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Abstract

Large and complex real-time systems can benefit significantly from a component-based development approach
where new systems are constructed by composing reusable, documented and previously tested concurrent
objects. However, reusing objects which execute under real-time constraints is problematic because appli-
cation specific time and synchronization constraints are often embedded in the internals of these objects.
The tight coupling of functionality and real-time constraints makes objects interdependent, and as a result
difficult to reuse in another system.

We propose a model which facilitates separate and modular specification of real-time constraints,
and show how separation of real-time constraints and functional behavior is possible. We present our ideas
using the Actor model to represent untimed objects, and the Real-time Synchronizers language to express
real-time and synchronization constraints. We discuss specific mechanisms by which Real-time Synchronizers
can govern the interaction and execution of untimed objects.

We treat our model formally, and succinctly define what effect real-time constraints have on a set of
concurrent, objects. We briefly discuss how a middleware scheduling and event-dispatching service can use

the synchronizers to execute the system.
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1 MOTIVATION

Real-time systems remain among the most challenging systems to build, and often projects are late
and products faulty. Developers are faced with ever more stringent requirements for building larger, more
complex systems at a faster pace and without proportional resources. However, because current tools and
techniques to deal with complexity do not scale linearly with size of programs, development problems worsen.
We believe that real-time systems can benefit significantly from a development approach based on components
where new systems are constructed by composing reusable, documented and previously tested components.
Unfortunately, current software development methods and tools do not properly support such construction.

Because real-time systems are safety critical and often unattended, they must operate under strict
end-to-end time constraints and be dependable. Dependability requirements entail both correctness and
tolerance to faults. Real-time systems can be loosely defined as systems where timely response is equally
important as correct response. Real-time systems typically monitor and regulate physical equipment. Some
well-known examples include: manufacturing plant automatization, where the production steps must be
supervised and coordinated; chemical processes which are automatically monitored and regulated through
sensors and actuators; safety systems aboard trains and cars; financial applications where stock rates must
be guaranteed up-to-date and where transactions must be completed within specific time bounds.

Historically, real-time systems were built using low level programming languages and executed on
dedicated hardware and specialized operating systems: efficiency, high resource utilization, and integration
with hardware were the primary concerns, software modularity and reuse were only secondary. In the light of
more stringent development requirements, we believe the emphasis should now be on building modular and
reusable components, which can be used in many applications. Middleware services (i.e. general purpose
services located between platforms and applications [Bernstein 1996]) can then be used to help integrate the
components.

However, reusing real-time components is often problematic because application specific time and
synchronization constraints are embedded in the internals of these components. This kind of tight coupling
makes components interdependent, and consequently unlikely to be reusable in other systems. Properly
supported component-based software development will allow components to be developed individually and
later be composed with other individually developed or existing components, making it possible to reuse
components in different applications. Thus component-based software has emerged as an active area of

research. Our work makes a contribution to this area.
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2 SEPARATION AND REUSE

In what follows we use collections of concurrent objects to represent components in a distributed real-
time system. Typically these objects model real-world entities or act as proxies for them. The objects execute
concurrently and communicate by exchanging messages containing computation results or information about
their local states. Objects may be larger entities than data structures such as lists or trees, they need not
be heavyweight processes.

Designing reusable objects is difficult and requires skilled engineers. Building reusable concurrent

real-time objects is even more difficult, and necessitates particular restrictions:

1. Objects should not schedule themselves by setting their priorities or by specifying deadlines and delays
on method invocations, e.g., use expressions such as object.method(args) deadline 10, or contain

any other type of scheduling related information.

2. Objects should not manipulate timers for programming delays or timeouts. Timer manipulation in-

cludes requesting, cancelling, and handling timer signals.

3. Objects should not have hardwired synchronization constraints. In a concurrent system, certain re-
strictions on order of events must be enfored in order to ensure safety and liveness. This concerns both

the order of invocations of a single object, and the interaction between invocations on a set of objects.

Priorities, real-time constraints, timer values, and synchronization constraints are all properties that
are likely to differ between applications, and therefore objects that embed such behavior cannot be readily
reused. In addition most of these properties are global properties, not properties belonging internally to
a single object. For example, a priority level only makes sense when compared to the priorities of other
objects. Similarly, an object is usually part of a sequence of objects chained by method calls which together
must obey an end-to-end deadline. A deadline on a method invocation only represents a single object’s
time budget along the call chain. New applications using the object will usually have different end-to-end
deadlines and different call sequences. Therefore the objects would have to be modified, and consequently
re-tested, to accommodate a new time budget.

Parameterizing objects with timing and scheduling information would solve these problems only to a
very limited extent. This is partly because it is difficult to know which attributes should be parameterized,
and partly because concurrency constraints among objects are difficult to capture through parameters. We
argue that it is better to handle the composition by a composition software agent, and use design methods and

programming languages/environments that explicitly provide notations and abstractions for this decoupling.
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Another source of reuse is the constraints themselves. We expect that many instantances of the same
constraints will recur in different applications. It would therefore be advantageous to reuse them. However, a
more important reason for reuse is that real-time and synchronization constraints can be extremely tricky to
specify correctly. Constraints that work as desired should be reused rather than be replaced by new similar
ones. An effective and modular language should enable the programmer to factor out common constraint
instances as constraint patterns and support their composition.

We propose a model in which both real-time and synchronization constraints can be specified in an
integrated manner, enabling a fairly general set of constraints to be specified. For example, a time constraint
could specify that a controller object must receive sensor data from a sensor object every 20 milliseconds.
A synchronization constraint temporarily disables some actions until others have taken place, for example,
to prevent a producer from inserting in a full buffer. We refer to combined real-time and synchronization
constraints as interaction constraints. Both types constrain dynamic interactions among objects.

Our interaction constraints are conceptually installed “above” ordinary objects, and they actively
enforce the developers’ constraints, see Figure 1. The enforcing agent is the scheduler (or schedulers) which

bases its decisions on the supplied constraints.

interaction

constraint-level

functional-level

unprocessed messages

Figure 1: Separation of constraints and objects.

Interaction constraints are expressed in terms of enabling conditions on communication events occur-
ring on the interface of objects. These events constitute the observable behavior of a system. What goes on
inside an object is encapsulated, and cannot be constrained. Specifically, a collection of synchronizer enti-
ties constrain by delaying or accelerating message invocations. Each synchronizer implements a constraint
pattern. We use the object-oriented Actor model to describe objects.

Section 3 introduces and exemplifies our model. Since we are interested in providing a clean and

sound model, it is accompanied by a description of its semantics. Our goal is to succinctly define constraints
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and their effects on the objects they constrain. Section 4 provides the formal definitions. Finally, in Section 5

we discuss implementation.

3 SPECIFICATION OF INTERACTION CONSTRAINTS

We use the object-oriented Actor model [Agha 1986; Agha 1990; Agha et al. 1997] to describe
distributed computing entities (hardware or software). An actor encapsulates a state, provides a set of
public methods, and potentially invokes public methods in other objects by means of message passing.
Unlike many object-oriented languages, message passing is non-blocking and buffered. This means that when
an actor sends a message, it continues its computation without waiting for, or getting a reply from, the
receiver. Further, messages sent but not yet processed by the receiver are conceptually buffered in a mailbox
at the receiver. The receiver receives and processes messages one at a time. In addition, actors execute

concurrently with other actors. An actor system is illustrated in Figure 2.

interface
thread state: /ﬁv
ethods: :
A_ (pending messages)

m
B

———
ii essage

Figure 2: Tllustration of an actor system.

Each actor is identified by a unique name, called its mail address. A mail address can be bound to state
variables of type actor reference. To send a message an actor executes the send a.m(pv) primitive, where
a is an actor reference variable containing the mail address of the target actor (possibly the actor itself),
m is the method to be invoked, and pv is the value(s) passed. It is possible to communicate mail-addresses
through messages thus allowing dynamic configuration of the communication topology.

The example actor program in Figure 3 describes part of a simple boiler control system consisting of
a pressure sensor, a controller, and a valve actuator. These entities are modelled as actors. The goal is to

maintain a pre-specified pressure level in the boiler. The controller is the heart of the system. It repeatedly
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executes a method which sends a request to the pressure sensor for the current boiler pressure. The iteration
is implemented by having the controller send itself a loop message which causes requests to be sent to the
pressure sensor. The parameter of this message specifies which actor the result must be sent to, in this case
the controller itself. Upon request, the pressure sensor sends a reply containing its current pressure reading
back to the initiator of the request (i.e., the controller). Based on that value, the controller computes an

updated steam valve position, and sends a message to invoke the move method on the valve.

actor pressureSensor () {
real value;
method read(actorRef customer) {

send customer.reading(value);

}

actor steamValve () { ... } // unspecified
actor controller (actorRef sensor,valve) {
method loop( ) {
send self.loop( );
send sensor.read(self);
}
method reading(real pressure) {
newValvePos=computeValvePos(pressure);

send valve.move(newValvePos);

Figure 3: Steam boiler.

The RT-Synchronizers™ language that we define in this paper to express constraints is purposely
distilled: it does not include syntactic sugar for convenient description of common constraint patterns. This
allows us to focus on the central ideas, and makes it easier to define a complete semantics. A synchronizer
is an object that enforces user specified constraints on messages sent by actors. Such constraints express
real-time or ordering constraints on pairs of message invocations. The messages of interest are captured by
means of patterns that represent predicates over message contents and synchronizer state. The structure

of an RT-Synchronizers™ declaration is given in Figure 4. It consists of 4 parts: A set of instantiation
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parameters, declarations of local variables, a set of constraints, and a set of triggers.

synchronizer (ai,...,a,){

StateDeclaration

P11 = P21 ~ Y1

Pin = D2n ~ Yn

]

|

3
i

p1:

8|

Il
g
S

Pk -

}

Figure 4: Structure of RT-Synchronizers—. ~¢e {>, <}.

A constraint has one of the following forms:

p1 = p2 < y: Here p; and p, are message patterns and y is a variable or constant with positive real value.
Let a1 (cv1) and a2 (cv2) be message invocations matching p; and ps respectively. This constraint then
states that after an a;(cv1) has occurred, an as(cvz) must follow before y time units elapse. We say

that event a1 (cv1) fires the constraint, and causes a demand for as(cvs).
p1 = p2 = y: After aq(cvy) occurs, at least y time units must pass before as(cv2) is permitted.

In both cases there are no constraints on as(cve) until after aj(cvy) fires. A pattern has the form
z1(z2) when b, where b is a boolean predicate (guard) over the message parameter z» and the state of the
synchronizer. z; is a state variable containing an actor address. Intuitively, a message satisfies a pattern
if it is targeted at x; and the boolean predicate evaluates to true. If a message satisfies a pattern, the
invocation is affected by a constraint which must then be satisfied before the invocation can take place.
When a constraint forbids the invocation of a message, it is buffered until a later time when the constraint
enables it. A disabled message may become enabled when a delay has expired, or when the synchronizer
changes state through a trigger operation.

A trigger command specifies how the synchronizer’s state variables change when a message invocation
satisfies a given pattern. Specifically, assignment of the trigger p : T := ezp is executed when a message
satisfying p is invoked. Synchronizers can thus adapt to the system’s current state.

To promote modularity of interaction constraints, the constraints can be specified as a collection of
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synchronizer objects executing concurrently.

3.1 Example 1: Steam Boiler Constraints

The synchronizer in Figure 5 describes the real-time constraints for the simple boiler control system
from Figure 3. The controller should read the pressure periodically (every 20 time units plus or minus some
tolerance). The controller must receive sensor data from the pressure sensor within 10 time units measured
from the start of the period, and it must update the steam valve position no later than 5 time units after
receiving sensor data. A message sequence chart illustrating the communication among the boiler objects

and the associated timing constraints is shown in Figure 6.

actor pressureSensor () { ... };
actor steamValve () { ... };

actor controller (actorRef sensor,valve) { ... };

synchronizer boilerConstraints (actorRef: controller,valve) {
// periodic loop:
controller.loop = controller.loop < 20+e€
controller.loop = controller.loop > 20-€
//deadline on reading:
controller.loop = controller.reading < 10
// deadline on move:

controller.reading = valve.move < 5

Figure 5: Steam boiler constraints.

This example shows how real-time constraints can be expressed and imposed separately from the
functionality. It also shows how periodic constraints can be expressed by combining deadlines and delays.
To make the language easier to use, common constraint patterns such as those enforcing periodicity can be

specified as macros.



Nielsen and Agha, Towards Reusable Real-Time Objects

pressureSensor controller steamValve
loop TT
11
11
1101
11
reading )
_______ 1 : T
|
|
15
\ move: 1
|
loop |

Figure 6: Message sequence chart with annotated timing constraints for the steam boiler example.

3.2 Example 2: New Boiler

In a new boiler application, the pressure sensor must be polled approximately every 100 time units
for pressure readings, and the pressure valve must be moved accordingly no later than 20 time units after the
appropriate reading. However, in situations where the pressure in the boiler is high, the system must operate
with a higher frequency. The pressure sensor must then be polled every 50 time units. Two threshold values,
NormToHighThr and HighToNormThr, define which pressure values cause mode change.

The functional part is reused from Example 1, i.e., the actors and their respective behaviors are
unmodified, but they are now composed by the “newBoilerConstraints” synchronizer given in Figure 7.
The synchronizer maintains a mode state variable which tracks whether the system operates in high or
normal pressure mode. The example also illustrates RT-Synchronizers™’s ability to capture the dynamic
changes that are common to many real-time systems through the use of a state variable, and to change time

constraints accordingly.

3.3 Example 3: Time Bounded Buffer

This and the next example show two common real-time constraint patterns: a real-time producer-
consumer relation, and rate control. These examples also show how RT-Synchronizers™ can express syn-
chronization (event ordering) constraints.

Figure 8 shows a time bounded buffer where each element must be removed 20 time units after it

has been inserted. In addition, the usual restrictions of not putting on a full buffer and not getting from
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synchronizer newBoilerConstraints (actorRef: sensor, controller, valve){
enum Mode {Normal,High} mode = Normal;
//normal pressure periodic:
sensor.read when mode==Normal = sensor.read < 100+¢
sensor.read when mode==Normal = sensor.read > 100-¢
// high pressure periodic:
sensor.read when mode==High = sensor.read < 50+¢
sensor.read when mode==High = sensor.read > 50-¢
//deadline on move:
sensor.read = valve.move < 20
/| Trigger mode change
controller.reading(pressure) when pressure > NormToHighThr: mode=High;

controller.reading(pressure) when pressure < HighToNormThr: mode=Normal;

Figure 7: New Steam Boiler.

an empty buffer are enforced. Note that the code uses a shorthand, disable p, to temporarily prevent
messages matching the pattern p from being invoked. disable p can be written as eg = p = oo, where eg
is a pattern assumed to be fired at system startup time. This synchronizer could be used, for example, in
a multimedia system where the queue is an actor capable of decompressing a compressed video stream: the
actor has a fixed storage capacity for frames. Until a compressed frame is decompressed and consumed, it
occupies a buffer slot. The actor accepts messages containing a compressed frame and messages removing
an uncompressed frame. The frames may only stay in the actor for a bounded amount of time. The buffer

space must then be freed up for processing of new, fresh frames.

3.4 Example 4: Rate Control

The example shown in Figure 9 illustrates how rate control can be described. At most 20 move
operations can safely be performed on an actuator in any time window of 30 time units.

We use an event generator actor to produce message invocations so that the synchronizer changes
state at certain time-points. An event generator actor does not add any functionality per se, but is necessary
for the proper functioning of the synchronizer. This programming technique obviates the need for a special

internal event concept in RT-Synchronizers™.
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actor q {
method put(ltem item) {// store item };

method get(actorRef customer) { send customer.processltem(item);}

}

actor consumer( ) { actor producer( ) {
method consume( ) { method produce () {
send q.get(self); send q.put(item);
send self.consume( ); send self.produce( );
} }
method processltem(ltem item) { ... } }

}

synchronizer bbConstraints (actorRef: producer, consumer, q) {
int n=0; // no of elements in queue
q.put = q.get < 20; // time bound on get
disable consumer.consume when n < 0; // buf empty?
disable producer.produce when n > maxBufSz; // buf full?
producer.produce: n++;

consumer.consume: n——;

Figure 8: Bounded buffer with time constraints.

4 FORMAL DEFINITION

In this section we provide a formal definition of our model. The formal model defines the permissible
behavior of a constrained actor program, which is crucial for determining which executions on a physical
machine will be considered correct.

The separation of functionality and constraints is maintained in the formal definition, and this enables
the semantics for Actors and RT-Synchronizers™ to be given as independent transition systems. The meaning
of a program composed of actors and synchronizers is then given by putting the two transition systems in
“parallel”. Figure 10 gives an overview of the the transition systems to be defined. A numerator denominator-

Premise

pair should be read as 5-7"=%, where the premise is the condition that must hold in order for the conclusion

to hold. The & transitions define semantics for Actors, the « transitions for individual constraints, and the o

10
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actor actuator { method move( ) { ... }}
actor eventGenerator {
method timeout( ) { send self.timeOut( ); }
}
synchronizer rateControll (actorRef: actuator, eventGen) {
int credit=20; // max no of events in window
// timeout 30 tu's after move:
actuator.move = eventGen.timeOut < 30;
actuator.move = eventGen.timeOut > 30;
/] event permitted?
disable actuator.move when credit < 0;
// timeOut must be after move!
disable eventGen.timeOut when credit > 20;
actuator.move: credit——:

eventGen.timeOut: credit++;

Figure 9: Rate control.
transitions for synchronizer objects. Finally, ko transitions define the behavior of a constrained actor-system.

Single constraints: ———,

Actors: ——, Synchronizers: ———,
Constrained System: ———,,

Figure 10: Dependencies of the transition systems to be defined.

4.1 Semantics of Actors

We first define a transition system & for an actor language. This defines how the state of an actor
system changes when a primitive operation is performed, thus giving an abstract interpretation. The actor
semantics presented here is inspired by the work of Agha et. al. [Agha et al. 1997] where a well-developed
theory of actors can be found. However, note that we present actor semantics in imperative style rather
than the applicative style used in previous work. Our semantic model abstracts away the notion of methods.

Instead, each actor has a single behavior—a sequence of statements—which it applies to every incoming

11
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message.

When an actor has completed processing a message it executes the ready command to indicate its
readyness to accept a new message. As an aside, readers familiar with the classic Actor literature will note
that the original become primitive has been replaced with ready. When an actor executed a become
it created a new anonymous actor to carry out the rest of its computation, and prepared itself to receive
a new message. Thus, in the classic model, actors were multi-threaded, and tended to be extremely fine-
grained. In recent literature [Agha 1996], the simpler ready has replaced become, with essentially no loss
of expressiveness. In addition we have, due to brevity, omitted the semantic definition of dynamic actor
creation.

The state of an actor system is represented by a configuration which can be thought of as an instan-
taneous snapshot of the system state made by a conceptual observer. It is modeled as a pair { a |u )
where « represents actor states, and p is the set of pending messages. The a mapping maintains the state
of all actors in the system. An actor state holds the execution state of an actor: the values of its state
variables and the commands that remain to be executed. An actor state is written [E I b], where a is the
actor’s address, E is an environment (mapping from identifiers to their values) tracking the values of the
state variables, and b is the remainder of the actor’s behavior. In each computation step the actor reduces
the behavior until it reaches a ready(z) statement. This juncture signifies that the actor a is waiting for
an incoming message whose contents should be bound to . When a message arrives, the actor continues
its execution. A message is a pair (@ < cv) consisting of a destination actor address a, and a value to be
communicated cv. In general cv encodes information about which method to invoke along with the values

of the method’s parameters.

(fun : a)
EFb —y\ E'FV
<a’[E|_b]a |lu’>—>’°v <a’[EI|_bl]a |I’L>

(snd : a, (a’ < cv))

(a,[EFsend(d,cv);b], |p) —% {(a,[EFb], |, (d<cv))

(rev : a, (a < cv))

<a,[E|—ready(a:);b]a |u,(a<:cv)>—>,i (a,[E[:ri—)cv]l—b]a |u>

Figure 11: Configuration transitions —».

The semantics of actors is given in Figure 11. The fun transition defines the effect on system state

when an actor performs an internal computation step, i.e. a reduction of an expression. The transition

12
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system —» ) defines the semantics of the sequential language used to express actor behaviors. Since we do
not rely on a specific language, we have omitted its definition.

The interpretation of send is given by the snd-rule. The newly sent message is added to u. Message
reception is described by the rev transition. When an actor executes a ready () command, it becomes ready
to accept a new message in an environment with the updated state variables left by the previous processing.
Also, the actual value carried by the message is bound to the formal argument z. Finally, the message is
removed from pu. It is exactly these receive transitions that will be constrained by RT-Synchronizers™. Other
transitions are only affected indirectly.

From this semantics one can make no assertions about the execution time of an actor program; how,
then, can we meet real-time requirements? To make this point clear, we temporarily introduce time into the
Actor semantics.

Time can be added to transition systems by introducing a special set of delay actions written as
e(d) where d is a finite positive real-valued number representing the passage of d time units. The idea is
that system execution can be observed by alternatingly observing a set of instantaneous transitions and
observing a delay. In [Nicollin et al. 1992] this idea was termed the two-phase functioning principle: system
state evolves alternatingly by performing a sequence of instantaneous actions and by letting time pass.

By adding the rule: < Q@ |,u > ﬂm < Q@ |u >, we extend the —», transition relation with the
ability to let time pass. The rule states that any actor configuration is always able to delay transitions for
some (finite) amount of time. The consequence is that one cannot tell how long a time an actor program
takes to finish; indeed the interval between any pair of actions is indeterminate. This is a reasonable model
for untimed concurrent programs, where no assumptions on the relative order or timing of events should be
made. However, a language with this semantics is unsuitable for real-time system: from the code one can
only make assertions about eventuality properties, not about bounded timing. A real-time programming
language should make assertions about time bounds possible, and its semantics should define when and by

how much can time advance.

4.2 RT-Synchronizers~ Semantics

We start by defining semantics for single constraints (— transition system), and thereafter proceed
to a synchronizer object (—, transition system); the latter is essentially a state plus a collection of con-
straints and triggers. The state variables of a synchronizer will be represented by an environment V' mapping
identifiers to their values. Constraints and patterns are evaluated in this environment.

Recall that a constraint has the form p; = py ~ y. Whenever an invocation matches p; the constraint

13
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fires thereby creating a new demand instance for an invocation matching p». Such a demand will semantically
be represented by the triple p; ~ d, where d is a real number denoting the deadline or release time of ps,
depending on ~. d is initialized with the value of state variable y, V' (y), when fired. Since a constraint can
fire many times successively, a constraint may induce many outstanding demand instances. The state of a
single constraint is therefore represented as a constraint configuration (] | x [} where £ stands for the
(static description of a) constraint of the form p; = p» ~ y, and x is a multi-set of demands instantiated

from the static description £.. The semantic rules are shown in Figure 12.

(Sat : a(cv))
] ifa(cv) = po p2 <= V(y) ifa(cv) = p1)

Csg = cr =
py < d  otherwise 0 otherwise

(eclxwp<d ) L (elvwerve )

(Sat. : a(cv))
0 ifa(cv) Eps Ad <0 p2 = V(y) ifa(cv) =pr1)
Cg = Cf =
py < d  otherwise 0 otherwise

(& |xwp=d )

a(cv)

— <]§>|X&chwcs [>

(Satg : a(cv))
p2 ~V(y) ifa(cv) Ep1)

1] otherwise

Qa1 2 (evlvwes )

Cf =

(Delay ... : €)
Vps <d; € (x©e).d; >0

(eolx ) 2%, (evlxoe)

a(cv) =z (z2)when b =g4¢r a = V(z1) Ab(V[z2 — cv))

Figure 12: Semantics for single constraints —, where ~€ {>, <}.

The function ¢; determines whether the pattern of a demand instance is satisfied, and if so, removes
it from the demand instance set. If the pattern is not satisfied, the demand is maintained. Similarly, the
function ¢y determines whether or not the constraint fires and therefore whether or not to add a new demand
instance. Thus the Sat-rules ensure that whenever a constraint fires, a demand (cy) is added to x. Also,
whenever a demand (cy) is satisfied, it is removed from x. Due to the possibility of a single message matching

both p; and p» the Sat-rules are prepared to both satisfy and fire a demand. The demand instance to be

14
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removed is chosen non-deterministically, giving the implementation maximal freedom to choose the demand
it finds the most appropriate, e.g., the one with the tightest deadline.

Passage of time is controlled by the Delay-rule such that the elapsed amount of time (e) is subtracted
from d; in each demand p; ~ d;. This is written x © e. Thus for p > d, d is the amount of time that must
pass before p is enabled. In particular, p will be enabled when d is less than 0. This requirement is enforced
by the ¢g function of the (Sat. : a(cv)) rule. For p < d, d is the amount of time that may pass before
p will be disabled. p would be disabled if d is less than 0. However the (Delay_ : e) rule prevents time
from progressing that much. In effect, the delay rule ensures that deadline constraints are always satisfied in
the semantics. This corresponds to the declarative meaning one would expect from a constraint: something
that must be enforced. Without this strict definition, our constraints would degenerate to mere assertions
and not convey their intended meaning. Note that an actual language implementation may not always be
able to give this guarantee — either statically or dynamically — for two reasons. First, because physical
resources may not exist to realize them, and second, because finding feasible schedules for general constraints
is computationally very complex.

Conflicting constraints that have no solutions should be detected as part of the compiler’s static
program check. Ren has shown how RT-Synchronizers™ constraints can be mapped to linear inequality
systems for which polynomial time algorithms exist for detecting solvability [Ren and Agha 1998; Ren 1997].

The following transition sequence illustrates application of the transition rules for a constraint:

q pL=>p2 <7 | 0 D :ilgffz)v
(pr=p<Tlp=<7) ﬂ)v
(pr=p<T|p2=<4) Mm

4
(p=p<TIp<4,p2<7) ﬂ)v

as(cv)

(pr=p<T|p2<0,p2<3 ) 5,
as(cv)

{pr=p2<7Ip2<3) LCONS
<]P1—>102'<7|@|>

Given that the behavior of each individual constraint is well defined, it is easy to define the behavior
of a collection of constraints as found within a synchronizer. Essentially the individual constraints are
conjoined, i.e., we require that all constraints agree on a given invocation. Similarly, they must all agree on
letting time pass.

A synchronizer is represented by a synchronizer configuration [|V] where 4 is a set of constraint
configurations (ranged over by 7). As previously stated V represents the state variables of a synchronizer and

is a mapping from identifiers to their values. The necessary definition is shown in Figure 13. A synchronizer
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can engage in message reception a(cv) or delay (e) only when it is permitted by every constraint.
We have omitted the rather simple definition of the effect of triggers: V' is V simultaneously updated

with the specified assignments in the matched triggers.

(Action : 0)

. A,
Vi € [1..7;].7, — € {a(ev),e(e))
[ mlVE = [tV

Figure 13: Semantics for a synchronizer — .
4.3 Combining Actors and RT-Synchronizers™

The preceding sections defined Actor and RT-Synchronizers™ languages independently. The effect of
constraining an actor program can now be defined here as a special form of parallel composition (denoted by
|) that preserves the meaning of constraints. We call a collection of synchronizers an interaction constraint
system configuration which is written (01, .. .,O'n) where o ranges over synchronizer configurations. The
composition || of an actor configuration and an interaction constraint system configuration is defined in

Figure 14.

Unaffected Actions
(a|p) ., (o |p) ¢ € {{fun : a), (snd : a,m), (ready : a)}
(alu)ll (o, 0on) ihw (o | )l (o1,---y0n)

Receive
<0¢|u>i>,Q (o |u) A Ui—>a(w)gaé = (rev :a,{a < cv))
i€[1..n]
< @ |/J’ > || (Uly--- 70n) ihea’ < o |,UI > || (0’1,... ,U;L)
Delay
e(d)
O —5 0;

i€[1..n]
<CK |/J‘>|| (Uly---ygn) ﬂ)na <C! |,U>|| (Ui,...,a%)

Figure 14: Combined behavior — .

Transitions unaffected by interaction constraints altogether are message sends and local computations.
These only have effect on the actor configuration. Message invocations (rcv : a,m) are the interesting events

affected by constraints. Note that the same invocation may be constrained by several synchronizers, and
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all must certify the invocation, i.e., synchronizers, like constraints, are composed conjunctively. The idea is
that adding more synchronizers should further restrict the behavior of objects. A consequence of this idea

is that the synchronizers also must agree on letting time pass.

*

The combined semantics define all correct transition sequences (—

). A transition sequence cor-
responds to one possible schedule of the implemented system (consisting of actors, constraints, operating
system, runtime system, and hardware resources), and thus a primary task of the language implementation
is to schedule events in the system such that the resulting schedule can be found in the program’s semantics.
Thus, a program consisting of actors and RT-Synchronizers™ can be viewed as a specification for the set of
possible systems.

Observe that not all transition sequences defined by — 7, are realizable on a physical machine. The
problem is related to the progress of time and our intuition about causal ordering. Suppose event e; is
a method invocation resulting in the sending of a message which eventually causes a method invocation,
event ey, then we surely would expect that time has progressed between these events. That is, in terms of a
fictitious global clock C, it should hold that C(e;) < C(e2). However, in our semantics, time is not required
to pass between causally related events, but only permitted to.

There are two related problems, time locks and cluster points. A time lock occurs when no time
progress is possible, i.e., the delay transition is eternally disabled. In our model this occurs as consequence
of an unsatisfiable deadline constraint. A cluster point is a bounded interval of time in which an infinite
number of events occur. It is possible to write such a specification in RT-Synchronizers™. However, it will not
be implementable on a (finitely fast) computer! Since our goal is to define the permissible implementations,
and since time locks and cluster points are only required when explicitly specified, we have taken no measure

to prohibit such behavior. A compiler should, however, warn developers about such unsatisfiable constraints.

5 MIDDLEWARE SCHEDULING OF RT-Synchronizers™

The examples in Figures 5-9 illustrated how our language can be used as a specification or modeling
language that defines the structure and permissible behavior of a computer system consisting of hardware
and system software executing an application.

An attractive approach to implementing a language that supports separation of objects and time
constraints is to use a middleware scheduling/event dispatching service. Such a service is depicted in Fig-
ure 15. An application consists of two parts, objects and time constraints. A set of potentially reusable
objects are composed by middleware services for communication and scheduling. Communication typically

includes request-reply communication, point-to-point real-time communication, and group communication.
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The scheduler(s) are responsible for event dispatching and resource (typically processor) allocation, based
on information that is specified by the application separately from the objects. Thus, objects are being

controlled by the middleware, rather than controlling themselves or each other.

01 02 (0]
time _pyp middleware services
constraints
host OS + hardware

Figure 15: Middleware integrates pre-built objects.

Specifically, given a set of synchronizers as input, this service should, preferably without further
programmer involvement, schedule message invocations in accordance with the specified real-time and syn-
chronization constraints. The remainder of this section is devoted to uncovering what work such a service
must do to execute the specification directly.

Implementing our full model is not an easy task, but the difficulty is mostly related to the generality of
the constraints that can be expressed, rather than due to the separation of functionality and time constraints.

We have identified three main tasks a compiler and scheduling service should address:

Scheduling: One challenge is to find a scheduling strategy that satisfies the deadline constraints when the
RT-Synchronizers™ program is executed on a physical machine with limited resources. In addition,
hard and firm real-time systems require an a priori guarantee (or at least a solid argument) that timing

constraints will be satisfied on the chosen platform during runtime.

Constraint propagation: In RT-Synchronizers™ the programmer need only specify end-to-end timing re-
lations, not intermediate constraints on all events along the call chain. Assume that actor a receives
a message ml; a then responds with a message m2 to actor b which in turn sends a message m3 to
actor c¢. Let a1, by and ¢,,3 denote the reception events of these messages. Then a typical inter-
action constraint would be a,;,;1 = ¢,,3 < 10. This scenario is depicted in Figure 16. Consequently,
there is an implicit constraint on event b2 which is to happen (well) before c¢,,3. Ideally, the com-
piler/runtime system should be able to perform constraint propagation along the call chain, and derive

the intermediate deadlines.

Synchronizer distribution: If the synchronizer entities are maintained as runtime objects, how should

their state be distributed? Here there is a classic compromise between a centralized solution where
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Figure 16: End-to-end deadlines require computation of intermediate deadlines along the call chain.

consistent updates are easy versus a distributed solution that potentially reduces bottlenecks and

increases fault tolerance, but by increasing the cost of maintaining consistency.

Our implementation idea seems practical for soft real-time systems only: we provide no procedure,
whether automatic or manual, for establishing the guarantees of satisfaction of time constraints as required
by hard real-time systems, and for the unrestricted type of real-time and synchronization constraints that
we permit in our language. Additionally, a full verification of the implemented system is rarely practical.
To make schedulability analysis practical, one often restricts the types of constraints to periodic constraints.
Similar restrictions can be made to RT-Synchronizers™. With simple dependencies between periodic tasks

generalized rate-monotonic analysis can be utilized [Sha et al. 1994].

Synchronizer Scheduler Actors
objects dispatch

deadlines unprocessed msgs

msg. dispatch
release times
enable/disable info

Figure 17: Implementation architecture with constraint directed scheduling.

Constraint directed scheduling is an implementation technique that dynamically uses the information
of the fired constraints in the synchronizers to assign deadlines and release times to messages (see Figure 17).
Synchronizer objects are thus maintained at run time as data objects, whose state can be inspected by the
scheduler.

Time-based scheduling such as Earliest-Deadline-First (EDF) can then be used to dispatch messages
based on their deadlines. We propose to use EDF-scheduling because it is dynamic and optimal: if a feasible

schedule exists EDF will produce one. Obviously, EDF does not in itself guarantee that a feasible schedule
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exists and constraint violations may therefore occur. An advantage of our strategy is that it does more
than simply monitor the time constraints; it constructively applies information from the synchronizers to its
scheduling decisions.

We propose to let the compiler compute a conservative version of the call graph annotated with worst
case execution time and message propagation delays, and include a copy of it at runtime [Ren 1997]. The
runtime system then has the information necessary to propagate constraints automatically when this cannot
be done statically by the compiler. Moreover, we expect that in many cases the compiler would be able
to compile away synchronizers entirely. It can generate code (similar to remote-procedure-call stubs) which
can be linked with the objects. This code implements the time constraints by manipulating timers, setting
priorities and/or instructing the scheduler about method call deadlines, etc.

It is interesting to note that the operational semantics can assist in the implementation of a constraint
directed scheduling system. An operational semantics can often be constructed such that it constitutes an
abstract algorithm for the language implementation. However, because our semantics abstracts away any
notion of resources and execution time, in our case, this algorithm can only be partial. In particular, it does
not solve the constraint propagation problem mentioned earlier.

The following example demonstrates two potential benefits of the semantics. First, it shows how
the semantics manipulates the synchronizer data structure by adding and removing constraints, and second
it indicates how release times and deadlines for messages can be deduced. Recall the boiler example in
Section 3.1. We show how the runtime system may execute that specification. We maintain two important
data structures, the set of fired demands, and the pool of unprocessed messages. We reuse the notation for
demands from the semantics: <| Eo | x |> where £ stands for the static description of a constraint, and x
is the multi-set of instantiated demands. A message is written as o.m[R,D] where o is the target object, m
the method to be invoked, and R and D respectively the release time and deadline of the message. In the
following, we measure time relative to a global clock t, and not using individual timers as was convenient in
the semantics. Each row in Figure 18 shows the global time at which a given event (i.e., message invocation)
occurs, the resulting synchronizer state, and the set of unprocessed messages (including those produced by
the event).

At time 0, the system is shown in the initial state in which the message pool contains an initialization
message (controller.loop) and in which no synchronizer demands have been fired. Suppose the scheduler
invokes the controller.loop message at time 1. This invocation matches three constraints and consequently
causes the synchronizer to issue three new demands. The two first constitute the periodic constraint on a
future loop message and the last one determines the deadline on the sensor reading. During processing of

the loop message the controller sends out two new messages, the loop message to itself, and a read request
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t Event Synchronizer State Message Pool

{ cloop = c.loop <20 +¢€ |0 )
c.loop = c.loop =20 —€ |0
0 (initial) { P P 0 c.loop[0, o0]
{ c.loop = c.reading < 10 | 0 |
{ c.reading = v.move < 5|0 )

{ c.loop = c.loop < 20 + €| c.loop < 1 +20 + ¢ |

) | <| c.loop = c.loop = 20 — €| c.loop = 1420 — € |> c.loop[21 —¢,21 + €]
c.loop

{ cloop = c.reading < 10 | c.reading < 1+ 10 ) s.read|0, 6]*

( c.reading = v.move < 5|0 |

{ cloop = c.loop < 20 + € | c.loop < 1+ 20 + ¢ |

<| c.loop = c.loop > 20 — €| c.loop = 1+ 20 — ¢ |> c.loop[21 —¢,21 + €]
4  s.oread

{ c.loop = c.reading < 10 | c.reading < 1+ 10 ) c.reading|0, 11]

{ c.reading = v.move < 5|0 )

{ c.loop = c.loop < 20 + €| c.loop < 1 +20 + ¢ |

{ c.loop = c.loop = 20 — €| c.loop = 1 +20 — ¢ | c.loop[21 — ¢, 21 + €]
9 c.reading

{ cloop = c.reading < 10 |0 | c.move|0, 14]

( c.reading = v.move < 5 | v.move < 9+ 5 |

{ cloop = c.loop < 20 + € | c.loop < 1+ 20 + ¢ |
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{ c.loop = c.reading < 10 |0 |
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Figure 18: Sample execution of the boiler specification.
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to the pressure sensor.

The new loop message matches two demands, and according to the semantics these are applied
conjunctively. The runtime system can therefore deduce the release time and the deadline (an e interval
around time 21) for the loop message from the demands. Deducing a deadline for sensor.read constitutes
a more difficult case (labeled with a ! symbol in Figure 18). There is no immediate matching demand on
which to base the deadline. But it can be noted that there is a demand for which no matching message exists
in the message pool. It is therefore likely that invocation of the unmatched sensor.read message will cause
sending of the demanded message (as it indeed turns out to be the case in this example). Therefore the
sensor.read message should be assigned a deadline before the demanded deadline (at time 11). The specific
choice of deadline is in general a heuristic function of slack time and method computation time. Here time
6 is chosen.

The approach of assigning unmatched messages deadlines based on the most urgent unmatched de-
mand will generally constrain the system unnecessarily, but selecting precisely the right message to constrain
is generally impossible without extra information about potential causal relations between messages. This
information is exactly what needs to be generated by the compiler. Less ideally, the missing constraints
could be resolved explicitly by the programmer by providing additional synchronizers. In a less expressive
real-time programming languages where end-to-end constraints cannot be expressed, the programmer would
always be forced to do this.

Resuming the example at time 4 where sensor.read is invoked, the sensor responds with a con-
troller.reading. Since this message matches a demand, it inherits the deadline from that (time 11). The
result of invoking the reading message (at time 9) is the firing of a new demand on the valve movement
and the sending of a valve.move message. Again, the runtime system is able to deduce the deadline on the
move message from the move demand. Finally, at time 21, the loop message is invoked. This satisfies the

remaining two demands, but at the same fires two new demands, which starts the next period.

6 RELATED WORK

Real-time CORBA (Common Object Request Broker Architecture) [Group 1996] is a highly visible re-
search effort where practitioners are shifting towards component-based real-time systems. An object request
broker can be viewed as middleware facilitating transparent client-server communication in a heterogeneous
distributed system. It also contains other communication services to facilitate building distributed applica-
tions. However, according to [Schmidt et al. 1997], current ORBs are ill-suited for real-time systems for

at least four reasons. They lack interfaces for specifying quality of service, quality of service enforcement,
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real-time programming facilities, and performance optimizations.

Current proposals for real-time CORBA [Schmidt et al. 1997; Cooper et al. 1997; Feng et al. 1997;
Kalogeraki et al. 1997] use a quality of service metaphor for specifying real-time constraints. Typically, the
interface definition language is extended with QoS-datatypes. In TAO ORB [Schmidt et al. 1997], these
parameters, which are necessary for guaranteeing schedulability according to rate monotonic scheduling,
include worst case execution time, period, and importance. In NRad/URI’s proposal [Cooper et al. 1997]
for a dynamic CORBA, time constraints are specified in a structure containing importance, deadline and
period, and the constraints specify time bounds on a client’s method invocations on a server. The proposed
runtime system uses this information to compute dynamic scheduling and queuing priorities. The Realize
proposal [Kalogeraki et al. 1997] associates deadline, reliability, and importance attributes to application
tasks, where a task is defined as a sequence of method invocations between an external input and the
generation of an external result. That is, deadlines in Realize are true end-to-end deadlines.

We see a clear trend in specifying real-time requirements through interface definitions and letting
middleware enforce them. Clients and servers are largely unaware of the imposed real-time requirements.

However, we think that these approaches—although an improvement—are imperfect:

e The quality of service attributes seem to be derived from what current run-time systems can manage
rather than forming a coherent set. We have opted for a clean language instead of a more or less

arbitrary collection of attributes.

e The types of constraints that can be specified are restrictive, e.g., only periods or deadlines between
request and reply events. In addition, the constraints are static; once assigned they cannot be modified
to respond to dynamic changes in the system’s state of affairs. We allow for a fairly general set of

constraints to be specified.

e Synchronization constraints are not considered. In our proposal, synchronization constraints are spec-

ified using the same mechanism as time constraints.

The concept of separating functional behavior and interaction policies for Actors was first proposed
by Frglund and Agha in [Frglund and Agha 1993] and a detailed description, operational semantics and
implementation can be found in [Frglund 1996]. That work only considered constraints on the order of
operations. Our work is a continuation of this line of research where we have extended it to apply to real-
time systems and provided a formal treatment of the extended model. However, to what extent real-time
and synchronization constraints can always be cleanly separated from functionality remains an open issue,
and one which we think can be best resolved through larger case studies.

Another approach which permits separate specification of real-time and synchronization constraints
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for an object-oriented language is the composition filter model [Aksit et al. 1994; Bergmans and Aksit 1995].
Real-time input and output filters declared in an extended interface enable the specification of time bounds
on method executions. Among the differences between composition filters and RT-Synchronizers™ is that
RT-Synchronizers™ takes a global view of a collection of objects whereas the composition filter model takes
a single object view. No formal treatment of composition filters appears to be available in the literature.

The Real-time Object-Oriented Modeling method (ROOM) [Selic et al. 1994], which has many notions
in common with the Actor model, has recently been extended with notions for specifying real-time properties
[Saksena et al. 1997]: message sequence charts with annotated timing information can now be used to express
activation periods of methods or end-to-end deadlines on sequences of message invocations. With these two
kinds of constraints and a few design guidelines, the authors show how scheduling theory can be applied to
ROOM-models.

Our approach to defining the semantics is inspired by recent research in formal specification languages
for real-time systems, and the use of timed transition systems is borrowed from these languages. These
languages often take the form of extended automata (Timed automata [Alur et al. 1990], Timed Graphs
[Alur et al. 1990; Nicollin et al. 1992]), or process algebras such as Timed CSP [Schneider 1995]. A
different approach is to include a model of the underlying execution resources. This approach is taken
in [Satoh and Tokoro 1994] and [Zhou and Hooman 1992]. The resulting semantics includes an abstract
model of the execution environment (number of CPU’s, scheduler, execution time of assignments etc.). The
process algebra Communicating Shared Resources (CSR) has been designed with the explicit purpose of
modeling resources [Gerber and Lee 1989; Gerber and Lee 1992]. A process always runs on some, possibly
shared, resource. A set of processes can be mapped to different sets of resources, hence describing different
implementations. Thus, these approaches model relatively concrete systems, rather than being specifications
for a set of possible systems, as was our goal.

A recent implementation result is [Kirk et al. 1997] where certain aspects of RT-Synchronizers™ are
implemented in their DART framework where constraints are used to dynamically instruct the scheduler
about delays and deadlines of messages. However the paper gives no systematic (automatic) translation of

constraints to scheduling information. We expect that our semantics can help in filling up this gap.

7 DISCUSSION

Developers of modern real-time systems are required to construct increasingly large and complex
systems, preferably at no extra cost. To satisfy this requirement, it is essential that developers can build

real-time systems from existing components, and that newly developed components can be reused in several
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applications. We argued that in order to facilitate reuse of real-time objects, the real-time and synchroniza-
tion constraints governing the object’s interaction should be specified separately from the objects themselves.
However, current development methods do not adequately support such separation.

We formulated our ideas in the context of Actors, and an associated specification language, RT-
Synchronizers™. Combined, they enable separate and modular specification of real-time systems: computing
objects are glued together by synchronizer entities that express real-time and synchronization constraints.
However, we believe that these ideas are applicable beyond these specific languages.

Our model is explained both conceptually and formally. Through a series of examples we indicated
how separate specification is possible. Our operational semantics defines exactly what constraints are and
what their effect on a given set of objects should be.

Our work on semantic modeling has clarified our understanding of the behavior of our model, and
provides a succinct and detailed definition of synchronizers and constrained actor programs. In particular,

we have gained new insight in three areas, which made the effort worthwhile:

e We defined the semantics in a modular fashion by composing a transition system for the untimed object-
model with a transition system which interprets the time constraints. This composition explicitly points
out which, object transitions are affected and how: reception of messages and time-progress may only

occur when permitted by the constraints. Other object transitions are only indirectly affected.

The modularity opens the possibility of plugging in a different constraint specification language, i.e.,
the —», transition could be replaced with the semantics for the new language. The composition will
work when affected transitions remain as above, and when the semantics of the new language can be

given as a timed transition system. Thus, our constraining concept is captured by the composition.

e Our semantics helped uncover some of the semantic subtleties of our constraint language, such as
what happens when patterns and constraints overlap. For example, the same message may both fire
a new demand as well as satisfy an existing one. Moreover, we decided that overlapping constraints
should be interpreted conjunctively, i.e., both must be satisfied. Finally, we decided that adding
more synchronizers should further restrict the behavior of objects; i.e., synchronizers must be satisfied

conjunctively.
It should also be noted that the rules defining the semantics of individual constraints appear compli-

cated. This should give food for thought when revising the language or the semantics.

e The last major benefit is that our semantics suggests an implementation strategy suitable for soft
real-time systems. The synchronizer entities can be maintained at runtime and can be used to ex-

tract information about release times and deadlines of messages. The semantics gives an abstract
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interpretation of the synchronizer objects and specifies how demands should be added or removed.

Building real-time components and architectures for integrating them is an area of active research.
We believe that with additional research, component-based development will allow more complex real-time
systems to be developed on schedule. However, additional work is needed, both on the models used for

separate specification and on the middleware services necessary to implement them.
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