
Short Running Title Towards Reusable Real�Time Objects

Contact Author Brian Nielsen

Address� Aalborg University

Department of Computer Science

Fredrik Bajersvej �E

DK����� Aalborg� Denmark

Phone 	
��
 ���� ����

Fax 	
��
 ���� ����

email� bnielsen�cs�auc�dk

Towards Reusable Real�Time Objects

Brian Nielsen

Aalborg University

Department of Computer Science

Fredrik Bajersvej �E

DK����� Aalborg� Denmark

Email� bnielsen�cs�auc�dk

Gul Agha

Open Systems Laboratory

University of Illinois at Urbana�Champaign

Department of Computer Science

	
�� W� Spring
eld Av�

Urbana� Illinois �	��	� U�S�A

Email� agha�cs�uiuc�edu

http���osl�cs�uiuc�edu

Abstract

Large and complex real�time systems can bene�t signi�cantly from a component�based development approach

where new systems are constructed by composing reusable� documented and previously tested concurrent

objects� However� reusing objects which execute under real�time constraints is problematic because appli�

cation speci�c time and synchronization constraints are often embedded in the internals of these objects�

The tight coupling of functionality and real�time constraints makes objects interdependent� and as a result

di�cult to reuse in another system�

We propose a model which facilitates separate and modular speci�cation of real�time constraints�

and show how separation of real�time constraints and functional behavior is possible� We present our ideas

using the Actor model to represent untimed objects� and the Real�time Synchronizers language to express

real�time and synchronization constraints� We discuss speci�c mechanisms by which Real�time Synchronizers

can govern the interaction and execution of untimed objects�

We treat our model formally� and succinctly de�ne what e�ect real�time constraints have on a set of

concurrent objects� We brie�y discuss how a middleware scheduling and event�dispatching service can use

the synchronizers to execute the system�

ii

Nielsen and Agha� Towards Reusable Real�Time Objects

� MOTIVATION

Real�time systems remain among the most challenging systems to build� and often projects are late

and products faulty� Developers are faced with ever more stringent requirements for building larger� more

complex systems at a faster pace and without proportional resources� However� because current tools and

techniques to deal with complexity do not scale linearly with size of programs� development problems worsen�

We believe that real�time systems can bene�t signi�cantly from a development approach based on components

where new systems are constructed by composing reusable� documented and previously tested components�

Unfortunately� current software development methods and tools do not properly support such construction�

Because real�time systems are safety critical and often unattended� they must operate under strict

end�to�end time constraints and be dependable� Dependability requirements entail both correctness and

tolerance to faults� Real�time systems can be loosely de�ned as systems where timely response is equally

important as correct response� Real�time systems typically monitor and regulate physical equipment� Some

well�known examples include� manufacturing plant automatization� where the production steps must be

supervised and coordinated� chemical processes which are automatically monitored and regulated through

sensors and actuators� safety systems aboard trains and cars� �nancial applications where stock rates must

be guaranteed up�to�date and where transactions must be completed within speci�c time bounds�

Historically� real�time systems were built using low level programming languages and executed on

dedicated hardware and specialized operating systems� e�ciency� high resource utilization� and integration

with hardware were the primary concerns� software modularity and reuse were only secondary� In the light of

more stringent development requirements� we believe the emphasis should now be on building modular and

reusable components� which can be used in many applications� Middleware services 	i�e� general purpose

services located between platforms and applications �Bernstein �����
 can then be used to help integrate the

components�

However� reusing real�time components is often problematic because application speci�c time and

synchronization constraints are embedded in the internals of these components� This kind of tight coupling

makes components interdependent� and consequently unlikely to be reusable in other systems� Properly

supported component�based software development will allow components to be developed individually and

later be composed with other individually developed or existing components� making it possible to reuse

components in di�erent applications� Thus component�based software has emerged as an active area of

research� Our work makes a contribution to this area�

�

Nielsen and Agha� Towards Reusable Real�Time Objects

� SEPARATION AND REUSE

In what follows we use collections of concurrent objects to represent components in a distributed real�

time system� Typically these objects model real�world entities or act as proxies for them� The objects execute

concurrently and communicate by exchanging messages containing computation results or information about

their local states� Objects may be larger entities than data structures such as lists or trees� they need not

be heavyweight processes�

Designing reusable objects is di�cult and requires skilled engineers� Building reusable concurrent

real�time objects is even more di�cult� and necessitates particular restrictions�

�� Objects should not schedule themselves by setting their priorities or by specifying deadlines and delays

on method invocations� e�g�� use expressions such as object�method�args� deadline ��� or contain

any other type of scheduling related information�

�� Objects should not manipulate timers for programming delays or timeouts� Timer manipulation in�

cludes requesting� cancelling� and handling timer signals�

�� Objects should not have hardwired synchronization constraints� In a concurrent system� certain re�

strictions on order of events must be enfored in order to ensure safety and liveness� This concerns both

the order of invocations of a single object� and the interaction between invocations on a set of objects�

Priorities� real�time constraints� timer values� and synchronization constraints are all properties that

are likely to di�er between applications� and therefore objects that embed such behavior cannot be readily

reused� In addition most of these properties are global properties� not properties belonging internally to

a single object� For example� a priority level only makes sense when compared to the priorities of other

objects� Similarly� an object is usually part of a sequence of objects chained by method calls which together

must obey an end�to�end deadline� A deadline on a method invocation only represents a single object�s

time budget along the call chain� New applications using the object will usually have di�erent end�to�end

deadlines and di�erent call sequences� Therefore the objects would have to be modi�ed� and consequently

re�tested� to accommodate a new time budget�

Parameterizing objects with timing and scheduling information would solve these problems only to a

very limited extent� This is partly because it is di�cult to know which attributes should be parameterized�

and partly because concurrency constraints among objects are di�cult to capture through parameters� We

argue that it is better to handle the composition by a composition software agent� and use design methods and

programming languages�environments that explicitly provide notations and abstractions for this decoupling�

�

Nielsen and Agha� Towards Reusable Real�Time Objects

Another source of reuse is the constraints themselves� We expect that many instantances of the same

constraints will recur in di�erent applications� It would therefore be advantageous to reuse them� However� a

more important reason for reuse is that real�time and synchronization constraints can be extremely tricky to

specify correctly� Constraints that work as desired should be reused rather than be replaced by new similar

ones� An e�ective and modular language should enable the programmer to factor out common constraint

instances as constraint patterns and support their composition�

We propose a model in which both real�time and synchronization constraints can be speci�ed in an

integrated manner� enabling a fairly general set of constraints to be speci�ed� For example� a time constraint

could specify that a controller object must receive sensor data from a sensor object every �� milliseconds�

A synchronization constraint temporarily disables some actions until others have taken place� for example�

to prevent a producer from inserting in a full bu�er� We refer to combined real�time and synchronization

constraints as interaction constraints� Both types constrain dynamic interactions among objects�

Our interaction constraints are conceptually installed �above� ordinary objects� and they actively

enforce the developers� constraints� see Figure �� The enforcing agent is the scheduler 	or schedulers
 which

bases its decisions on the supplied constraints�

constraint-level

functional-level

object

unprocessed messages

interaction
constraints

communication
event

Figure �� Separation of constraints and objects�

Interaction constraints are expressed in terms of enabling conditions on communication events occur�

ring on the interface of objects� These events constitute the observable behavior of a system� What goes on

inside an object is encapsulated� and cannot be constrained� Speci�cally� a collection of synchronizer enti�

ties constrain by delaying or accelerating message invocations� Each synchronizer implements a constraint

pattern� We use the object�oriented Actor model to describe objects�

Section � introduces and exempli�es our model� Since we are interested in providing a clean and

sound model� it is accompanied by a description of its semantics� Our goal is to succinctly de�ne constraints

�

Nielsen and Agha� Towards Reusable Real�Time Objects

and their e�ects on the objects they constrain� Section � provides the formal de�nitions� Finally� in Section �

we discuss implementation�

� SPECIFICATION OF INTERACTION CONSTRAINTS

We use the object�oriented Actor model �Agha ����� Agha ����� Agha et al� ����� to describe

distributed computing entities 	hardware or software
� An actor encapsulates a state� provides a set of

public methods� and potentially invokes public methods in other objects by means of message passing�

Unlike many object�oriented languages� message passing is non�blocking and bu�ered� This means that when

an actor sends a message� it continues its computation without waiting for� or getting a reply from� the

receiver� Further� messages sent but not yet processed by the receiver are conceptually bu�ered in a mailbox

at the receiver� The receiver receives and processes messages one at a time� In addition� actors execute

concurrently with other actors� An actor system is illustrated in Figure ��

thread state:

A

B

methods:

interface

thread state:

A

B

methods:

interface

thread state:

A

B

methods:

(pending messages)

message

message

…
…

Figure �� Illustration of an actor system�

Each actor is identi�ed by a unique name� called itsmail address� A mail address can be bound to state

variables of type actor reference� To send a message an actor executes the send a�m	pv
 primitive� where

a is an actor reference variable containing the mail address of the target actor 	possibly the actor itself
�

m is the method to be invoked� and pv is the value	s
 passed� It is possible to communicate mail�addresses

through messages thus allowing dynamic con�guration of the communication topology�

The example actor program in Figure � describes part of a simple boiler control system consisting of

a pressure sensor� a controller� and a valve actuator� These entities are modelled as actors� The goal is to

maintain a pre�speci�ed pressure level in the boiler� The controller is the heart of the system� It repeatedly

�

Nielsen and Agha� Towards Reusable Real�Time Objects

executes a method which sends a request to the pressure sensor for the current boiler pressure� The iteration

is implemented by having the controller send itself a loop message which causes requests to be sent to the

pressure sensor� The parameter of this message speci�es which actor the result must be sent to� in this case

the controller itself� Upon request� the pressure sensor sends a reply containing its current pressure reading

back to the initiator of the request 	i�e�� the controller
� Based on that value� the controller computes an

updated steam valve position� and sends a message to invoke the move method on the valve�

actor pressureSensor � � f

real value�

method read�actorRef customer� f

send customer�reading�value��

g

g

actor steamValve � � f � � � g �� unspeci�ed

actor controller �actorRef sensor�valve� f

method loop� � f

send self�loop� ��

send sensor�read�self��

g

method reading�real pressure� f

newValvePos�computeValvePos�pressure��

send valve�move�newValvePos��

g

g

Figure �� Steam boiler�

The RT�Synchronizers� language that we de�ne in this paper to express constraints is purposely

distilled� it does not include syntactic sugar for convenient description of common constraint patterns� This

allows us to focus on the central ideas� and makes it easier to de�ne a complete semantics� A synchronizer

is an object that enforces user speci�ed constraints on messages sent by actors� Such constraints express

real�time or ordering constraints on pairs of message invocations� The messages of interest are captured by

means of patterns that represent predicates over message contents and synchronizer state� The structure

of an RT�Synchronizers� declaration is given in Figure �� It consists of � parts� A set of instantiation

�

Nielsen and Agha� Towards Reusable Real�Time Objects

parameters� declarations of local variables� a set of constraints� and a set of triggers�

synchronizer 	a�� � � � � an
f

StateDeclaration

p�� � p�� � y�
���

p�n � p�n � yn

p� � x �� exp

���

pk � x �� exp

g

Figure �� Structure of RT�Synchronizers�� �� f���g�

A constraint has one of the following forms�

p� � p� � y� Here p� and p� are message patterns and y is a variable or constant with positive real value�

Let a�	cv�
 and a�	cv�
 be message invocations matching p� and p� respectively� This constraint then

states that after an a�	cv�
 has occurred� an a�	cv�
 must follow before y time units elapse� We say

that event a�	cv�
 �res the constraint� and causes a demand for a�	cv�
�

p� � p� � y� After a�	cv�
 occurs� at least y time units must pass before a�	cv�
 is permitted�

In both cases there are no constraints on a�	cv�
 until after a�	cv�
 �res� A pattern has the form

x�	x�
 when b� where b is a boolean predicate 	guard
 over the message parameter x� and the state of the

synchronizer� x� is a state variable containing an actor address� Intuitively� a message satis�es a pattern

if it is targeted at x� and the boolean predicate evaluates to true� If a message satis�es a pattern� the

invocation is a�ected by a constraint which must then be satis�ed before the invocation can take place�

When a constraint forbids the invocation of a message� it is bu�ered until a later time when the constraint

enables it� A disabled message may become enabled when a delay has expired� or when the synchronizer

changes state through a trigger operation�

A trigger command speci�es how the synchronizer�s state variables change when a message invocation

satis�es a given pattern� Speci�cally� assignment of the trigger p � x �� exp is executed when a message

satisfying p is invoked� Synchronizers can thus adapt to the system�s current state�

To promote modularity of interaction constraints� the constraints can be speci�ed as a collection of

�

Nielsen and Agha� Towards Reusable Real�Time Objects

synchronizer objects executing concurrently�

��� Example �� Steam Boiler Constraints

The synchronizer in Figure � describes the real�time constraints for the simple boiler control system

from Figure �� The controller should read the pressure periodically 	every �� time units plus or minus some

tolerance
� The controller must receive sensor data from the pressure sensor within �� time units measured

from the start of the period� and it must update the steam valve position no later than � time units after

receiving sensor data� A message sequence chart illustrating the communication among the boiler objects

and the associated timing constraints is shown in Figure ��

actor pressureSensor � � f � � � g�

actor steamValve � � f � � � g�

actor controller �actorRef sensor�valve� f � � � g�

synchronizer boilerConstraints �actorRef	 controller�valve� f

�� periodic loop�

controller�loop � controller�loop �
���

controller�loop � controller�loop �
�
�

��deadline on reading�

controller�loop � controller�reading � ��

��deadline on move�

controller�reading � valve�move � �

g

Figure �� Steam boiler constraints�

This example shows how real�time constraints can be expressed and imposed separately from the

functionality� It also shows how periodic constraints can be expressed by combining deadlines and delays�

To make the language easier to use� common constraint patterns such as those enforcing periodicity can be

speci�ed as macros�

�

Nielsen and Agha� Towards Reusable Real�Time Objects

pressureSensor controller steamValve

read

reading

loop

move 5

20

10

loop

time

Figure �� Message sequence chart with annotated timing constraints for the steam boiler example�

��� Example �� New Boiler

In a new boiler application� the pressure sensor must be polled approximately every ��� time units

for pressure readings� and the pressure valve must be moved accordingly no later than �� time units after the

appropriate reading� However� in situations where the pressure in the boiler is high� the system must operate

with a higher frequency� The pressure sensor must then be polled every �� time units� Two threshold values�

NormToHighThr and HighToNormThr� de�ne which pressure values cause mode change�

The functional part is reused from Example �� i�e�� the actors and their respective behaviors are

unmodi�ed� but they are now composed by the �newBoilerConstraints� synchronizer given in Figure ��

The synchronizer maintains a mode state variable which tracks whether the system operates in high or

normal pressure mode� The example also illustrates RT�Synchronizers��s ability to capture the dynamic

changes that are common to many real�time systems through the use of a state variable� and to change time

constraints accordingly�

��� Example �� Time Bounded Bu�er

This and the next example show two common real�time constraint patterns� a real�time producer�

consumer relation� and rate control� These examples also show how RT�Synchronizers� can express syn�

chronization 	event ordering
 constraints�

Figure � shows a time bounded bu�er where each element must be removed �� time units after it

has been inserted� In addition� the usual restrictions of not putting on a full bu�er and not getting from

�

Nielsen and Agha� Towards Reusable Real�Time Objects

synchronizer newBoilerConstraints �actorRef	 sensor� controller� valve�f

enum Mode fNormal�Highg mode � Normal�

��normal pressure periodic�

sensor�read when mode��Normal � sensor�read � �����

sensor�read when mode��Normal � sensor�read � ���
�

��high pressure periodic�

sensor�read when mode��High � sensor�read � ����

sensor�read when mode��High � sensor�read � ��
�

��deadline on move�

sensor�read � valve�move �
�

��Trigger mode change

controller�reading�pressure� when pressure � NormToHighThr	 mode�High�

controller�reading�pressure� when pressure � HighToNormThr	 mode�Normal�

g

Figure �� New Steam Boiler�

an empty bu�er are enforced� Note that the code uses a shorthand� disable p� to temporarily prevent

messages matching the pattern p from being invoked� disable p can be written as e� � p � 	� where e�

is a pattern assumed to be �red at system startup time� This synchronizer could be used� for example� in

a multimedia system where the queue is an actor capable of decompressing a compressed video stream� the

actor has a �xed storage capacity for frames� Until a compressed frame is decompressed and consumed� it

occupies a bu�er slot� The actor accepts messages containing a compressed frame and messages removing

an uncompressed frame� The frames may only stay in the actor for a bounded amount of time� The bu�er

space must then be freed up for processing of new� fresh frames�

��� Example �� Rate Control

The example shown in Figure � illustrates how rate control can be described� At most �� move

operations can safely be performed on an actuator in any time window of �� time units�

We use an event generator actor to produce message invocations so that the synchronizer changes

state at certain time�points� An event generator actor does not add any functionality per se� but is necessary

for the proper functioning of the synchronizer� This programming technique obviates the need for a special

internal event concept in RT�Synchronizers��

�

Nielsen and Agha� Towards Reusable Real�Time Objects

actor q f

method put�Item item� f�� store item g�

method get�actorRef customer� f send customer�processItem�item��g

g

actor consumer� � f actor producer� � f

method consume� � f method produce � � f

send q�get�self�� send q�put�item��

send self�consume� �� send self�produce� ��

g g

method processItem�Item item� f � � � g g

g

synchronizer bbConstraints �actorRef	 producer� consumer� q� f

int n��� �� no of elements in queue

q�put � q�get �
�� �� time bound on get

disable consumer�consume when n � �� �� buf empty�

disable producer�produce when n � maxBufSz� �� buf full�

producer�produce	 n

�

consumer�consume	 n

�

g

Figure �� Bounded bu�er with time constraints�

� FORMAL DEFINITION

In this section we provide a formal de�nition of our model� The formal model de�nes the permissible

behavior of a constrained actor program� which is crucial for determining which executions on a physical

machine will be considered correct�

The separation of functionality and constraints is maintained in the formal de�nition� and this enables

the semantics for Actors and RT�Synchronizers� to be given as independent transition systems� The meaning

of a program composed of actors and synchronizers is then given by putting the two transition systems in

�parallel�� Figure �� gives an overview of the the transition systems to be de�ned� A numerator denominator�

pair should be read as Premise
Conclusion � where the premise is the condition that must hold in order for the conclusion

to hold� The � transitions de�ne semantics for Actors� the � transitions for individual constraints� and the �

��

Nielsen and Agha� Towards Reusable Real�Time Objects

actor actuator f method move� � f � � � gg

actor eventGenerator f

method timeout� � f send self�timeOut� �� g

g

synchronizer rateControll �actorRef	 actuator� eventGen� f

int credit�
�� �� max no of events in window

�� timeout �� tu�s after move�

actuator�move � eventGen�timeOut � ���

actuator�move � eventGen�timeOut � ���

�� event permitted�

disable actuator�move when credit � ��

�� timeOut must be after move�

disable eventGen�timeOut when credit �
��

actuator�move	 credit

�

eventGen�timeOut	 credit

�

g

Figure �� Rate control�

transitions for synchronizer objects� Finally� �� transitions de�ne the behavior of a constrained actor�system�

Actors� ������

Single constraints� ������

Synchronizers� ������

Constrained System� �������

Figure ��� Dependencies of the transition systems to be de�ned�

��� Semantics of Actors

We �rst de�ne a transition system � for an actor language� This de�nes how the state of an actor

system changes when a primitive operation is performed� thus giving an abstract interpretation� The actor

semantics presented here is inspired by the work of Agha et� al� �Agha et al� ����� where a well�developed

theory of actors can be found� However� note that we present actor semantics in imperative style rather

than the applicative style used in previous work� Our semantic model abstracts away the notion of methods�

Instead� each actor has a single behavior�a sequence of statements�which it applies to every incoming

��

Nielsen and Agha� Towards Reusable Real�Time Objects

message�

When an actor has completed processing a message it executes the ready command to indicate its

readyness to accept a new message� As an aside� readers familiar with the classic Actor literature will note

that the original become primitive has been replaced with ready� When an actor executed a become

it created a new anonymous actor to carry out the rest of its computation� and prepared itself to receive

a new message� Thus� in the classic model� actors were multi�threaded� and tended to be extremely �ne�

grained� In recent literature �Agha ������ the simpler ready has replaced become� with essentially no loss

of expressiveness� In addition we have� due to brevity� omitted the semantic de�nition of dynamic actor

creation�

The state of an actor system is represented by a con�guration which can be thought of as an instan�

taneous snapshot of the system state made by a conceptual observer� It is modeled as a pair h � j	 i

where � represents actor states� and 	 is the set of pending messages� The � mapping maintains the state

of all actors in the system� An actor state holds the execution state of an actor� the values of its state

variables and the commands that remain to be executed� An actor state is written �E � b�a where a is the

actor�s address� E is an environment 	mapping from identi�ers to their values
 tracking the values of the

state variables� and b is the remainder of the actor�s behavior� In each computation step the actor reduces

the behavior until it reaches a ready	x
 statement� This juncture signi�es that the actor a is waiting for

an incoming message whose contents should be bound to x� When a message arrives� the actor continues

its execution� A message is a pair ha� cvi consisting of a destination actor address a� and a value to be

communicated cv� In general cv encodes information about which method to invoke along with the values

of the method�s parameters�

hfun � ai

E � b

� E� � b�

h � � �E � b�a j	 i

� h � � �E� � b��a j	 i

hsnd � a� ha� � cvii

h � � �E � send	a�� cv
� b�a j	 i

� h � � �E � b�a j	 � ha� � cvi i

hrcv � a� ha� cvii

h � � �E � ready	x
� b�a j	 � ha� cvi i

� h � � �E�x �
 cv� � b�a j	 i

Figure ��� Con�guration transitions

��

The semantics of actors is given in Figure ��� The fun transition de�nes the e�ect on system state

when an actor performs an internal computation step� i�e� a reduction of an expression� The transition

��

Nielsen and Agha� Towards Reusable Real�Time Objects

system

� de�nes the semantics of the sequential language used to express actor behaviors� Since we do

not rely on a speci�c language� we have omitted its de�nition�

The interpretation of send is given by the snd�rule� The newly sent message is added to 	� Message

reception is described by the rcv transition� When an actor executes a ready	x
 command� it becomes ready

to accept a new message in an environment with the updated state variables left by the previous processing�

Also� the actual value carried by the message is bound to the formal argument x� Finally� the message is

removed from 	� It is exactly these receive transitions that will be constrained by RT�Synchronizers�� Other

transitions are only a�ected indirectly�

From this semantics one can make no assertions about the execution time of an actor program� how�

then� can we meet real�time requirements To make this point clear� we temporarily introduce time into the

Actor semantics�

Time can be added to transition systems by introducing a special set of delay actions written as

	d
 where d is a �nite positive real�valued number representing the passage of d time units� The idea is

that system execution can be observed by alternatingly observing a set of instantaneous transitions and

observing a delay� In �Nicollin et al� ����� this idea was termed the two�phase functioning principle� system

state evolves alternatingly by performing a sequence of instantaneous actions and by letting time pass�

By adding the rule� h � j	 i
��d�

� h � j	 i� we extend the

� transition relation with the

ability to let time pass� The rule states that any actor con�guration is always able to delay transitions for

some 	�nite
 amount of time� The consequence is that one cannot tell how long a time an actor program

takes to �nish� indeed the interval between any pair of actions is indeterminate� This is a reasonable model

for untimed concurrent programs� where no assumptions on the relative order or timing of events should be

made� However� a language with this semantics is unsuitable for real�time system� from the code one can

only make assertions about eventuality properties� not about bounded timing� A real�time programming

language should make assertions about time bounds possible� and its semantics should de�ne when and by

how much can time advance�

��� RT	Synchronizers� Semantics

We start by de�ning semantics for single constraints 	

� transition system
� and thereafter proceed

to a synchronizer object 	

� transition system
� the latter is essentially a state plus a collection of con�

straints and triggers� The state variables of a synchronizer will be represented by an environment V mapping

identi�ers to their values� Constraints and patterns are evaluated in this environment�

Recall that a constraint has the form p� � p� � y� Whenever an invocation matches p� the constraint

��

Nielsen and Agha� Towards Reusable Real�Time Objects

�res thereby creating a new demand instance for an invocation matching p�� Such a demand will semantically

be represented by the triple p� � d� where d is a real number denoting the deadline or release time of p��

depending on �� d is initialized with the value of state variable y� V 	y
� when �red� Since a constraint can

�re many times successively� a constraint may induce many outstanding demand instances� The state of a

single constraint is therefore represented as a constraint con�guration hj �� j � ji where �� stands for the

	static description of a
 constraint of the form p� � p� � y� and � is a multi�set of demands instantiated

from the static description �� � The semantic rules are shown in Figure ���

hSat� � a	cv
i

cs �

��
�

� if a	cv
 j� p�

p� � d� otherwise
cf �

��
�

p� � V 	y
 if a	cv
 j� p�

� otherwise

hj �� j � � p� � d� ji
a�cv�

� hj �� j � � cf � cs ji

hSat� � a	cv
i

cs �

��
�

� if a	cv
 j� p� � d� � �

p� � d� otherwise
cf �

��
�

p� � V 	y
 if a	cv
 j� p�

� otherwise

hj �� j � � p� � d� ji
a�cv�

� hj �� j � � cf � cs ji

hSat� � a	cv
i

cf �

��
�

p� � V 	y
 if a	cv
 j� p�

� otherwise

hj �� j � ji
a�cv�

� hj �� j � � cf ji

hDelay� � ei

�p� � di � 	�� e
�di � �

hj �� j � ji
��e�

� hj �� j �� e ji

a	cv
 j� x�	x�
when b �def a � V 	x�
 � b	V �x� �
 cv�

Figure ��� Semantics for single constraints

� where �� f���g�

The function cs determines whether the pattern of a demand instance is satis�ed� and if so� removes

it from the demand instance set� If the pattern is not satis�ed� the demand is maintained� Similarly� the

function cf determines whether or not the constraint �res and therefore whether or not to add a new demand

instance� Thus the Sat�rules ensure that whenever a constraint �res� a demand 	cf
 is added to �� Also�

whenever a demand 	cs
 is satis�ed� it is removed from �� Due to the possibility of a single message matching

both p� and p� the Sat�rules are prepared to both satisfy and �re a demand� The demand instance to be

��

Nielsen and Agha� Towards Reusable Real�Time Objects

removed is chosen non�deterministically� giving the implementation maximal freedom to choose the demand

it �nds the most appropriate� e�g�� the one with the tightest deadline�

Passage of time is controlled by the Delay�rule such that the elapsed amount of time 	e
 is subtracted

from di in each demand pi � di� This is written �� e� Thus for p � d� d is the amount of time that must

pass before p is enabled� In particular� p will be enabled when d is less than �� This requirement is enforced

by the cs function of the hSat� � a	cv
i rule� For p � d� d is the amount of time that may pass before

p will be disabled� p would be disabled if d is less than �� However the hDelay� � ei rule prevents time

from progressing that much� In e�ect� the delay rule ensures that deadline constraints are always satis�ed in

the semantics� This corresponds to the declarative meaning one would expect from a constraint� something

that must be enforced� Without this strict de�nition� our constraints would degenerate to mere assertions

and not convey their intended meaning� Note that an actual language implementation may not always be

able to give this guarantee � either statically or dynamically � for two reasons� First� because physical

resources may not exist to realize them� and second� because �nding feasible schedules for general constraints

is computationally very complex�

Con�icting constraints that have no solutions should be detected as part of the compiler�s static

program check� Ren has shown how RT�Synchronizers� constraints can be mapped to linear inequality

systems for which polynomial time algorithms exist for detecting solvability �Ren and Agha ����� Ren ������

The following transition sequence illustrates application of the transition rules for a constraint�

hj p� � p� � � j � ji
a��cv�

�

hj p� � p� � � j p� � � ji
����

�

hj p� � p� � � j p� � � ji
a��cv�

�

hj p� � p� � � j p� � �� p� � � ji
����

�

hj p� � p� � � j p� � �� p� � � ji
a��cv�

�

hj p�
 p� � � j p� � � ji
a��cv�

�

hj p�
 p� � � j � ji

Given that the behavior of each individual constraint is well de�ned� it is easy to de�ne the behavior

of a collection of constraints as found within a synchronizer� Essentially the individual constraints are

conjoined� i�e�� we require that all constraints agree on a given invocation� Similarly� they must all agree on

letting time pass�

A synchronizer is represented by a synchronizer con�guration
!�jV � where !� is a set of constraint

con�gurations 	ranged over by �
� As previously stated V represents the state variables of a synchronizer and

is a mapping from identi�ers to their values� The necessary de�nition is shown in Figure ��� A synchronizer

��

Nielsen and Agha� Towards Reusable Real�Time Objects

can engage in message reception a	cv
 or delay
	e
 only when it is permitted by every constraint�

We have omitted the rather simple de�nition of the e�ect of triggers� V � is V simultaneously updated

with the speci�ed assignments in the matched triggers�

hAction �
i

�i � ����n���i
�

� ��i

��� � � � � �njV �
�

�
�

�
�� � � � � �

�
njV ��

�
 � fa	cv
�
	e
g

Figure ��� Semantics for a synchronizer

� �

��� Combining Actors and RT	Synchronizers�

The preceding sections de�ned Actor and RT�Synchronizers� languages independently� The e�ect of

constraining an actor program can now be de�ned here as a special form of parallel composition 	denoted by

k
 that preserves the meaning of constraints� We call a collection of synchronizers an interaction constraint

system con�guration which is written ���� � � � � �n� where � ranges over synchronizer con�gurations� The

composition k of an actor con�guration and an interaction constraint system con�guration is de�ned in

Figure ���

Una�ected Actions

h � j	 i �

� h �� j	� i
 � fhfun � ai� hsnd � a�mi� hready � aig

h � j	 i k ���� � � � � �n�
�

�� h �� j	� i k ���� � � � � �n�

Receive

h � j	 i �

� h �� j	� i

V
i�����n	

�i
a�cv�

� ��i
 � hrcv � a� ha� cvii

h � j	 i k ���� � � � � �n�
�

�� h �� j	� i k ����� � � � � �

�
n�

Delay
V

i�����n	

�i
��d�

� ��i

h � j	 i k ���� � � � � �n�
��d�

�� h � j	 i k ����� � � � � �

�
n�

Figure ��� Combined behavior

���

Transitions una�ected by interaction constraints altogether are message sends and local computations�

These only have e�ect on the actor con�guration� Message invocations hrcv � a�mi are the interesting events

a�ected by constraints� Note that the same invocation may be constrained by several synchronizers� and

��

Nielsen and Agha� Towards Reusable Real�Time Objects

all must certify the invocation� i�e�� synchronizers� like constraints� are composed conjunctively� The idea is

that adding more synchronizers should further restrict the behavior of objects� A consequence of this idea

is that the synchronizers also must agree on letting time pass�

The combined semantics de�ne all correct transition sequences 	

�
��
� A transition sequence cor�

responds to one possible schedule of the implemented system 	consisting of actors� constraints� operating

system� runtime system� and hardware resources
� and thus a primary task of the language implementation

is to schedule events in the system such that the resulting schedule can be found in the program�s semantics�

Thus� a program consisting of actors and RT�Synchronizers� can be viewed as a speci�cation for the set of

possible systems�

Observe that not all transition sequences de�ned by

�
�� are realizable on a physical machine� The

problem is related to the progress of time and our intuition about causal ordering� Suppose event e� is

a method invocation resulting in the sending of a message which eventually causes a method invocation�

event e�� then we surely would expect that time has progressed between these events� That is� in terms of a

�ctitious global clock C� it should hold that C	e�
 � C	e�
� However� in our semantics� time is not required

to pass between causally related events� but only permitted to�

There are two related problems� time locks and cluster points� A time lock occurs when no time

progress is possible� i�e�� the delay transition is eternally disabled� In our model this occurs as consequence

of an unsatis�able deadline constraint� A cluster point is a bounded interval of time in which an in�nite

number of events occur� It is possible to write such a speci�cation in RT�Synchronizers�� However� it will not

be implementable on a 	�nitely fast
 computer" Since our goal is to de�ne the permissible implementations�

and since time locks and cluster points are only required when explicitly speci�ed� we have taken no measure

to prohibit such behavior� A compiler should� however� warn developers about such unsatis�able constraints�

� MIDDLEWARE SCHEDULING OF RT	Synchronizers�

The examples in Figures �#� illustrated how our language can be used as a speci�cation or modeling

language that de�nes the structure and permissible behavior of a computer system consisting of hardware

and system software executing an application�

An attractive approach to implementing a language that supports separation of objects and time

constraints is to use a middleware scheduling�event dispatching service� Such a service is depicted in Fig�

ure ��� An application consists of two parts� objects and time constraints� A set of potentially reusable

objects are composed by middleware services for communication and scheduling� Communication typically

includes request�reply communication� point�to�point real�time communication� and group communication�

��

Nielsen and Agha� Towards Reusable Real�Time Objects

The scheduler	s
 are responsible for event dispatching and resource 	typically processor
 allocation� based

on information that is speci�ed by the application separately from the objects� Thus� objects are being

controlled by the middleware� rather than controlling themselves or each other�

O1 O2 O3

middleware services

host OS + hardware

time
constraints

Figure ��� Middleware integrates pre�built objects�

Speci�cally� given a set of synchronizers as input� this service should� preferably without further

programmer involvement� schedule message invocations in accordance with the speci�ed real�time and syn�

chronization constraints� The remainder of this section is devoted to uncovering what work such a service

must do to execute the speci�cation directly�

Implementing our full model is not an easy task� but the di�culty is mostly related to the generality of

the constraints that can be expressed� rather than due to the separation of functionality and time constraints�

We have identi�ed three main tasks a compiler and scheduling service should address�

Scheduling� One challenge is to �nd a scheduling strategy that satis�es the deadline constraints when the

RT�Synchronizers� program is executed on a physical machine with limited resources� In addition�

hard and �rm real�time systems require an a priori guarantee 	or at least a solid argument
 that timing

constraints will be satis�ed on the chosen platform during runtime�

Constraint propagation� In RT�Synchronizers� the programmer need only specify end�to�end timing re�

lations� not intermediate constraints on all events along the call chain� Assume that actor a receives

a message m�� a then responds with a message m� to actor b which in turn sends a message m� to

actor c� Let am�� bm� and cm� denote the reception events of these messages� Then a typical inter�

action constraint would be am� � cm� � ��� This scenario is depicted in Figure ��� Consequently�

there is an implicit constraint on event bm� which is to happen 	well
 before cm�� Ideally� the com�

piler�runtime system should be able to perform constraint propagation along the call chain� and derive

the intermediate deadlines�

Synchronizer distribution� If the synchronizer entities are maintained as runtime objects� how should

their state be distributed Here there is a classic compromise between a centralized solution where

��

Nielsen and Agha� Towards Reusable Real�Time Objects

a b c

m1

m2

m3

end-to-end
deadline

Figure ��� End�to�end deadlines require computation of intermediate deadlines along the call chain�

consistent updates are easy versus a distributed solution that potentially reduces bottlenecks and

increases fault tolerance� but by increasing the cost of maintaining consistency�

Our implementation idea seems practical for soft real�time systems only� we provide no procedure�

whether automatic or manual� for establishing the guarantees of satisfaction of time constraints as required

by hard real�time systems� and for the unrestricted type of real�time and synchronization constraints that

we permit in our language� Additionally� a full veri�cation of the implemented system is rarely practical�

To make schedulability analysis practical� one often restricts the types of constraints to periodic constraints�

Similar restrictions can be made to RT�Synchronizers�� With simple dependencies between periodic tasks

generalized rate�monotonic analysis can be utilized �Sha et al� ������

unprocessed msgs

Scheduler ActorsSynchronizer
objects dispatch

 events

deadlines
release times

enable/disable info

new messages

msg. dispatch

Figure ��� Implementation architecture with constraint directed scheduling�

Constraint directed scheduling is an implementation technique that dynamically uses the information

of the �red constraints in the synchronizers to assign deadlines and release times to messages 	see Figure ��
�

Synchronizer objects are thus maintained at run time as data objects� whose state can be inspected by the

scheduler�

Time�based scheduling such as Earliest�Deadline�First 	EDF
 can then be used to dispatch messages

based on their deadlines� We propose to use EDF�scheduling because it is dynamic and optimal� if a feasible

schedule exists EDF will produce one� Obviously� EDF does not in itself guarantee that a feasible schedule

��

Nielsen and Agha� Towards Reusable Real�Time Objects

exists and constraint violations may therefore occur� An advantage of our strategy is that it does more

than simply monitor the time constraints� it constructively applies information from the synchronizers to its

scheduling decisions�

We propose to let the compiler compute a conservative version of the call graph annotated with worst

case execution time and message propagation delays� and include a copy of it at runtime �Ren ������ The

runtime system then has the information necessary to propagate constraints automatically when this cannot

be done statically by the compiler� Moreover� we expect that in many cases the compiler would be able

to compile away synchronizers entirely� It can generate code 	similar to remote�procedure�call stubs
 which

can be linked with the objects� This code implements the time constraints by manipulating timers� setting

priorities and�or instructing the scheduler about method call deadlines� etc�

It is interesting to note that the operational semantics can assist in the implementation of a constraint

directed scheduling system� An operational semantics can often be constructed such that it constitutes an

abstract algorithm for the language implementation� However� because our semantics abstracts away any

notion of resources and execution time� in our case� this algorithm can only be partial� In particular� it does

not solve the constraint propagation problem mentioned earlier�

The following example demonstrates two potential bene�ts of the semantics� First� it shows how

the semantics manipulates the synchronizer data structure by adding and removing constraints� and second

it indicates how release times and deadlines for messages can be deduced� Recall the boiler example in

Section ���� We show how the runtime system may execute that speci�cation� We maintain two important

data structures� the set of �red demands� and the pool of unprocessed messages� We reuse the notation for

demands from the semantics� hj �� j � ji where �� stands for the static description of a constraint� and �

is the multi�set of instantiated demands� A message is written as o�m�R�D� where o is the target object� m

the method to be invoked� and R and D respectively the release time and deadline of the message� In the

following� we measure time relative to a global clock t� and not using individual timers as was convenient in

the semantics� Each row in Figure �� shows the global time at which a given event 	i�e�� message invocation

occurs� the resulting synchronizer state� and the set of unprocessed messages 	including those produced by

the event
�

At time �� the system is shown in the initial state in which the message pool contains an initialization

message 	controller�loop
 and in which no synchronizer demands have been �red� Suppose the scheduler

invokes the controller�loop message at time �� This invocation matches three constraints and consequently

causes the synchronizer to issue three new demands� The two �rst constitute the periodic constraint on a

future loop message and the last one determines the deadline on the sensor reading� During processing of

the loop message the controller sends out two new messages� the loop message to itself� and a read request

��

Nielsen and Agha� Towards Reusable Real�Time Objects

t Event Synchronizer State Message Pool

� 	initial

hj c�loop� c�loop � ��
 � j � ji

hj c�loop� c�loop � ��
 � j � ji

hj c�loop� c�reading � �� j � ji

hj c�reading� v�move � � j � ji

c�loop���	�

� �

� c�loop

hj c�loop� c�loop � ��
 � j c�loop � �
 ��
 � ji

hj c�loop� c�loop � ��
 � j c�loop � �
 ��
 � ji

hj c�loop� c�reading � �� j c�reading � �
 �� ji

hj c�reading� v�move � � j � ji

c�loop���
 �� ��
 ��

s�read��� ��z

� �

� s�read

hj c�loop� c�loop � ��
 � j c�loop � �
 ��
 � ji

hj c�loop� c�loop � ��
 � j c�loop � �
 ��
 � ji

hj c�loop� c�reading � �� j c�reading � �
 �� ji

hj c�reading� v�move � � j � ji

c�loop���
 �� ��
 ��

c�reading��� ���

� �

� c�reading

hj c�loop� c�loop � ��
 � j c�loop � �
 ��
 � ji

hj c�loop� c�loop � ��
 � j c�loop � �
 ��
 � ji

hj c�loop� c�reading � �� j � ji

hj c�reading� v�move � � j v�move � �
 � ji

c�loop���
 �� ��
 ��

c�move��� ���

� �

�� v�move

hj c�loop� c�loop � ��
 � j c�loop � �
 ��
 � ji

hj c�loop� c�loop � ��
 � j c�loop � �
 ��
 � ji

hj c�loop� c�reading � �� j � ji

hj c�reading� v�move � � j � ji

c�loop���
 �� ��
 ��

� �

�� c�loop

hj c�loop� c�loop � ��
 � j c�loop � ��
 ��
 � ji

hj c�loop� c�loop � ��
 � j c�loop � ��
 ��
 � ji

hj c�loop� c�reading � �� j c�reading � ��
 �� ji

hj c�reading� v�move � � j � ji

c�loop���
 �� ��
 ��

s�read��� ���

� �

Figure ��� Sample execution of the boiler speci�cation�

��

Nielsen and Agha� Towards Reusable Real�Time Objects

to the pressure sensor�

The new loop message matches two demands� and according to the semantics these are applied

conjunctively� The runtime system can therefore deduce the release time and the deadline 	an � interval

around time ��
 for the loop message from the demands� Deducing a deadline for sensor�read constitutes

a more di�cult case 	labeled with a z symbol in Figure ��
� There is no immediate matching demand on

which to base the deadline� But it can be noted that there is a demand for which no matching message exists

in the message pool� It is therefore likely that invocation of the unmatched sensor�read message will cause

sending of the demanded message 	as it indeed turns out to be the case in this example
� Therefore the

sensor�read message should be assigned a deadline before the demanded deadline 	at time ��
� The speci�c

choice of deadline is in general a heuristic function of slack time and method computation time� Here time

� is chosen�

The approach of assigning unmatched messages deadlines based on the most urgent unmatched de�

mand will generally constrain the system unnecessarily� but selecting precisely the right message to constrain

is generally impossible without extra information about potential causal relations between messages� This

information is exactly what needs to be generated by the compiler� Less ideally� the missing constraints

could be resolved explicitly by the programmer by providing additional synchronizers� In a less expressive

real�time programming languages where end�to�end constraints cannot be expressed� the programmer would

always be forced to do this�

Resuming the example at time � where sensor�read is invoked� the sensor responds with a con�

troller�reading� Since this message matches a demand� it inherits the deadline from that 	time ��
� The

result of invoking the reading message 	at time �
 is the �ring of a new demand on the valve movement

and the sending of a valve�move message� Again� the runtime system is able to deduce the deadline on the

move message from the move demand� Finally� at time ��� the loop message is invoked� This satis�es the

remaining two demands� but at the same �res two new demands� which starts the next period�

 RELATED WORK

Real�time CORBA 	Common Object Request Broker Architecture
 �Group ����� is a highly visible re�

search e�ort where practitioners are shifting towards component�based real�time systems� An object request

broker can be viewed as middleware facilitating transparent client�server communication in a heterogeneous

distributed system� It also contains other communication services to facilitate building distributed applica�

tions� However� according to �Schmidt et al� ������ current ORBs are ill�suited for real�time systems for

at least four reasons� They lack interfaces for specifying quality of service� quality of service enforcement�

��

Nielsen and Agha� Towards Reusable Real�Time Objects

real�time programming facilities� and performance optimizations�

Current proposals for real�time CORBA �Schmidt et al� ����� Cooper et al� ����� Feng et al� �����

Kalogeraki et al� ����� use a quality of service metaphor for specifying real�time constraints� Typically� the

interface de�nition language is extended with QoS�datatypes� In TAO ORB �Schmidt et al� ������ these

parameters� which are necessary for guaranteeing schedulability according to rate monotonic scheduling�

include worst case execution time� period� and importance� In NRad�URI�s proposal �Cooper et al� �����

for a dynamic CORBA� time constraints are speci�ed in a structure containing importance� deadline and

period� and the constraints specify time bounds on a client�s method invocations on a server� The proposed

runtime system uses this information to compute dynamic scheduling and queuing priorities� The Realize

proposal �Kalogeraki et al� ����� associates deadline� reliability� and importance attributes to application

tasks� where a task is de�ned as a sequence of method invocations between an external input and the

generation of an external result� That is� deadlines in Realize are true end�to�end deadlines�

We see a clear trend in specifying real�time requirements through interface de�nitions and letting

middleware enforce them� Clients and servers are largely unaware of the imposed real�time requirements�

However� we think that these approaches�although an improvement�are imperfect�

� The quality of service attributes seem to be derived from what current run�time systems can manage

rather than forming a coherent set� We have opted for a clean language instead of a more or less

arbitrary collection of attributes�

� The types of constraints that can be speci�ed are restrictive� e�g�� only periods or deadlines between

request and reply events� In addition� the constraints are static� once assigned they cannot be modi�ed

to respond to dynamic changes in the system�s state of a�airs� We allow for a fairly general set of

constraints to be speci�ed�

� Synchronization constraints are not considered� In our proposal� synchronization constraints are spec�

i�ed using the same mechanism as time constraints�

The concept of separating functional behavior and interaction policies for Actors was �rst proposed

by Fr$lund and Agha in �Fr$lund and Agha ����� and a detailed description� operational semantics and

implementation can be found in �Fr$lund ������ That work only considered constraints on the order of

operations� Our work is a continuation of this line of research where we have extended it to apply to real�

time systems and provided a formal treatment of the extended model� However� to what extent real�time

and synchronization constraints can always be cleanly separated from functionality remains an open issue�

and one which we think can be best resolved through larger case studies�

Another approach which permits separate speci�cation of real�time and synchronization constraints

��

Nielsen and Agha� Towards Reusable Real�Time Objects

for an object�oriented language is the composition �lter model �Ak%sit et al� ����� Bergmans and Ak%sit ������

Real�time input and output �lters declared in an extended interface enable the speci�cation of time bounds

on method executions� Among the di�erences between composition �lters and RT�Synchronizers� is that

RT�Synchronizers� takes a global view of a collection of objects whereas the composition �lter model takes

a single object view� No formal treatment of composition �lters appears to be available in the literature�

The Real�time Object�Oriented Modeling method 	ROOM
 �Selic et al� ������ which has many notions

in common with the Actor model� has recently been extended with notions for specifying real�time properties

�Saksena et al� ������ message sequence charts with annotated timing information can now be used to express

activation periods of methods or end�to�end deadlines on sequences of message invocations� With these two

kinds of constraints and a few design guidelines� the authors show how scheduling theory can be applied to

ROOM�models�

Our approach to de�ning the semantics is inspired by recent research in formal speci�cation languages

for real�time systems� and the use of timed transition systems is borrowed from these languages� These

languages often take the form of extended automata 	Timed automata �Alur et al� ������ Timed Graphs

�Alur et al� ����� Nicollin et al� �����
� or process algebras such as Timed CSP �Schneider ������ A

di�erent approach is to include a model of the underlying execution resources� This approach is taken

in �Satoh and Tokoro ����� and �Zhou and Hooman ������ The resulting semantics includes an abstract

model of the execution environment 	number of CPU�s� scheduler� execution time of assignments etc�
� The

process algebra Communicating Shared Resources 	CSR
 has been designed with the explicit purpose of

modeling resources �Gerber and Lee ����� Gerber and Lee ������ A process always runs on some� possibly

shared� resource� A set of processes can be mapped to di�erent sets of resources� hence describing di�erent

implementations� Thus� these approaches model relatively concrete systems� rather than being speci�cations

for a set of possible systems� as was our goal�

A recent implementation result is �Kirk et al� ����� where certain aspects of RT�Synchronizers� are

implemented in their DART framework where constraints are used to dynamically instruct the scheduler

about delays and deadlines of messages� However the paper gives no systematic 	automatic
 translation of

constraints to scheduling information� We expect that our semantics can help in �lling up this gap�

� DISCUSSION

Developers of modern real�time systems are required to construct increasingly large and complex

systems� preferably at no extra cost� To satisfy this requirement� it is essential that developers can build

real�time systems from existing components� and that newly developed components can be reused in several

��

Nielsen and Agha� Towards Reusable Real�Time Objects

applications� We argued that in order to facilitate reuse of real�time objects� the real�time and synchroniza�

tion constraints governing the object�s interaction should be speci�ed separately from the objects themselves�

However� current development methods do not adequately support such separation�

We formulated our ideas in the context of Actors� and an associated speci�cation language� RT�

Synchronizers�� Combined� they enable separate and modular speci�cation of real�time systems� computing

objects are glued together by synchronizer entities that express real�time and synchronization constraints�

However� we believe that these ideas are applicable beyond these speci�c languages�

Our model is explained both conceptually and formally� Through a series of examples we indicated

how separate speci�cation is possible� Our operational semantics de�nes exactly what constraints are and

what their e�ect on a given set of objects should be�

Our work on semantic modeling has clari�ed our understanding of the behavior of our model� and

provides a succinct and detailed de�nition of synchronizers and constrained actor programs� In particular�

we have gained new insight in three areas� which made the e�ort worthwhile�

� We de�ned the semantics in a modular fashion by composing a transition system for the untimed object�

model with a transition system which interprets the time constraints� This composition explicitly points

out which� object transitions are a�ected and how� reception of messages and time�progress may only

occur when permitted by the constraints� Other object transitions are only indirectly a�ected�

The modularity opens the possibility of plugging in a di�erent constraint speci�cation language� i�e��

the

� transition could be replaced with the semantics for the new language� The composition will

work when a�ected transitions remain as above� and when the semantics of the new language can be

given as a timed transition system� Thus� our constraining concept is captured by the composition�

� Our semantics helped uncover some of the semantic subtleties of our constraint language� such as

what happens when patterns and constraints overlap� For example� the same message may both �re

a new demand as well as satisfy an existing one� Moreover� we decided that overlapping constraints

should be interpreted conjunctively� i�e�� both must be satis�ed� Finally� we decided that adding

more synchronizers should further restrict the behavior of objects� i�e�� synchronizers must be satis�ed

conjunctively�

It should also be noted that the rules de�ning the semantics of individual constraints appear compli�

cated� This should give food for thought when revising the language or the semantics�

� The last major bene�t is that our semantics suggests an implementation strategy suitable for soft

real�time systems� The synchronizer entities can be maintained at runtime and can be used to ex�

tract information about release times and deadlines of messages� The semantics gives an abstract

��

Nielsen and Agha� Towards Reusable Real�Time Objects

interpretation of the synchronizer objects and speci�es how demands should be added or removed�

Building real�time components and architectures for integrating them is an area of active research�

We believe that with additional research� component�based development will allow more complex real�time

systems to be developed on schedule� However� additional work is needed� both on the models used for

separate speci�cation and on the middleware services necessary to implement them�

Acknowledgments

This work was made possible in part by support from the US National Science Foundation under

contracts NSF CCR�������� and NSF CCR��������� by support from the US Air Force O�ce of Scienti�c

Research� under contract AF DC �������� The authors would like to thank other members of the Open

Systems Laboratory for their comments and critical insights into the work related in this paper� In particular�

we would like to thank Shangping Ren for her contribution to the de�nition of RTSynchronizers� and to

Nadeem Jamali for his comments on a draft of this paper� A part of this research was done while the �rst

author was a visitor to the University of Illinois Open Systems Laboratory under a fellowship from The

Danish Technical Research Foundation and the Danish Research Academy�

��

Nielsen and Agha� Towards Reusable Real�Time Objects

REFERENCES

Agha� G� 	����
� Actors� A Model of Concurrent Computation in Distributed Systems � MIT Press� Los

Alamitos� California� ISBN ��������������

Agha� G� 	����
� �Concurrent Object�Oriented Programming�� Communications of the ACM �� � �� ���#����

Agha� G� 	����
� �Modeling Concurrent Systems� Actors� Nets� and the Problem of Abstraction and Com�

position�� In 	
th International Conference on Application and Theory of Petri Nets � Osaka� Japan�

Agha� G�� S� Fr$lund� R� Panwar� and D� Sturman 	����
� �A Linguistic Framework for Dynamic Composition

of Dependability Protocols�� In Proceedings of the Conference on Dependable Computing for Critical

Applications� Sicily� IFIP 	��
 �

Agha� G�� I� A� Mason� S� F� Smith� and C� L� Talcott 	����
� �A Foundation for Actor Computation��

Journal of Functional Programming
 � �#���

Ak%sit� M�� J� Bosch� W� van der Sterren� and L� Bergmans 	����
� �Real�Time Speci�cation Inheritance

Anomalies and Real�Time Filters�� In Proceedings ECOOP � pp� ���#����

Alur� R�� C� Courcoubetis� and D� Dill 	����
� �Model#Checking for Real#Time Systems�� In Proceedings of

the Fifth IEEE Symposium on Logic in Computer Science� pp� ���#����

Bergmans� L� and M� Ak%sit 	����
� �Composing Synchronization and Real�Time Constraints�� In Proceedings

of The Object Oriented Real�Time Systems �OORTS� Workshop� San Antonio� TX� USA� In conjunction

with �th IEEE Symposium on Parallel and Distributed Computing Systems�

Bernstein� P� A� 	����
� �Middleware � A Model for Distributed System Services�� Communications of the

ACM �� � �� ��#���

Cooper� G�� L� C� DiPippo� L� Esibov� R� Ginis� R� Johnston� P� Kortman� P� Krupp� J� Mauer� M� Squadrito�

B� Thuraisingham� S� Wohlever� and V� F� Wolfe 	����
� �Real�Time CORBA Development at MITRE�

NRaD� Tri�Paci�c and URI�� In Proceedings of IEEE Workshop on Middleware for Distributed Real�time

Systems and Services � IEEE� pp� ��#��� San Francisco� CA� USA�

Feng� W�� U� Syyid� and J� W��S� Liu 	����
� �Providing for an Open� Real�Time CORBA�� In Proceedings

of IEEE Workshop on Middleware for Distributed Real�time Systems and Services � IEEE� pp� ��#���

San Francisco� CA� USA�

Fr$lund� S� 	����
� Coordinating Distributed Objects� An Actor�Based Approach to Synchronization� MIT

Press�

Fr$lund� S� and G� Agha 	����
� �A Language Framework for Multi�Object Coordination�� In Proceedings

of the European Conference on Object Oriented Programming �ECOOP� ��� � O� Nierstrasz� Ed�� LNCS

���� Springer�Verlag� Kaiserslautern� Germany� pp� ���#����

Gerber� R� and I� Lee 	����
� �Communicating Shared Resources� A Model for Distributed Real�Time

��

Nielsen and Agha� Towards Reusable Real�Time Objects

Systems�� In Proc� Real�Time Systems Symposium� IEEE� Santa Monica� CA� USA� pp� ��#���

Gerber� R� and I� Lee 	����
� �A Layered Approach to Automating the Veri�cation of Real�Time Systems��

IEEE Transactions on Software Engineering 	� � �� ���#����

Group� O� M� 	����
� �Realtime CORBA � A White Paper � Issue ����� Technical Report ORBOS����������

Object Management Group�

Kalogeraki� V�� P� Melliar�Smith� and L� Moser 	����
� �Soft Real�Time Resource Management in CORBA

Distributed Systems�� In Proceedings of IEEE Workshop on Middleware for Distributed Real�time Systems

and Services � IEEE� pp� ��#��� San Francisco� CA� USA�

Kiely� D� 	����
� �Are Components the Future of Software�� IEEE Computer �
 � �� ��#���

Kirk� B�� L� Nigro� and F� Pupo 	����
� �Using Real Time Constraints for Modularisation�� In Joint Modular

Language Conference� Linz�

Nicollin� X�� J� Sifakis� and S� Yovine 	����
� �Compiling Real�Time Speci�cations into Extended Automata��

IEEE Transactions on Software Engineering 	� � �� ���#����

Ren� S� 	����
� �An Actor�Based Framework for Real�Time Coordination�� Ph�D� thesis� Department Com�

puter Science� University of Illinois at Urbana�Champaign� PhD� Thesis�

Ren� S� and G� Agha 	����
� �RT�Synchronizer� Language Support for Real�Time Speci�cations in Dis�

tributed Systems�� ACM Sigplan Notices �� � ��� Also in Proceedings of the ACM Sigplan ����Workshop

on Languages� Compilers� and Tools for Real�Time Systems�

Ren� S� and G� Agha 	����
� �A Modular Approach for Programming Embedded System�� In Lectures on

Embedded Systems� Lecture Notes in Computer Science� LNCS 	��� � F� Vaandrager and G� Rozenberg�

Eds�� Springer�Verlag� pp� ���#����

Ren� S�� G� Agha� and M� Saito 	����
� �A Modular Approach for Programming Distributed Real�Time

Systems�� Journal of Parallel and Distributed Computing �� � �� �#���

Saksena� M�� P� Freedman� and P� Rodziewicz 	����
� �Guidelines for Automated Implementation of Exe�

cutable Object Oriented Models for Real�Time Embedded Control Software�� In 	�th IEEE Real�Time

Systems Symposium� IEEE� pp� ���#����

Satoh� I� and M� Tokoro 	����
� �Semantics for a Real�Time Object�Oriented Programming Language�� In

Int� Conf� on Computer Languages � IEEE� Toulouse� France� pp� ���#����

Schmidt� D� C�� R� Bector� and D� L� Levine 	����
� �An ORB Endsystem Architecture for Statically

Scheduled Real�time Applications�� In Proceedings of IEEE Workshop on Middleware for Distributed

Real�time Systems and Services � IEEE� pp� ��#��� San Francisco� CA� USA�

Schmidt� D� C� and M� E� Fayad 	����a
� �Lessons Learned Building Reusable OO Frameworks for Dis�

tributed Software�� Communications of the ACM �� � ��� ��#���

��

Nielsen and Agha� Towards Reusable Real�Time Objects

Schmidt� D� C� and M� E� Fayad 	����b
� �Object�Oriented Application Frameworks�� Communications of

the ACM �� � ��� ��#���

Schneider� S� 	����
� �An Operational Semantics for Timed CSP�� Information and Computation 		� � ���#

����

Selic� B�� G� Gullekson� and P� T� Ward 	����
� Real�time Object�oriented Modeling � Wiley Professional

Computing� John Wiley & Sons� Inc�� New York� ISBN ��������������

Sha� L�� R� Rajkumar� and S� S� Sathaye 	����
� �Generalized Rate�Monotonic Scheduling Theory� A

Framework for Developing Real�Time Systems�� Proceedings of the IEEE �
 � �� ��#���

Zhou� P� and J� Hooman 	����
� �A Proof Theory for Asynchronously Communicating Real�Time Systems��

In Proc� Real�Time Systems Symposium� IEEE� Phoenix� AZ� USA� pp� ���#����

��

