
same way:

for (;;) { // aJile
 logic.run();
 com.ajile.jem.PeriodicThread.cycle();
}

for (;;) { // Ravenscar
 logic.run();
 PeriodicThread.waitForNextPeriod();
}

They differ in their use of the method waitForNextPeriod,
implemented by:
static boolean waitForNextPeriod()
{
 com.ajile.jem.PeriodicThread.cycle();
 return true;
}
In the test we let the method logic.run increment a counter.
The tests are carried out by letting another periodic thread, with a
lower priority and a period typically of 1000 ms, print the value
of the counter.

The result is that for a single periodic thread, the period should
meet:
• aJile API: period ≥ 9 µsec
• Ravenscar-Java profile: period ≥ 11 µsec

In the overhead of 2 µsec in the Ravenscar implementation, the
extra method-call waitForNextPeriod takes 1 µsec.

For multiple periodic threads the graphs in Figure 8 show a linear
correlation between the number n of periodic threads and the
minimum period of the threads, Tmin:

Tmin ≈ n * 23 µsec

The two graphs are overlapping and if n > 20 there is no
measured difference between Ravenscar and aJile.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

5 10 20 40 80
n (# periodic threads)

T
m

in
 (

µs
ec

)

Linear

Figure 8. The minimum period, Tmin, for n periodic threads

Next, we compare Ravenscar and aJile regarding initialization and
code size.

Using the raw aJile API can be error prone, when there are many
periodic threads with different periods, because nothing checks
whether the setup conditions in Section 4.1.1 are satisfied; the
programmer has to define all the setup constants manually, and
then each periodic thread is made periodic with the right constants
by calling the makePeriodic method, and finally the piano roll
has to be setup with the right constants in its constructor.

In our Ravenscar implementation we hide all this, cf. section
4.1.2. The only constants we define are the periods and the max
priority. The calculation of the rest of the constants is done in the
Setup class, together with a validation of their consistency.

The difference in code size is negligible, whereas the difference in
initialization is considerable. The aJile API is too low level and
error prone.

6. ASSESSMENT
This section contains an assessment of the Ravenscar-Java profile
itself and its suitability for the aJ-100 processor. Here we discuss
also some further experiments with the implementation.

6.1 Assessment of the Ravenscar-Java profile
Since Puschner and Wellings [17] first proposed the Ravenscar-
Java profile, there has been growing interest in evolving and
refining the profile [14, 13]. Much of the work is analytical [16],
but also critical work appears [20].

When implementing the Ravenscar-Java profile, our main
references have been [15, 26, 13], besides the RTSJ [18]. In fact
we have in the Java-doc for each class compared [15], [26], and
[13] before deciding on an implementation. In [10] the code is
documented in a similar manner, but it uses [15] as reference
only.

During our implementation of the Ravenscar-Java profile some
uncertainties and weaknesses have been uncovered. For example
the RealtimeThread class is specified as follows in [15]:
public class RealtimeThread extends Thread
 implements Schedulable
{
 RealtimeThread(PriorityParameters pp,
 PeriodicParameters p);
 ...
 static boolean waitForNextPeriod();
}

and in [26]:
public class RealtimeThread extends Thread
 implements Schedulable
{
 RealtimeThread(PriorityParameters pp,
 PeriodicParameters p,
 MemoryArea ma, Runnable logic);
 ...
 static boolean waitForNextPeriod();
}

and in [13]:
public class RealtimeThread extends Thread
 implements Schedulable
{
 @HRTJProhibited
 public RealtimeThread(
 SchedulingParameters schedule,
 ReleaseParameters release);
 ...
 @HRTJProhibited
 public static boolean waitForNextRelease();
}

We note that the three specifications are not compatible. In [15]
and [26], waitForNextPeriod has no access modifier; but in
RTSJ [18] the method is public. Note that in [13] the method is

public, but called waitForNextRelease. We also note that
one of the constructors has Runnable logic as a parameter.

The semantics of the waitForNextPeriod method in the
Ravenscar-Java profile is somewhat underdefined, whereas a very
elaborate semantics is given for the method in RTSJ, pages 249-
251 in [26].

The description of waitForNextPeriod for Ravenscar-Java on
p. 358 in [26] suggests that the method always returns true.
However, Kwon, Wellings, and King [14] suggest the following
implementation of the PeriodicThread class:
package ravenscar;
public class PeriodicThread extends
 NoHeapRealtimeThread
{
 public PeriodicThread(PriorityParameters pp,
 PeriodicParameters p, Runnable logic)
 {
 super(pp, p, ImmortalMemory.instance());
 applicationLogic = logic;
 }

 private java.lang.Runnable applicationLogic;

 public void run()
 {
 boolean noProblems = true;
 while(noProblems) {
 applicationLogic.run();
 noProblems = waitForNextPeriod();
 }
 // A deadline has been missed. If allowed, a
 // recovery routine would be placed here
 }
 ...
}

This implementation suggests that a recovery procedure could be
implemented if a deadline is missed, i.e. if the call to
waitForNextPeriod returns false, but it does not allow such a
procedure (e.g. an AsyncEventHandler) to be passed as a
parameter and the procedure would thus have to be hard coded
into the profile implementation - which we believe is not a very
sensible thing to do, especially not in a hard real-time application
where off-line analysis is supposed to ensure that deadlines are
not missed.

A minor point to criticise about the above suggested
implementation is the use of a while loop in the idiom:
boolean noProblems = true;
while(noProblems) {
 applicationLogic.run();
 noProblems = waitForNextPeriod();
}

A more elegant and efficient solution is a do-while loop:
do {

 applicationLogic.run();

} while(waitForNextPeriod());

Not only would this save the use of a local variable, it would also
lead to more efficient bytecode being emitted by the compiler.

However, as off-line analysis is supposed to ensure that deadlines
are not missed, the loop is in effect an infinite loop. Thus
waitForNextPeriod ought to just return void, and the loop
could be implemented even more efficient as:

for(;;) {

 applicationLogic.run();

 waitForNextPeriod();

}

Next, we look at the sporadic event handling. It is often used to
handle an external event caused by some error-state. The event
does not happen very often, - but when it does, it is urgent and
hence it has a short deadline D.

The Ravenscar-Java profile has no deadline in the
SporadicParameters class [14], but HIJA [13] gives the
following specification:
public class SporadicParameters extends
 ReleaseParameters
{
 public SporadicParameters(RelativeTime
 minInterarrival, RelativeTime deadline,
 AsyncEventHandler deadlineMissHandler);
 public RelativeTime getMinInterarrival();
}

In our implementation we follow the Ravenscar-Java profile. If
the minimum interarrival time (MIT) is T, then the profile
assumes that D = T. This implies that the rate monotonic setup
can be used for setting up the NoHeapRealtimeThread
belonging to the SporadicEventHandler, together with the
setup of the periodic threads.

However, in some situations it would be useful to define a
deadline less than the MIT, D < T. In this case the rate monotonic
setup could be replaced by a deadline monotonic setup [7, p. 484],
defined by:

Di < Dj ⇒ Pi > Pj , where P is the priority.

Another uncertainty about the sporadic event handling is what
should happen if the MIT is violated. The profile says nothing
about this, even though the RTSJ allows the application to specify
one of four possible MIT violation policies: EXCEPT, IGNORE,
REPLACE or SAVE, see class SporadicParameters in [18]. We
have implemented the IGNORE policy (Section 4.2.2) because it
seems to be most in line with the Ravenscar-Java philosophy, as a
violation should never occur due to off-line analysis.

The Ravenscar Java profile follows the RTSJ philosophy of an
application being defined as a set of classes with at least one class
having a public static main method, i.e. following the Java
application philosophy. However, as Ravenscar-Java is targeted
towards smaller and embedded systems implemented on top of
J2ME and CLDC, it would perhaps have been more natural to
define a Ravenscar-Java application as a “-let”, e.g. a
RAVENSCARlet, just as applications for mobile devices are
defined as MIDlets. Following this idea a Ravenscar-Java
application would extend a class RAVENSCARlet. The
RAVENSCARlet class would have an InitializeApp method
replace the initialize phase in Ravenscar-Java today. This method
would set up the system resources and create the periodic threads.
The RAVENSCARlet class would also have a startApp method to
be called when the system is ready to run. It may also be useful to
have a destroyApp method which could be used to take down
the system gracefully. Although the Ravenscar-Java philosophy
seems to be that the mission phase runs forever, practical systems,
even embedded real-time systems may have to be shut down, e.g.
for maintenance.

A further argument for pursuing this approach is that the vision of
extensive off-line analysis of Ravenscar-Java programs is very
much in line with the off-line verification of security and resource
properties already in use in J2ME/CLDC/MIDP development. It
would be natural for developers already familiar with J2ME to use
such tools as part of the software development environment

6.2 Assessment of the aJ-100 processor
It has been relatively straightforward to implement the Ravenscar-
Java profile on the aJ-100 processor, because aJ-100 has much of
the functionality specified in RTSJ, - either in the microcoded
real-time kernel or in its API.

Table 2 shows that the full implementation of the Ravenscar-Java
profile requires only a total of 1550 lines of code (comments and
brackets are not included). Of these, the utility classes for setup
and check are about 900 lines.

Table 2. #classes and #code-lines in Ravenscar-Java profile

 # classes # code lines avg. code lines/class

Ravenscar classes 35 650 19

Utility classes 15 900 60

Total 50 1550 31

To hide the aJile-specific implementation details, two main
strategies have been used:
• the Singleton design pattern, ensuring that a class has only

one instance, and providing access to the singleton object by a
public static getInstance method. Examples are the
Setup and CheckCyclicSetup classes (see Figure 5) and the
SetupGpioPin class (see Figure 7),

• private inner classes, ensuring both privacy of the class and
access to data structures in the surrounding scope. An example
is the aJile periodic thread in the Ravenscar PeriodicThread
class (Section 4.1.2), another is the anonymous
TriggerEventListener class (Figure 7).

In other implementations, the processor-specific details are
typically hidden in native functions, often written in C, and
specified as native Java methods. In this case two different
system development methodologies are necessary: structured
system development for the C-part and object-oriented system
development for the Java-part. In our implementation on the aJ-
100 processor everything is written in Java. Thus we only need to
use one system development methodology: the object-oriented
method.

Initial experiments suggest that it is an efficient platform for real-
time systems using the Ravenscar-Java profile:
• changing from thread-to-thread: < 1 µsec,
• call of a method: 1.2 µsec,
• up to 500 periodic threads, each with a stack size of 1000

bytes,
• execution time nearly the same as JOP (Java Optimized

Processor) [19],
• execution time comparable with C, because the bytecodes

are executed directly [12].

We have omitted implementing the scoped memory concepts of
the Ravenscar-Java profile. Scoped memory is a controversial

topic and hard to use, see [19, 8]. Furthermore, we have so far not
seen any applications that could not be programmed using
immortal memory instead.

7. CONCLUSION AND FUTURE WORK
We have described our work of implementing the Ravenscar-Java
profile on the aJ-100 processor. The implementation has been
relatively straightforward as the aJ-100 processor has a rich API
with much of the functionality specified in RTSJ. As this API is
written in Java only, the object-oriented development method is
supported, as opposed to other implementations where such APIs
typically are implemented in C, thus calling for traditional
structured development as well.

Clearly one may ask: why implement the Ravenscar-Java profile
on an (almost) RTSJ compliant processor in the first place? There
are three arguments for doing it:
1. The aJile API has a number of proprietary features that make

portability of applications hard.
2. RTSJ is complex and the aJile API is too low level, while the

Ravenscar-Java profile is simpler and more amiable to off-line
analysis, for instance with tools like UPPAAL [25].

3. The programming model presented by the Ravenscar-Java
profile will be relatively easy to use for developers familiar with
applications for small devices using J2ME, CLDC, and profiles
like MIDP.

The last point could be further strengthened by introducing a
RAVENSCARlet concept analogous to the MIDlet concept for
mobile applications.

During our implementation of the Ravenscar-Java profile some
uncertainties, inconsistencies and weaknesses have been
uncovered, especially the semantics of the waitForNextPeriod
method is somewhat underdefined and could in our opinion
beneficially be simplified to return void instead of a boolean
value signalling a deadline miss, something that off-line analysis
should prevent anyway.

Preliminary benchmarks show that the implementation is fast
enough to be competitive with similar implementations in C/C++.
However, execution speed is not overly important for real-time
systems as long as the implementation is fast enough to satisfy the
real-time constraints that a given application demands.
Predictability of the implementation is much more important and
this is addressed very well by Ravenscar-Java. When these two
issues have been resolved, the remaining issues are all software
engineering issues: how easy is it to write application code, how
easy is it to maintain the code, how reusable and how portable is
the code?

Our intial experiments indicate that applications written for the
Ravenscar-Java profile will be easier to write, maintain and port.
To further substantiate this belief we plan to use our
implementation of the Ravenscar-Java profile in a larger industrial
application scenario together with FOSS Analytical A/S,
Denmark [9], who constructs advanced equipment for chemical
and micro-biological analysis for use in the food industry and
chemical industry. We plan to compare the Java implementation
with a C/C++ implementation, in terms of functionality,
reliability, analysability, maintainability and development time.

8. REFERENCES
[1] aJile Systems. www.ajile.com/, as of May 2006.
[2] aJile Systems. Products. Available at

www.ajile.com/products/aj100.htm, as of May 2006.
[3] aJile Systems. aJile Systems CLDC Runtime Version 3.16.09.

Available at www.ajile.com/support/, as of May 2006.
[4] aJile Systems. Periodic Threads. Internal white paper, July

2004, personal communication.

[5] Greg Bollella et al. The Real-Time Specification for Java™.
Add-Wesley, 2000.

[6] Alan Burns, Brian Dobbing, and George Romanski. The
Ravenscar Tasking Profile for High Integrity Real-Time
Programs. In Proc. Ada Europe Conf., pages 263 – 275,
Uppsala, Sweden, 1998.

[7] Alan Burns and Andy Wellings. Real-Time Systems and
Programming Languages. Ada 95, Real-Time Java and Real-
Time POSIX. Add-Wesley. 3rd Edition. 2001.

[8] Peter C. Dibble. Real-Time Java Platform Program-ming.
Sun Microsystems Press/Prentice Hall, 2002.

[9] FOSS Analytical A/S, Denmark. www.foss.dk/, as of May
2006.

[10] Ludovic Gauthier and Marc Richard-Foy. Expresso.
Realtime Java for Safety and Mission Critical Embedded
Systems. 2003. Available at www.irisa.fr/rntl-expresso/, as of
May 2006.

[11] James Gosling & Henry McGilton. The Java Language
Environment. White paper. May 1996. Available at
java.sun.com/docs/white/langenv/, as of May 2006.

[12] David S. Hardin. aJile Systems: Low-Power Direct-
Execution Java™ Microprocessors for Real-Time and
Networked Embedded Applications. White paper. Available
at www.ajile.com/papers/, as of May 2006.

[13] HIJA. High-Integrity Java Application. Project Number IST-
511718, Version 2.4. 8, June 2005, available from Andy
Wellings.

[14] Jagun Kwon, Andy Wellings, and Steve King. Ravenscar-
Java: A High Integrity Profile for Real-Time Java. In

Proceedings of JGI’02, pages 131-140, Seattle, Washington,
2002.

[15] Jagun Kwon, Andy Wellings, and Steve King. Ravenscar-
Java: A High Integrity Profile for Real-Time Java.
Department of Computer Science, University of York, UK.
York Technical Report YCS 342. May 2002.

[16] Jagun Kwon, Andy Wellings, and Steve King. Predictable
Memory Utilization in the Ravenscar-Java Profile. In Proc.
6th IEEE Internat. Symp. on Object-Oriented Real-Time
Distributed Computing. May 2003.

[17] Peter Puschner and Andy Wellings. A Profile for High-
Integrity Real-Time Java Programs. In Proc. 4th IEEE
Symposium on Object-Oriented Real-Time Distributed
Computing. 2001.

[18] Real-Time Specification for Java (RTSJ). www.rtsj.org/, as
of May 2006.

[19] Martin Schoeberl. JOP: A Java Optimized Processor for
Embedded Real-Time Systems. Dissertation. Vienna
University of Technology, January 2005.

[20] Martin Schoeberl. Restrictions of Java for Embedded Real-
Time Systems. In Proc. 7th IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, pages
93–100, Vienna, Austria. May 2004.

[21] J. Schwartz. Welcome to the 2006 JavaOne Conference.
java.sun.com/javaone/sf/Jonathans_welcome.jsp, as of June
2006.

[22] Hans Sondergaard. Periodic threads on aJ-100. White paper.
2004. Available at www.cs.aau.dk/ravenscar/output.htm, as
of May 2006.

[23] Sun Java Real-Time System. java.sun.com/j2se/realtime/, as
of May 2006.

[24] Systronix. www.systronix.com/, as of May 2006.
[25] UPPAAL. www.uppaal.com/, as of May 2006.
[26] Andy Wellings. Concurrent and Real-Time Programming in

Java. Wiley. 2004.

