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Abstract

Software-intensive systems of the future are expected to be highly distributed and to exhibit
adaptive and anticipatory behavior when operating in highly dynamic environments and interfacing
with the physical world. Therefore, visual modeling techniques to address these software-intensive
systems require a mix of models from a multitude of disciplines such as software engineering, control
engineering, and business process engineering. As in this concert of techniques software provides the
most flexible element, the integration of these different views can be expected to happen in the
software. The software thus includes complex information processing capabilities as well as hard
real-time coordination between distributed technical systems and computers.

In this article, we identify a number of general requirements for the visual model-driven
specification of next generation software-intensive systems. As business process engineering and
software engineering are well integrated areas and in order to keep this survey focused, we restrict
our attention here to approaches for the visual model-driven development of adaptable software-
intensive systems where the integration of software engineering with control engineering concepts
and safety issues are important. In this survey, we identify requirements and use them to classify and
characterize a number of approaches that can be employed for the development of the considered
class of software-intensive systems.
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1. Introduction

Today, for a rapidly growing range of products and services from many economic
sectors software has become a key factor (cf. [1]). These systems belong to the category of
software-intensive systems, “where software contributes essential influences to the design,
construction, deployment, and evolution of the system as a whole” [2]. Such software-
intensive systems today cover so diverse areas such as banking, communications,
transportation, or medicine and many activities of our daily lives depend to a great
extent on the proper operation of these systems.

The observation that creating software-intensive systems is extremely difficult is as old as
the software engineering discipline itself and has been already raised during the historic
NATO Software Engineering Conference 1968 in Garmisch (cf. [3]). While traditionally
the involved disciplines such as control engineering, software engineering, and business
process engineering as well as the integrating systems engineering discipline are often only
operated in a weakly connected manner, today a more tight integration is often practiced.
Software engineers, for example, have to participate in classical systems engineering
activities such as establishing system requirements or systematically exploring design
alternatives as software has a great impact on these tasks.

The next generation: The development challenge for software-intensive system of the
future becomes even more demanding, as the next generation of software-intensive systems
will be highly distributed, will exhibit adaptive and anticipatory behavior by adjusting their
structure dynamically, and will act in highly dynamic environments interfacing with the
physical world (cf. [1]). To master the often large and complex systems, a systematic
engineering approach which includes modeling as an essential design activity is required.
Therefore, a model-driven development (MDD) approach which provides a mix of models
from a multitude of disciplines such as software engineering, control engineering, and
business process engineering is required for mastering the complexity of these software-
intensive systems. There is thus an urgent need for a new software design paradigm to
master this task.'

While the integration of business process engineering and software engineering is well
understood, no widely accepted standard for the integration of software engineering with
control engineering concepts exists. The required integration of these different views will
probably happen within the software, which thus has to cover a wide spectrum of modeling
requirements which include complex information processing capabilities as well as the hard
real-time coordination of distributed technical systems and computers.

The different, often visual modeling techniques of the single disciplines, such as block
diagrams in control and systems engineering or the Unified Modeling Language (UML) in
software engineering, are today employed to foster the design and understanding of
complex, software-intensive systems. However, a tighter integration between these
approaches is needed as the design of future generations of software-intensive systems
will require a tighter integration between these worlds to really exploit the full potential.

'[4]: “The highest ranked recommendation of the NSF workshop was to develop a new software design
paradigm that recognizes that uncertainty and emergent, unanticipated behaviors are likely to be forever present
in the software-intensive systems of the future due to their ultra-large, networked, distributed, and diffuse-control
natures.”
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UML 2.0, for example, already includes concepts such as the components whose origin is
the telecommunications domain (cf. ROOM [5] actors). Message Sequence Charts (MSC) and
Specification and Description Language (SDL), which also finally found their way into the
UML 2.0, are another example. The OMG also acknowledged the demand and therefore
published a Request for Proposal (RFP) for UML for Systems Engineering (UML for SE) [6].
The idea of UML for SE is to provide a language that supports the system engineer in
modeling and analyzing software, hardware, logical and physical subsystems, data, personnel,
procedures, and facilities. Together with other approaches we will thus review the related
proposal called systems modeling language (SysML) [7] (www.sysml.org) which takes a subset
of the UML 2.0 [8] and extends it to also support continuous and hybrid systems.

Survey approach: In contrast to available surveys which focus on the control perspective
and hybrid systems, such as [9], or the software/hardware mapping during co-design such
as [10], in this paper we review approaches for their conceptual benefits and shortcomings.
Thereby, we regard especially the support for visual MDD of software-intensive systems
focusing on the expected requirements of future generations of software-intensive systems.

We are mainly interested in the potential and concepts rather than the effectiveness
of the approach together with the provided tools as studied for example in [11] in the
context of safety-critical systems. We thus evaluate the approaches only with respect to
their support for software design beginning with the modeling and resulting in an
implementation. We do not focus on modeling physical behavior or on specifying
requirements for the software.

In this survey we are interested in qualitative differences which can hardly be evaluated
in small-scale experiments as the relevant differences will often only show up when large-
scale problems are considered. In contrast to studies which focus on the effectiveness of
tools collecting quantitative data from small-scale experiments (cf. [11]), we therefore
employ a large-scale problem (introduced later in Section 2) in order to exemplify why the
chosen survey criteria are essential and to outline what limitations follow from the
identified shortcomings of the different approaches.”

Outline: The survey is structured as follows: a running example, the basic foundations of
the different considered domains, and the employed survey criteria are sketched in Section
2. Then, the considered approaches for the visual MDD of software-intensive systems are
briefly characterized in Section 3. The available modeling concepts and their expressiveness
including real-time and continuous behavior are then considered in Section 4. The specific
aspect of support for the MDD is afterwards discussed in Section 5. In Section 6, the need
and foundations and support for formal analysis for the approaches are reviewed. Finally,
we summarize our findings.

2. Prerequisites

To exemplify the employed survey criteria, we at first introduce the running application
example, then outline the foundations required for all relevant domains, and finally
provide a first overview about the employed criteria.

The results presented in this survey are therefore based on the information provided by the cited references or
personal communication and we decided not to try to validate the results by any kind of experiments with the
tools. Surveys with more experimental character which address some of the considered tools can be found, for
example, in [9,10].
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Application example: As a concrete example, the railcab research project® is considered
which aims at using a passive track system with intelligent shuttles that operate
individually and make independent and decentralized operational decisions. Shuttles
either transport goods or up to approx. 10 passengers.

The example provides a whole collection of different requirements typical for advanced
software-intensive systems. At the lowest level, sophisticated control algorithms have to be
employed in order to control the physical behavior of the shuttles. Above this lowest level
of control algorithms, a layer which provides the required higher-order control
functionality and monitoring capabilities is required. While the lowest layer only exhibits
continuous behavior, at this middle levels both continuous and discrete behavior is
required. Finally, at the highest level of the system the hard real-time coordination of the
autonomous shuttle subsystems requires only hard real-time discrete behavior.

In addition, the system is intended to self-optimize its behavior in different ways:
shuttles build convoys at run-time in order to reduce the energy consumption and achieve
higher average throughput and traveling speed, the modules for suspension and tilt of the
shuttle exchange information with other shuttles in order to anticipate and compensate the
disturbances on the tracks. Also within more low-level modules the potential of self-
optimization in different forms is studied to improve the performance of the system.
Therefore, this project is a good example for future software-intensive systems which will,
as outlined in [1], “exhibit adaptive and anticipatory behavior; they will process knowledge
and not only data, and change their structure dynamically.” Again the system provides
multiple challenging development tasks: at the middle level adaptation across a layered
system architecture is required which may include reconfiguration of the structure and not
only parameters. At the highest level, the structural reconfiguration of the system
architecture has to be addressed and the integration of business processes for the logistics is
required.

Involved domains and their specific techniques: As highlighted by the example, software-
intensive systems are characterized by the need for system integration that involves control
and system engineering, business process engineering, and software engineering.*

The standard notation for system and control engineering to structure and decompose
their models are block diagrams, which are usually used to specify feedback-controllers as
well as the controlled plant. In block diagrams, each block defines a relation between its
input and output signals and directed arcs connect the input and output signals of the
blocks. The dynamics of complex systems is classically described using differential
equations or libraries of blocks with underlying continuous behavior described by
differential equations. For each block the equations define the relation between its time-
continuous input and output signals and state variables. In addition, time-continuous and
value-discrete states and their modification might be specified using automata-like
elements.

The standard approaches in software engineering and business process engineering world
to describe data intensive aspects of the software or business are entity relationship
diagrams and their object-oriented extension class diagrams as present in UML 1.X [12].
One of the first object-oriented notations with a technical background was ROOM [5].
Here, instead of class diagrams an architectural view of the system is defined in actor

3http://www-nbp.upb.de/en/index.html.
*For some introduction into the matter see [1,2.4,6,7].
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diagrams that specify entities called actors, their communication interfaces, and the
interconnections used for communication between the actors. Today, the defacto standard
for software development is the UML. In its newest version, UML 2.0 [8], it supports both
classes diagrams and component diagrams, which correspond to the ROOM concept of
actor diagrams, to model the structure of a system.

Control engineering also includes discrete behavioral models, but pretty much focused
on continuous models and therefore did not develop any concepts to cope with the
increasing discrete complexity of today’s software system. The software engineering and
computer science community in contrast developed such models. However, the more
expressive notations for state machines in software engineering such as ROOM charts as
well as UML 2.0 state machines all extend Statecharts [13] and only support rather limited
notions of time and no hybrid behavior. Hybrid automata [14] are one example of a formal
model which bridges both worlds by assigning a continuous model (e.g. a feedback-
controller) to each discrete state of an automaton. Related more expressive state machine
models such as hybrid statecharts [15] in principle provide the required extensions of state
machines by combining complex reactive behavior with continuous behavior. However,
they have not found their way in any current approach.

Survey criteria: Taking the characteristics of the before outlined modeling notations of
all domains relevant for software-intensive systems into account, we can identify in the
following a number of general requirements for the visual MDD of software-intensive
systems, which can be categorized into support for modeling, support for MDD, and
support for the analysis of the models (cf. Sections 4, 5, and 6, resp.).

Support for modeling is a crucial prerequisite for the development of any complex
systems. The developer needs support for appropriate abstraction and description
techniques for the specific problems at hand. At first support for a structural view in
essential to rule the complexity of the system. Furthermore, the common description
techniques for the behavior which are state machines in the case of software engineering,
some form of block diagrams for control engineering, and the activity view for business
process engineering have to be supported. In addition, for requirement engineering often a
scenario view is beneficial. As exemplified in the application example, advanced software-
intensive systems further exhibit adaption. Finally, modularity is required to ensure a
proper separation between different subsystems and facilitate maintainability.

As “models can serve as a vehicle for communicating information between business
process engineers, control engineers and computer scientists’ [1] and therefore can bridge
the gap between the different disciplines, MDD is a promising approach to address the
development of the next generation of software-intensive systems. To enable reuse or
support multiple alternative platforms, we require a separation between platform-
independent models (PIM), platform specific models (PSM) and the code level (in case
of the software). The support for code generation can further be restricted to simulation
purposes or provide production code.

Models “can also provide an additional basis for preimplementation validation of
requirements and quality properties” [1] and thus model analysis can help to significantly
improve quality and reduce development costs. A crucial prerequisite for analysis is a clear
semantics as otherwise techniques such as simulation or formal verification have no solid
ground to build upon. For complex systems the coverage due to simulation or testing can
be rather limited, as in the case of the shuttle system where an overwhelming number of
different system states make any reasonable coverage by means of such incomplete
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Table 1

List of considered approaches and the employed references

Approach References URL Abbreviation

CHARON [16-18] www.cis.upenn.edu/mobies/ CHARON
charon/

HybridUML, HL3 [19] www.informatik.uni-bremen.de/ HybridUML
agbs/research/hybriduml/

HyROOM/HyCharts/ [20-23] www4.in.tum.de/~stauner/ HyROOM

Hybrid Sequence Charts

HyVisual and Ptolemy II [24,25] ptolemy.eecs.berkeley.edu/ HyVisual

Masaccio and Giotto [26-28] www.eecs.berkeley.edu/~fresco Masaccio

MATLAB/Simulink/ [29] www.mathworks.com MATLAB

Stateflow

Mechatronic UML [30-34] www.fujaba.de/projects/ MechUML
realtime/

SysML [6,7] www.sysml.org SysML

UML! [35,36] swt.cs.tu-berlin.de/~nordwig/ UML!
HYFOS/

techniques impossible. In such cases, only scalable formal verification techniques can
provide the required more complete coverage.

3. Considered visual model-driven approaches

Taking the identified criteria and the focus on the integration between software
engineering and control engineering into account, we decided to consider approaches
developed in the different domains, the state-of-the-art approaches employed today in
practice, upcoming standards in the field, as well as those academic proposals which seem
most advanced. Therefore, we selected the de facto standard in industry MATLAB/
Simulink with Stateflow, the approaches CHARON, Masaccio and Giotto, HybridUML
in combination with HL3, the triple HyROOM/HyCharts/Hybrid Sequence Charts,
Mechatronic UML which have a computer science background, HyVisual/Ptolemy II
which has a classical engineering background, and SysML” the upcoming standard of the
OMG as potential candidates for the visual MDD for next generation software-intensive
systems.® The name, the employed references, a related URL, and the employed
abbreviation are summarized for each considered approach in Table 1.

CHARON: A hierarchic automata model for the specification of behavior is provided
by the modeling language CHARON [16]. Additionally, it provides a hierarchical
architectural model, based on ROOM actor diagrams. CHARON’s transitions are non-
urgent and thus do not have to be fired instantancous [17] which leads to delays when firing
transitions. Sensing, computation, and actuation are assumed to be performed within one

5As the standard is not finished yet and all the tools supporting the not finished standard do mix the approach
with the UML 2.0 standard, we consider here only the standard and not toolsupport. This lead to a number of not
supported requirements, as seen in the following sections.

®Please note that one author of the article has been a main contributor to Mechatronic UML.
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period. This disengagement from the zero execution time assumption enables a
more realistic implementation. A so-called dynamic dependency graph ensures that
algebraic constraints which are evaluated dependent on the system’s current discrete state
are evaluated in the dependency order, i.e. an assignment is not processed before its right-
hand variables are updated. Alur et al. [18] defines refinement for hybrid CHARON
models.

CHARON?s focus is the formal verification of hybrid systems based using discrete
abstraction based on predicate abstraction.

HybridUML and HL3: HybridUML [19] defines a profile for UML 2.0 which allows the
specification of architecture and hybrid behavior, as well. HybridUML inherits its formal
semantics from CHARON and defines a transformation to the HL3 language [19]. HL3
models are implemented by a mapping to a multi-CPU computer system.

The idea of HybridUML is to provide for building safe systems. Thus, the operational
area of HybridUML is the formal verification of hybrid systems.

HyROOM, HyCharts, and Hybrid Sequence Charts: HyROOM [20,21] distinguishes
between a hierarchical architectural model and a hierarchical behavioral model, similar to
CHARON. The discrete states of the behavioral model are associated with MATLAB/
Simulink blocks to specify hybrid behavior.

As described in [20], a HyROOM model can be mapped to a HyChart [22,37] model.
This consists of an architectural model and a behavioral model as well, but the continuous
parts are not specified by MATLAB/Simulink blocks, but by ordinary differential
equations. By adding so-called relaxations to the state machine, the behavior becomes
implementable, but additional behavior is added as well. The semantics of the models is
defined formally, which enables verification. Requirements of the hybrid system can be
specified with Hybrid Sequence Charts [23].

As CHARON and HybridUML the idea of HyROOM is to provide a formal semantics
to enable verification.

HyVisual/ Ptolemy II: Similar to CHARON, HybridUML, or HyROOM, Ptolemy II
[24] distinguishes between architectural and behavioral design. In contrast to the
aforementioned approaches, Ptolemy II support different semantic domains (models of
computation). Among others, it supports semantics for continuous time, discrete time,
(distributed) discrete events, finite state machines, synchronous dataflow, and timed
multitasking. Ptolemy II even supports combination and integration of these models of
computation.

The Hybrid System Visual Modeler (HyVisual) is built on top of Ptolemy II. The
domain of HyVisual is the simulation for continuous-time dynamical systems and hybrid
systems.

The domain of both projects, HyVisual and Ptolemy II, is the modeling and simulation
of real-time systems with focus on the assembly of concurrent systems.

Masaccio and Giotto: Within the Fresco project, the high-level modeling language
Masaccio [28] has been developed. It builds complex components by the parallel and serial
composition of atomic discrete and atomic continuous components. It defines the interface
of a component which contains (among others) dependency relations, describing which
continuous output signals depend on which continuous input signals.

The basis of Masaccio is the formal semantics for the domain of hybrid dynamical
systems. The focus of Masaccio is to provide a formalized modeling language for
verification.
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The high-level programming language Giotto [26,27] which is also part of the Fresco
project is also based on components. Giotto models may be derived from Masaccio
models. Similar to automata models, a Giotto program consists of modes and mode
switches. The behavior of a mode is described by C code. Each mode is associated with a
period, specifying how often its behavior is executed, and a worst-case execution time
(WCET) for the related C code. Switch-frequencies specify how often a switch is evaluated.
The Giotto program is automatically implemented for a so-called virtual embedded
machine that realizes the timing specifications for the target platform.

Giotto is a framework for the time-triggered implementation of embedded systems. Its
basic idea is the separation of platform-independent issues, like timing, from platform-
dependent issues, like scheduling.

MATLAB/Simulink with Stateflow: The de facto industry standard employing block
diagrams is MATLAB/Simulink and Stateflow. Here block diagrams and classical control
engineering concepts have been integrated with a Statechart dialect named Stateflow. The
system structures are all interconnected via time-continuous signals. The MATLAB/
Simulink-based tool CheckMate can be used to verify MATLAB/Simulink and Stateflow
models.

Besides the modeling aspects of MATLAB/Simulink the initial focus of this tools is
simulation while other capabilities have been added later.

Mechatronic UML: Hierarchical architectural, hierarchical behavioral models, and the
notion of deployment diagram are supported by Mechatronic UML [31]. The approach
further provides an integration of continuous blocks which have been specified with the
CAE tool CAMeL.” Discrete behavior is specified by hierarchical hybrid reconfiguration
charts which are extensions of real-time statecharts and apply concepts of hybrid
statecharts [38] and the continuous behavior is specified by block diagrams with the
aforementioned CAE tool CAMeL. Transitions in hybrid reconfiguration charts are
associated with WCETs and deadlines. The WCETs respect that firing transitions, raising
events, and executing side-effects consumes time and the deadlines take into account that
recognizing activated transitions always occurs with a delay. This semantics disengages
from the zero-execution time semantics, usually applied in automata models and is thus
implementable.

Hybrid behavior is specified by associating configurations of hybrid components to the
discrete states. This enables specification and modular verification of reconfiguration
across multiple components [30].

SysML: The SysML [7] and [39],® which is an answer to OMG’s REPs for UML for SE
[6], and which is already adopted by the OMG, extends a subset of the UML 2.0
specification. One extension, related to the design of continuous and hybrid systems are so-
called Blocks which are based on UML’s composite structured classes. They describe the
fine structure of a class extended by continuous communication links between ports.
Parametric constraints allow specifying parametric (arithmetic) relations between
numerical attributes of instances. Continuous components could be modeled by defining
the according differential equations by parametric constraints for a class. The nodes of
activity diagrams are extended with continuous functions, in- and outputs, and flow
information for the exchange of continuous data.

"http://www.ixtronics.de/English/indexE.htm.
Shttp://www.sysml.org and http://syseng.omg.org/SysML.htm.
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UML": UML" [35] was developed in the context of the HYFOS project.’ Two key points
of the project are to develop a formal modeling approach for hybrid systems and the
simulation of the specified models. UML" was developed to satisfy the first key point. In
UML/, the architecture is specified by extended UML classes diagrams that distinguish
between discrete, continuous and hybrid classes. Hybrid behavior is specified by a textual
description of mathematic correlations between discrete, and continuous variables, similar
to the object-oriented extension of Z [36].

Employed domain specific techniques: In Table 2, the relation between the considered
approaches and the techniques mentioned in the preceding section are described.

While MATLAB/Simulink does only make use of block diagrams, HyVisual, HyROOM
and Mechatronic UML support block diagrams as one alternative concept. Continuous
behavior is described by some form of differential equation in all considered approaches.

UML 1.X has been chosen as platform by UML”, ROOM has been extended by
CHARON, HyROOM, and HyVisual, and the newer approaches such as HybridUML,
Mechatronic UML, and SysML extend UML 2.0.

Besides MATLAB/Simulink and SysML, which only supports UML 2.0 State
Machines, all approaches combine complex reactive behavior with continuous behavior
using some notion of a hybrid automaton. The considered approaches ecither use
ROOM charts (CHARON, HyROOM), or UML state machines (HybridUML, UML",
Mechatronic UML) as starting point. MATLAB/Simulink supports hybrid models via the
combination of Simulink and Stateflow.

4. Modeling support

Structure: For the modeling support of the considered approaches, we look in the
structural view for means to describe the type, class diagram, component/agent/block,
deployment, pattern, and task view as most of them are crucial prerequisites to model
complex systems. All presented approaches support the specification of architecture or
structure by a notion of classes, component or block diagrams. HybridUML and
Mechatronic UML are due to their UML 2.0 support the only ones that provide
deployment descriptions. Further Mechatronic UML is the only approach which support
pattern.'” It is remarkable that none of the approaches support a task view even though
this view is standard for embedded real-time systems.

Continuous behavior: As models have to integrate concepts from classical software
domains such as software engineering and business process engineering with control
engineering, the approaches should support both continuous and discrete behavior.
Consequently, all approaches allow the specification of continuous behavior by block
diagrams, differential and/or algebraic equations, or similar textual descriptions.

Reactive behavior: To describe complex reactive behavior, a state machine-like notation
with concepts such as hierarchical states, orthogonal states, and history are required. It
results in time-discrete state-dependent behavior.

Complex state-dependent reactive behavior can be specified in all approaches by state
machines, mostly with support for orthogonal states and hierarchy. While most
approaches support the notion of clocks and hybrid behavior in the sense of hybrid

*http://swt.cs.tu-berlin.de/~nordwig/HYFOS/.
19Supported are so-called Coordination Pattern [38].
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Fig. 1. Overview about the state machine concepts and the timing properties.

automaton, only MATLAB/Simulink and SysML do not explicitly offer these additional
constructs. A summary of the supported concepts is depicted in Fig. 1.

Scenario view: Another often required description technique for behavior is the scenario
view provided by notations such as timing diagrams or sequence diagrams. The description
of appropriate coordination behavior at the highest level of the shuttle system would be an
example where scenarios based descriptions would be helpful. Mechatronic UML and
SysML both supports modeling of real-time scenarios with UML sequence diagrams and
the standard time annotations. Hybrid Sequence Charts is the only approach that also
supports hybrid scenarios.

Activity view: For the business process engineering an activity view as described by
activity diagrams is also often required. In the shuttle system, the workflow modeling of
the logistics would be one example. SysML and Mechatronic UML are the only
approaches which support activity diagrams to model the behavior for control and object
flows. While Mechatronic UML is restricted to standard activity diagrams and special
extensions for structural reconfiguration, SysML supports also continuous data flows and
therefore can describe hybrid behavior which is surprisingly not supported for state
machines.

Adaptation: To build sophisticated software-intensive systems, the capability to adapt to
the given context is of paramount importance. For the shuttle system, for example,
adaptation or reconfiguration is in general required to adjust the control algorithms when
shuttles build a convoy or when exploiting the context information to chose the most
appropriate control strategy. If also self-optimization across multiple layers should be
realized, reconfiguration cross module boundaries must be possible. Otherwise, the shuttle
behavior as a whole cannot take advantage of the reconfiguration options of its
submodules.

Nearly all approaches embed the continuous models in the discrete state machines using
the hybrid automata concept in order to model reconfiguration of the continuous behavior
within one module. Specifying reconfiguration with SysML should be possible with the
activity diagrams, but concrete examples for this issue do not exist. In MATLAB/Simulink
conditional blocks, which are only evaluated if explicitly triggered, can be used to model
reconfiguration. Thus, a Stateflow diagram may be used to trigger the required elements of
the currently active configuration. MATLAB/Simulink and Mechatronic UML alone
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Fig. 2. Overview about the supported concepts for behavior and structure modeling.

permit that reconfiguration takes place across module/block boundaries. While in
MATLAB/Simulink this can be achieved using conditional blocks and additional signals,
in Mechatronic UML dynamic module interfaces are used to cover this issue.

Modularity: In complex systems, modularity is a major concern a suitable approach has
to fulfill in order to scale and be maintainable. The support for modularity is considered
looking whether an appropriate notion of interfaces and modules exist and whether these
interface notions support reconfiguration across module boundaries. The development of
the software of a complex software-intensive system like the shuttle system seems in fact
not feasible, if the employed approach does not support any modularity concepts.

All approaches support modular architecture and interface descriptions of the modules.
MATLAB/Simulink and Mechatronic UML are the only approaches that permit
reconfiguration across module/block boundaries. However, only Mechatronic UML can
ensure that complex reconfiguration steps across boundaries cannot result in an
inconsistent reconfiguration step.

Summary: A general overview about the number of supported structural and behavioral
notations is depicted in Fig. 2."" For the structural support we look therefore at the classes
type, instance, deployment and pattern and for the behavior support we consider the
classes continuous, state machine, scenario view and activity view. It is notable that
MATLAB/Simulink does only support blocks and does not support block types as a
concept. Most other approaches (CHARON, HyVisual, HybridlUML, HyROOM,
Masaccio, SysML, UML") also seem to focus on behavior and support only one
structural notation, while only Mechatronic UML support all considered classes. Most
approaches support continuous and reactive behavior and only HyROOM, Mechatronic
UML, and SysML support additional notations such as sequence diagrams or activity
diagrams.

An overview about all the different characteristics of the modeling support that have
been taken into account in the discussion of the considered approaches can be found in
Table 3.

please note that the numbers only do not provide any reasonable input for an assessment.
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5. MDD support

MDD levels: The levels PIM, PSM, and code of the model-driven architecture (MDA)
[40] correspond to important steps of MDD. Here, the question is which of these levels are
populated in the approach. Depending on the supported levels, we can judge whether the
approach can be employed in the earlier or later phases only or whether it supports the
whole development phases.'? In the shuttle system omitting a PIM would result in severe
problems in the long run, as we cannot expect that all shuttles are put in operation on the
same hardware and also the infrastructure will likely be subject to permanent updates of
the hardware. Therefore, having a conceptual and platform-independent reference model
for the system elements is in fact essential.

All approaches support the PIM level. HybridUML, Masaccio and Mechatronic UML
supports additionally the PSM level. Surprisingly, SysML which is an extension of a subset
of the UML standard provides only models at the PIM level as it focus on the requirement
phase. As described in Section 3, HyYROOM can be mapped to HyCharts models which are
more detailed and formalized but still at the PIM level. HybridUML, Masaccio and
Mechatronic UML support additionally the PSM level.

HybridUML models can be transformed to the PSMs of HL3. Giotto models which
contain platform specific information can be derived from Masaccio models. Mechatronic
UML supports the PSM level when WCET information is added to the statecharts.

Transformations/synthesis: An important set of criteria in the MDA view is also which
kind of transformations/synthesis steps are supported and what degree of automation is
offered, as this determines to a great extent how well the model-driven philosophy is really
supported. We consider “PIM — PSM”, “PSM — CODE”, and the direct synthesis “PIM
— CODE".

As depicted in Fig. 3, all approaches despite SysML support the PIM level and provide
either a direct PIM to Code step or a series of steps from PIM to PSM and then to Code
(HybridUML, Masaccio and Mechatronic UML). CHARON, UML", HyROOM,
HyCharts, and Ptolemy II extend ROOM or UML and are based on hybrid automata
or hybrid statecharts. Their models are located on the PIM level and enable code
generation without a mapping to the intermediate PSM. In the HybridUML approach the
HL3 models are implemented by a mapping to a multi-CPU computer system. Giotto
models of the Masaccio approach can be mapped to code which is executable on a special
virtual machine. Mechatronic UML PSM models, which are the PIM models with
annotated WCET, can be mapped to code.

Code generation: For the code generation step several distinct cases have to be
distinguished. Either the code is only meant to support simulation or it is possible to
employ the code for real-time operation. In the former case more accurate numerical
solvers might be employed which are at odds with the required hard real-time behavior. If
the code is in principle applicable for real-time processing, it might further guarantee only
the correct timing of the activation or in addition the correct schedulability.

As depicted in Fig. 3, UML" and HyVisual/Ptolemy II support code generation for
simulation purposes. Code generation of MATLAB/Simulink and HyROOM models are

12Using the MDA terminology for our survey criteria does not imply that the considered approaches must be
conform with the MDA architecture. Proposals such as platform-based design [41,42] which do not consider the
MDA terminology can be also described to some extent in this terminology.
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Fig. 3. Overview about the approaches w.r.t the identified MDD support.

possible with Realtime Workshop.'* The resulting code may be used for real-time
processing. CHARON and HybridUML support code generation with the correct timing
of the activation. Masaccio and Mechatronic UML additionally support correct scheduling.

Summary: The overview presented in Table 4 shows that the MDD approach is not well
supported by most of the approaches. Even though most of them have not been developed
with focus on MDA, there is a need for the seamless support of transformations from PIM
via PSM to code to be able to adjust the model to a specific platform details which might
not be covered by direct PIM to code synthesis. Often additional legacy artifacts have to be
taken into account in the PSM level, which is not supported even by the approaches which
support some form of PSM model. Also only a small fraction of the approaches guarantees
directly that the scheduling is correct by construction and that the timing of the activation
is guaranteed. Instead, these properties often have to be checked for the generated code.

6. Support for model analysis

Semantics: As stressed in [9], a crucial prerequisite for a preimplementation validation of
models is a full semantic integration of the employed visual modeling concepts and their
underlying models to be able to make reasonable predictions. The current integration
efforts at the OMG and by commercial vendors between the systems engineering and
software engineering domains ignore this demand and only provide an informal semantics.
However, as many software-intensive systems such as transportation, medical applications,
and command and control systems are safety-critical systems, predictability is mandatory.

If a sound formal semantics exists, automated support for the analysis of the continuous
and discrete behavior becomes possible. In addition, such a semantics is required to be
implementable (and models should be implemented accordingly to this semantics) as
otherwise the analysis result does not necessarily hold for the final system.

Bhttp://www.mathworks.com/products/rtw/.
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Fig. 4. Overview about the approaches w.r.t the identified support for analysis.

CHARON, Masaccio, HybridUML, HL3, UML", HyROOM, HyCharts and Mecha-
tronic UML have formally defined semantics, but due to the assumption of zero-execution
times or zero-reaction times, most of them are not implementable. Implementable
semantics are provided by CHARON, Giotto, and Mechatronic UML. HyCharts are
implementable after adding so-called relaxations. In contrast to the other approaches,
HyCharts then even respect that idealized continuous behavior is not implementable on
discrete computer systems. Furthermore, CHARON and Mechatronic UML provide a
semantic definition of refinement. Ptolemy II even supports multiple semantics and
supports their integration.

Simulation: A first common approach towards analyzing and understanding the system
behavior is usually simulation which derives a possible system trace from the system
model. Therefore, we look into the specific support for simulation of the different
approaches. To the best of our knowledge, all approaches besides Masaccio support direct
simulation of the hybrid model (cf. Fig. 4).

Schedulability analysis: A crucial prerequisite for hard real-time systems is a proof of the
schedulability of the system. Such a schedulability analysis at the model level is supported
by CHARON, Masaccio/Giotto, Mechatronic UML and Ptolemy II. For the other
approaches the generated code has to be analyzed.

Formal verification: To further also ensure relevant functional and non-functional
system properties beyond schedulability, we require techniques for the complete formal
verification. Relevant criteria are real-time behavior, real-time reconfiguration, and hybrid
behavior. An important requirement in practice is also that a scalable tool support exists
as otherwise no systems of practical relevance like the shuttle system can be tackled (cf.
Fig. 4).

Automatic verification of the real-time behavior including the reconfiguration is
supported by CHARON, Masaccio and Mechatronic UML. CHARON and Masaccio
even supports model checking of hybrid models. Mechatronic UML and Masaccio support
compositional and modular model checking of real-time properties employing refinement'*

"“The definition of refinement is informally as follows: a model refines another one, if it behaves always
compliant with the behavior of the original model.
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which is also possible for CHARON and HyCharts in principle as they also support a
notion of refinement. CHARON additionally supports predicate abstraction as a means to
improve the scalability of the verification.

Summary: The identified support for analysis can be found in Table 5. In order to
guarantee a system’s correctness, simulation and verification techniques are required.
Although some tools and techniques provide such support, there is still need for
improvement—especially for hybrid systems—in order to also handle practical problems
of considerable complexity.

7. Conclusion

We reviewed in this article the capabilities of a number of existing model-driven
approaches which can be employed for the visual MDD of software-intensive systems. As
the ““paradigm for software-intensive system development is still in its infancy” [1], we
could not expect to find ready-made solutions which address all identified requirements. As
the integration between business process engineering and software engineering is not
considered a problem, we focused on the demands for adaptable, safety-critical embedded
systems which include complex software. Thus, the integration of software engineering and
control engineering was of uppermost importance.

The presented survey is restricted to a number of approaches which address a reasonable
subset of the identified requirements. The specific characteristics and capabilities for the
approaches w.r.t. the modeling has been considered first by analyzing the offered modeling
concepts and their expressiveness for the relevant structural and behavioral aspects of
software-intensive systems. Then, the support for the MDD has been reviewed and the
support for formal analysis of the systems has been subject of the subsequent section.

The survey results are summarized using an oversimplifying scheme in Table 6. The table
highlights the following observations: (1) Most approaches only support very restricted
concepts for modeling such as the standard views for the structure and behavior. The
scenario and activity views, which are important to address the early phases, are often not
supported. (2) We can also conclude that all approaches lack full support for the PSM level
which is required to integrate legacy elements or reuse elements, which is required for
nearly all complex systems. (3) Another surprising observation is that most approaches,
including Matlab/Simulink, do not support a code generation scheme which directly
provides guarantees for any timing properties specified in the model. (4) Finally, a scalable
approach for the formal verification of crucial safety properties is hardly supported.

We thus can conclude that most approaches are not able to fulfill the requirements
identified for the support of the visual MDD of next generation software-intensive systems
but rather address only particular aspects of the design challenge if at all. It remains an
open question whether standardization efforts such as SysML will help to unite these often
separated efforts. The efforts around the Hybrid Systems Interchange Format (HSIF)"
may be also seen as a related approach, however the scope only address the hybrid
behavior but no concept for complex structures. Experience with UML model exchange
with XMI tells us that exchanging the models at the syntactic level alone is often not
sufficient to integrate the different solutions. Another possible solution could be the
support for multiple semantic domains as proposed by the Ptolomey II framework.

Bhttp://www.isis.vanderbilt.edu/Projects/Mobies/downloads.asp#HSIF.
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However, a solutions is required which is not only restricted to simulation but also
provides comprehensible composition concepts and supports more advanced analysis
techniques.
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