
Specification of Real-Time Interaction Constraints

Brian Nielsen
Aalborg University

Dpt. of Computer Science
Fredrik Bajersvej 7E

DK-9220 Aalborg, Denmark
Email: bnielsen@cs.auc.dk

Shangping Ren Gul Agha
University of Illinois at Urbana-Champaign

Dpt. of Computer Science
1304 W. Springfield Av.

Urbana, Illinois 61801, U.S.A
Email: f ren j agha g@cs.uiuc.edu

Abstract

We present a coordination language and its semantics for
specification and implementation of object-oriented real-
time systems. Real-time systems operate under real-time
constraints, and our language supports expression thereof.
In our language, a system is modeled by two separate but
complementary descriptions: A collection of objects define
the system’s structure and functional behavior, and a set of
interaction constraints define how these objects may inter-
act. Our language thereby supports development of real-
time systems by enabling objects build in isolation or re-
used from other systems to be composed via interaction con-
straints. We use the Actor model to describe objects and the
concept of real-time synchronizers to describe interaction
constraints.

Our model is accompanied by a formal semantics that
precisely defines what real-time constraints means, and
what constitutes a program’s correct real-time behaviors.
The semantics defines how the system may evolve in the
real-time domain, and what progress guarantees the lan-
guage makes. We briefly discuss implementation problems
and potential solutions.

1. Introduction

Many applications like computer control systems that
monitor and control physical equipment require operation
under strict time constraints. Typical applications monitor
the state of the equipment through sensors and react by af-
fecting actuators in accordance with time constraints; e.g.,
before or after a given real-time time bound. We propose
a concurrent object-oriented language for the specification
and implementation of real-time systems.

An object-oriented real-time system is modeled by a col-
lection of active objects executing concurrently. These ob-

jects interact by exchanging messages containing informa-
tion about their local states. However, it is necessary to con-
trol the interaction between objects to ensure satisfaction
of time and synchronization constraints. A time constraint
could be that a controller object must receive sensor data
from a sensor-object every 20 milli-seconds. Our model
can be viewed as a coordination language that is concerned
with controlling the dynamic interaction among objects.

A key point of our model is that the necessary synchro-
nization and time constraints are specified separately from
the basic functional behavior of a system. The benefits of
this separation of concerns are twofold. First, objects with
basic functional behavior can be developed individually and
later be composed with other individually developed or ex-
isting objects. These objects are “glued” together by our
interaction constraints. Second, when no interaction con-
straints are hardwired in the internals of objects it becomes
easier to reuse objects in other applications where different
interaction constraints apply. Thus, interaction constraints
are installed “on top” of ordinary objects, and actively en-
force programmer specified constraints, see Figure 1.

constraint-level

functional-level

object

unprocessed messages

interaction
constraints

communication
event

Figure 1: Separation of constraints and functionality

Interaction constraints are expressed in terms of enabling
conditions on communication events occurring on the in-
terface of objects. These events constitute the observable
behavior of a system. What goes on inside an object is en-
capsulated, and cannot be constrained. Specifically, a col-
lection of synchronizer-entities constrain by delaying or ac-
celerating message invocations. We use the object-oriented
Actor-model to describe objects.

The idea of separating functional behavior and interac-
tion policies for Actors were first proposed by Frølund in
[7], but only logical synchronization constraints could be
specified. Later Ren in [13] made a first proposal for a dual
language where real-time constraints could be expressed.
Our work is a continuation of this line of research where
we have emphasized a formal treatment of the model. We
define a destilled language, RT-Synchronizers�, and pro-
vide an operational semantics that defines the real-time be-
havior of a constrained actor-program. Related work that
permit separate specification of real-time and synchroniza-
tion constraints is [5] which proposes the composition fil-
ter model. Real-time input and output filters declared in an
extended interface enable the specification of time bounds
on method executions. Among many, one difference is that
RT-Synchronizers� takes a global view of a collection of
objects rather than of a single object. To our knowledge
composition filters has not been defined formally.

Section 2 introduces and exemplifies our model. Sec-
tion 3 provides the formal definition. Finally, in Section 4
we discuss our implementation ideas.

2. Specification of interaction constraints

In the Actor model [1, 2, 4] distributed computing enti-
ties (hardware or software) are modeled as abstract self con-
tained objects called actors. An actor encapsulates a state,
provides a set of public methods, and potentially invokes
public methods in other objects by means of message pass-
ing. Unlike many object oriented languages, message pass-
ing is non-blocking and buffered. This means that when an
actor sends a message it immediately resumes its computa-
tion without waiting for, or getting reply from, the receiver.
Further, messages sent but not yet processed by the receiver
are conceptually buffered in a mailbox at the receiver. Here
the receiver picks them and processes them sequentially. In
addition, actors execute concurrently. An actor system is
illustrated in Figure 2.

An actor is identified by a unique name, called a mail-
address. This can be bound to state variables of type ac-
tor reference. To send a message an actor executes the
send a� cv primitive. a contains the mail address of the
target actor (possibly the actor itself), and cv is the value
passed. In general cv encodes information about which
method to be invoked along with its parameters. It is

thread state:

A

B

methods:

interface

thread state:

A

B

methods:

interface

thread state:

A

B

methods:

(pending messages)

message

message

…
…

Figure 2: Illustration of an actor system

possible to communicate mail-addresses through messages
thus allowing dynamic configuration of the communication
topology.

A synchronizer is an object that intercepts messages ex-
changed between actors and invokes these according to user
specified constraints which expresses real-time or ordering
constraints on pairs of message invocations. The messages
of interest are captured by means of patterns which essen-
tially are predicates over message contents and synchro-
nizer state. The structure of a RT-Synchronizers� decla-
ration is given in Figure 3. It consists of 4 parts: A set of
instantiation parameters, declarations of local variables, a
set of constraints, and a set of triggers.

synchronizer �a�� � � � � an�f
StateDeclaration

p�� � p�� � y�
...
p�n � p�n � yn

p� � x �� exp
...
pk � x �� exp

g

Figure 3: Structure of RT-Synchronizers�. �� f���g

A constraint has one of the forms:

p� � p� � y: Here p� and p� are message patterns and y

is a variable or constant with positive real value. Let
a��cv�� and a��cv�� be message invocations matching

p� and p� respectively. This constraint then states that
after an a��cv�� has occurred, an a��cv�� must follow
before y time units. We say that a��cv�� is the firing
event causing a demand for a��cv��.

p� � p� � y: This expresses that after a��cv�� occurs at
least y time units must pass before a��cv�� is permit-
ted.

In both cases there are no constraints on a��cv�� until
a��cv�� fires. A pattern has the form x��x��when b, where
b is a boolean predicate (guard) over the message parameter
x� and the state of the synchronizer. x� is a state variable
containing an actor address. Intuitively, a message satisfies
a pattern if it is targeted at x� and the boolen predicate eval-
uates to true. If a message satisfies a pattern, the invocation
is affected by a constraint which must then be satisfied be-
fore the invocation may take place. When a constraint for-
bids the invocation of a message it is buffered until a later
time when the constraint enables it. A disabled message
may become enabled when a delay has expired or when the
synchronizer changes state through a trigger operation.

The trigger section specifies how the synchronizer’s state
variables change when a message invocation satisfies a
given pattern. Specifically, the assignments of the trigger
p � x �� exp is executed when a message satisfying p is
invoked. The synchronizers can thus adapt to the system’s
current state of affairs. To promote modularity of the in-
teraction constraints these can be given as a collection of
synchronizer objects conceptually executing concurrently.

2.1. Example 1: Steam boiler

The program in Figure 4 describes part of a simple boiler
control system consisting of a pressure sensor, a controller,
and a valve actuator. When requested the pressure sensor
sends a message containing its pressure value back to its
customer (the controller). Based on the pressure value, the
controller computes an updated steam-valve position. The
controller repeats this procedure periodically (every 20 time
units plus/minus some tolerance) by sending itself a mes-
sage. The controller must receive sensor data from the pres-
sure sensor within 10 time units meassured from the start of
the period, and it must update the steam valve position no
later than 5 time units after receiving sensor data.

2.2. Example 2: Time Bounded Buffer

The example given in Figure 5 shows a bounded buffer
(queue) where each element must be removed 20 time units
after it has been inserted. In addition, the usual restrictions
of not putting on a full buffer and not getting from an empty
buffer are enforced. Note that the code uses a shorthand,
disable p, to temporarily prevent messages matching the

actor pressureSensor () f
real value;
method read(actorRef customer) f

send customer.reading(value);
g

g
actor steamValve () f � � � g // unspecified
actor controller (actorRef sensor,valve) f

method loop() f
send self.loop();
send sensor.read(self);

g
method reading(real pressure) f

newValvePos=computeValvePos(pressure);
send valve.move(newValvePos);

g
g

synchronizer boilerConstraints (actorRef:
controller,valve) f

//periodic loop:
controller.loop� controller.loop� 20+�
controller.loop� controller.loop� 20-�
//deadline on reading:
controller.loop� controller.reading� 10
//deadline on move:
controller.reading� valve.move� 5

g

Figure 4: Steam boiler

pattern p from being invoked. disable p can be written as
e� � p � �, where e� is a pattern assumed to be fired at
system startup time.

synchronizer bbConstraints (actorRef: q) f
int n=0; // no of elements in queue
q.put� q.get� 20; // timebound on get
disable q.get when n � 0; //buf empty?
disable q.put when n 	 maxBufSz; //buf full?
q.put: n��;
q.get: n

;

g

Figure 5: Bounded buffer with time constraints

2.3. Example 3: Rate Control

The example illustrates how rate control can be de-
scribed, see Figure 6. At most 20 move operations can
safely be performed on an actuator in any time window of
30 time units. The example uses an event generator actor
to produce message invocations which the synchronizer use

to change state at certain time-points. An event generator
actor does not add any functionality per se, but is necessary
for the proper functioning of the synchronizer. This pro-
gramming technique cancels the need for special internal
event concept in RT-Synchronizers�.

actor actuator f method move() f � � � gg
actor eventGenerator f

method timeOut() f send self.timeOut(); g
g
synchronizer rateControll (actorRef: actuator,

eventGen) f
int credit=20; // max no of events in window
//timeOut 30 tu’s after move:
actuator.move� eventGen.timeOut� 30;
actuator.move� eventGen.timeOut� 30;
//event permitted?
disable actuator.move when credit � 0;
//timeOut must be after move!
disable eventGen.timeOut when credit 	 20;
actuator.move: credit

;
eventGen.timeOut: credit��;

g

Figure 6: Rate control

3. Formal Definition

In the previous section we explained our model infor-
mally, and here we turn to its formal definition. The formal
model defines the permissible behavior of a constrained ac-
tor program, and this is crucial in determining which execu-
tions on a physical machine will be considered correct. The
separation of functionality and constraints is maintained in
the formal definition, and this enables the semantics for
Actors and RT-Synchronizers� to be given as independent
transition systems. The meaning of a program composed of
actors and synchronizers can then be given afterwards by
putting the two transition systems in “parallel”.

3.1. Semantics of Actors

We define a transition system � for the actor-language.
This defines how the state of the actor system changes when
a primitive operation is performed, thus giving an abstract
interpretation. The actor semantics presented here is in-
spired by the work of [4] where additional information can
be found, but our is imperative in style, whereas [4] is ap-
plicative.

Our semantic model abstracts away the notion of meth-
ods. Instead, each actor has a single behavior—a sequence
of statements—that it applies to every incoming message.

When the actor has completed processing a message it ex-
ecutes the ready-statement1 to indicate that it is ready to
accept a new message.

The state of an actor system is represented by a configu-
ration which can be thought of as an instantaneous snapshot
of the system state made by a conceptual observer. It is
modeled as a pair

��
� j�

��
where � represents actor-states,

and � is the set of pending messages. The � mapping main-
tains the state of all actors in the system. An actor state
holds the execution state of an actor: the values of its state-
variables, and how far the actor has come in its computation.
An actor state is written �E � b�a. a is the actor’s address,
E is an environment (mapping from identifiers to their val-
ues) tracking the values of the state-variables, and b is the
remainder of the actor’s behavior. In each computation step
the actor reduces the behavior until it reaches a ready�x�
statement. This signifies that the actor a is waiting for an
incoming message whose contents should be bound to x.
When a message arrives the actor continues its execution.
A message is a pair ha� cvi consisting of a destination
actor-address a, and a value to be communicated cv.

The semantics is given in Figure 7. The fun transition
defines the effect on system state when an actor performs
an internal computation step, a reduction of an expression.
The transition system
� defines the semantics of the se-
quential language used to express actor behaviors. Since
we do not rely on a specific language, we have omitted its
definition.

The interpretation of send is given by the snd-rule. The
newly sent message is added to �.

Message reception is described by the rcv transition.
When an actor executes a ready�x�-statement it becomes
ready to accept a new message in an environment with
the updated state variables left by the previous processing.
Also, the formal argument x is bound to the actual carried
by the message. Finally, the message is removed from �.
It is exactly these receive transitions that are constrained by
RT-Synchronizers�. Other transitions are only affected in-
directly.

By inspecting the semantics it should be clear that one
cannot make any timing assertions about the execution of an
actor program, as is required by real-time systems. To make
this observation explicit we here briefly introduce time into
the actor semantics.

Time can be added to transition systems by introducing
a special set of delay actions written ��d� where d is a fi-

1In the classic Actor literature the become primitive is used instead of
ready. When an actor executed a become it created a new anonymous ac-
tor to carry out the rest of its computation, and prepared itself to receive a
new message. Thus, in the classic model, actors were multi-threaded, and
tended to be extremely fine-grained. In recent literature [3], the simpler
ready has replaced become, with essentially no loss of expressiveness. In
addition we have, due to brevity, omitted the semantic definition of dy-
namic actor creation.

hfun � ai
E � b
� E� � b���

� � �E � b�a j�
��

�

��
� � �E� � b��a j�

��

hsnd � a� ha� � cvii��
� � �E � send�a�� cv�� b�a j�

��

�

��
� � �E � b�a j� � ha� � cvi

��

hrcv � a� ha� cvii��
� � �E � ready�x�� b�a j� � ha� cvi

��

�

��
� � �E�x � cv� � b�a j�

��
Figure 7: Configuration transitions
�

nite positive real-valued number representing the passage
of d time-units. The idea is that system execution can be
observed by alternatingly observing a set instaneous transi-
tions and observing a delay. In [11] this idea was termed the
two-phase functioning principle: System state evolves alter-
natingly by performing a sequence of instantaneous actions
and by letting time pass.

By adding the rule:
��
� j�

�� ��d�

�

��
� j�

��
, we ex-

tend
� transition relation with the ability of letting time
pass. The rule states that any actor configuration is always
able to delay of some (finite) amount of time. The conse-
quence is that one cannot tell how long time an actor pro-
gram takes to finish; indeed the period between any pair of
actions is indeterminate. This is a very reasonable model for
untimed concurrent programs, where no assumptions on the
relative ordern or timing of events should be made. How-
ever, a language with this semantics is unideal for real-time
system because one can from the code only make assertions
about eventually properties, not about bounded timing. A
real-time programming language should make this possi-
ble, and its semantics should define when and by how much
time can advance.

3.2. RT-Synchronizers� Semantics

We start by defining semantics for single constraints
(
� transition system), and thereafter proceed to a syn-
chronizer object (
� transition system), which essentially
is a state plus a collection of constraints and triggers. The
state variables of a synchronizer will be represented by an
environment V mapping identifiers to their values. Con-
straints and patterns are evaluated in this environment.

Recall that a constraint has the form p� � p� � y.
Whenever an invocation matches p� the constraint fires and
thereby creates a new demand instance for an invocation
matching p�. Such a demand will semantically be repre-
sented by the triple p� � d, where d is a real number denot-
ing the deadline or release time of p�, depending on �. d

is initialized with the value of state variable y,V �y�, when

fired.

Since a constraint can fire many times successively, a
constraint may induce many outstanding demand instances.
The state of a single constraint is therefore represented as
a constraint configuration hj	 j
� ji where
� stands for the
(static description of a) constraint of the form p� � p� � y,
and 	 is a multi-set of demands instantiated from the static
description
� . The semantic rules are shown in Figure 8.

The function cs determines whether the pattern of a de-
mand instance is satisfied, and if so, removes it from the
demand instance set. If the pattern is not satisfied the de-
mand is maintained. Similarly, the function cf determines
whether or not the constraint fires and therefore whether
or not to add a new demand instance. Thus the Sat-rules
ensure that whenever a constraint fires, a demand (cf) is
added to 	. Also, whenever a demand (cs) is satisfied, it
is removed from 	. Due to the possibility of a single mes-
sage matching both p� and p� the Sat-rules are prepared to
both satisfy and fire a demand. The demand instance to be
removed is chosen non-determistically; this gives the im-
plementation the greatest freedom to choose the demand it
finds the most appropriate, e.g., the one with the tightest
deadline.

The passage of time is controlled by the Delay-rule such
that the elapsed amount of time (e) is subtracted from di in
each demand pi � di. This is written 	�e. Thus for p � d,
d is the amount of time that must pass before p is enabled.
p will be enabled when d is less than 0. This requirement
is enforced by the cs function of the hSat� � a�cv�i rule.
For p � d, d is the amount of time that may pass before p

will be disabled. p would be disabled if d was is less than 0.
However the hDelay� � ei prevents time from progressing
that much.

In effect, the delay rule ensures that deadline constraints
are always satisfied in the semantics. This corresponds to
the declarative meaning one would expect from a constraint:
one that must be enforced. Without this strict definition
our constraints would degenerate to merely assertions, and
not convey its intended meaning. An actual language im-

hSat� � a�cv�i

cs �

�
� if a�cv� j� p�
p� � d� otherwize

cf �

�
p� � V �y� if a�cv� j� p��
� otherwize

hj	 � p� � d� j
�ji
a�cv�

� hj	 � cf � cs j
�ji

hSat� � a�cv�i

cs �

�
� if a�cv� j� p� � d� � 	
p� � d� otherwize

cf �

�
p� � V �y� if a�cv� j� p��
� otherwize

hj	 � p� � d� j
�ji
a�cv�

� hj	 � cf � cs j
�ji

hSat� � a�cv�i

cf �

�
p� � V �y� if a�cv� j� p��
� otherwize

hj� j
� ji
a�cv�

� hj� � cf j
� ji

hDelay� � ei
�p� � di � �	� e��di 	 	

hj	 j
� ji
��e�

� hj	� e j
� ji

a�cv� j� x��x��when b �def a � V �x�� � b�V �x� � cv��

Figure 8: Semantics for single constraints
� where�� f���g

plementation may not always be able to give this guaran-
tee, neither statically or dynamically, due to the computa-
tional complexity of finding feasible schedules for general
constraints. Conflicting constraints that have no solutions
should be detected as part of the compilers static program
check. Ren has in [12] showed how RT-Synchronizers�-
constraints can be mapped to linear inequality systems for
which polynomial time algorithms exist for detecting solv-
ability.

The following transition sequence illustrates application
of the transition rules for a constraint:

hj� j p� � p� �
ji
a��cv�

�

hjp� �
 j p� � p� �
ji
����

�

hjp� � � j p� � p� �
ji
a��cv�

�

hjp� � �� p� �
 j p� � p� �
ji
����

�

hjp� � 	� p� � � j p� � p� �
ji
a��cv�

�

hjp� � � j p� p� �
ji
a��cv�

�

hj� j p� p� �
ji

Given that the behavior of each single constraint is well
defined it is easy to define the behavior a collection of con-
straints as found within a synchronizer. Essentially the in-
dividual constraints are conjuncted, i.e., we demand that

all constraints agree on a given invocation. Similarly, they
must all agree on letting time pass.

A synchronizer is represented by a synchronizer config-
uration h�jV i where � is a set of constraint configurations
(ranged over by �). As previously stated V represents the
state variables of a synchronzier and is a mapping from
identifiers to their values. The necessary definition is shown
in Figure 9. A synchronizer can engage in a message recep-
tion a�cv� or a delay ��e� only when this is permitted by ev-
ery constraint. We have omitted the quite simple definition
of the effect of triggers: V � is V simultaneously updated
with the assignments in the matched triggers.

3.3. Combining Actors and RT-Synchronizers�

The previous subsections gave the meaning of the ac-
tor and RT-Synchronizers� languages independently. The
effect of constraining an actor program can now be de-
fined here as a special form of parallel composition k
that preserves the meaning of constraints. Call a collec-
tion of synchronizers for an interaction constraint system.
An interaction constraint system configuration is written
����� � � � � �n�� where � ranges over synchronizer configu-
rations. The composition k of an actor configuration and
an interaction constraint system configuration is defined in
Figure 10.

hAction � i

�i � ����n���i
�

� ��i

h��� � � � � �njV i
�

� h���� � � � � �

�
njV

�i
� � fa�cv�� ��e�g

Figure 9: Semantics for a synchronizer
�

Una�ected Actions��
� j�

�� �

�

��
�� j��

��
 � fhfun � ai� hsnd � a�mi� hready � aig��

� j�
��
k ����� � � � � �n��

�

��

��
�� j��

��
k ����� � � � � �n��

Receive��
� j�

�� �

�

��
�� j��

�� V
i�����n	

�i
a�cv�

� ��i � hrcv � a� ha� cvii

��
� j�

��
k ����� � � � � �n��

�

��

��
�� j��

��
k ������ � � � � �

�
n��

Delay V
i�����n	

�i
��d�

� ��i

��
� j�

��
k ����� � � � � �n��

��d�

��

��
� j�

��
k ������ � � � � �

�
n��

Figure 10: Combined behavior
��

Transitions unaffected by interaction constraints alto-
gether are message sends and local computations. These
only have effect on the actor configuration. Message in-
vocations hrcv � a�mi are the interesting events affected
by constraints. Note that the same invocation may be con-
strained by several synchronizers, and all must certify the
invocation, i.e., synchronizers, like constraints, are com-
posed conjunctively. The idea is that adding more synchro-
nizers should further restrict the behavior of objects. A con-
sequence of this is that the synchronizers also must agree on
letting time pass.

The combined semantics define all correct transition se-
quences (
�

��). A transition sequence corresponds to one
possible schedule of the implemented system (consisting of
actors, constraints, operating system, runtime system, and
hardware resources), and thus a primary task of the lan-
guage implementation is to schedule events in the system
such that the resulting schedule can be found in the pro-
gram’s semantics. Thus an actorkRT-Synchronizers� pro-
gram can be viewed as a specification for the set possible
systems.

Our approach to defining the semantics is inspired by the
recent years research in formal specification languages for
real-time systems, and the use of timed transition systems
are borrowed from these languages. Often, the languages
take the form of extended automata (Timed automata [6],

Timed Graphs [6, 11]), or process algebras such as Timed
CSP [16]. A different approach is to include a model of the
underlying execution resources. This approach is taken in
[15] and [19]. The resulting semantics includes an abstract
model of the execution environment (number of CPU’s,
scheduler, execution time of assignments etc.). The process
algebra Communicating Shared Resources (CSR) has been
designed with the explicit purpose of modeling resources
[8, 9]. A process always runs on some, possibly shared,
resource. A set of processes can be mapped to different
sets of resources, hence describing different implementa-
tions. Thus, these approaches model relative concrete sys-
tem, rather than being specifications for a set of possible
systems, as is our goal.

4. Implementation Strategy

Through the examples in Figures 4, 5, and 6, we have
indicated that our language can be used as a specification
or modeling language that defines the structure and permis-
sible behavior of a computer system: hardware and system
software that executes application software. However, we
would also like to use our language as a high-level real-time
programming language such that an RT-Synchronizers�

specification can be compiled and executed. Our model is
still to be implemented, and we shall here only discuss a

unprocessed msgs

Scheduler ActorsSynchronizer
objects dispatch

 events

deadlines
releasetimes

enable/disable info

new messages

msg. dispatch

Figure 11: Implementation Architecture with constraint directed scheduling

possible implementation strategy.
Implementing our full model will be no easy task, but

the difficulty is mostly related to the generality of the con-
straints that can be expressed, and less due to the separation
of functionality and time constraints. We have identified
three main tasks an implementation should address:

Scheduling: One challenge will be to find a scheduling
strategy that satisfies as many deadline constraints as
possible when the RT-Synchronizers�-program is exe-
cuted on a physical machine with limited resources. In
addition, hard and firm real-time systems require an a
priori guarantee (or at least a solid argument) that tim-
ing constraints will be satisfied on the chosen platform
during runtime.

Constraint propagation: In RT-Synchronizers� the pro-
grammer need only specify end-to-end timing rela-
tions, not on all events along the causality path:
Assume that actor a receives a message m�; a

then responds with a message m� to actor b which
in turn sends a message m� to actor c. Let
am�, bm� and cm� denote the reception events of
these messages. We say that am� causes bm� and
bm� causes cm�. Then a typical interaction constraint
would be am� � cm� � �	. Consequently, there is
an implicit constraint on event bm� which is to hap-
pen (well) before cm�. Thus compiler/runtime system
should be able to perform constraint propagation along
the causality path.

Synchronizer distribution: If the synchronizer entities
are maintained as runtime objects, how should their
state be distributed? Here there is a classic compro-
mise between a centralized solution where consistent
updates are easy versus a distributed solution that po-
tentially reduces bottlenecks and potentially increases
fault tolerance, but at the increased cost of maintaining
consistency.

Our implementation strategy, constraint directed

scheduling, seems practical for soft real-time systems
only: We do not have a procedure, neither automatic nor
manual, for establishing the guaranteed satisfaction of time
constraints required by hard real-time systems, and for the
unrestricted type of real-time and synchronization con-
straints that we permit in our language. Additionally, a full
verification of the implemented system is rarely practical.
To make schedulability analysis practical one often restricts
the types of constraints to periodic constraints. Similar
restrictions can be made to RT-Synchronizers�. With
simple dependencies between periodic tasks generalized
rate-monotonic analysis can be utilized [18]. The Real-
time Object-Oriented Modeling method (ROOM) [17],
which has many notions in common with the actor-model,
has recently been extended with notions for specifying
real-time properties [14]: Message sequence charts with
annotated timing information can be used to express
activation periods of methods or end-to-end deadlines on
sequences of message invocations. With these two kinds of
constraints and a few design guidelines the authors show
how scheduling theory can be applied to room-models.

Constraint directed scheduling is an implementation
technique that dynamically uses the information of the fired
constraints in the synchronizers to assign deadline and re-
lease times to messages, see Figure 11. Synchronizer ob-
jects are thus maintained at run time as data-objects, whose
state can be inspected by the scheduler.

Time based scheduling such as Earliest-deadline-first
(EDF) can then be used to dispatch messages based on their
deadlines. We propose to use EDF-scheduling because it
is dynamic and optimal: if a feasible schedule exists EDF
will produce one. Obviously, EDF does not in itself guaran-
tee that a feasible schedule exists and constraint violations
may therefore occur. An advantage of our strategy is that it
does more than simply monitor the time constraints; it con-
structively applies information from the synchronizers to its
scheduling decisions.

We propose to let the compiler compute a conservative
version of the causality graph annotated with worst case ex-

ecution time and message propagation delays, and include
a copy of it at runtime [12]. The runtime system then has
the information necessary to propagate constraints automat-
ically. The cost of this scheme is the space needed to store
the causality graph and the time required to do the propaga-
tion.

An alternative to the causality graph would be to require
the programmer to resolve all intermediate deadlines. In
essence this requires the programmer to manually perform
(deadline) constraint propagation and solving as part of the
programming task. This fits with the philosophy that turn-
ing a specification into a program is a matter of refining
specifications by gradually introducing more and more de-
tail.

A recent result is [10] where certain aspects of RT-
Synchronizers� are implemented in their DART frame-
work where constraints are used to dynamically instruct the
scheduler about delays and deadlines of messages. How-
ever the paper gives no systematic (automatic) translation
of of constraints to scheduling information. We expect that
our semantics can help in filling out this gap: Since it is
operational it gives a direct algorithm for assigning dead-
lines to messages. That is, the operational semantics is an
abstract algorithm for the behavior of the synchronizer ob-
jects.

5 Summary

We have presented a specification and programming
language, RT-Synchronizers�, that facilitate separate and
modular specification of real-time systems: computing ob-
jects are glued together by synchronizer entities that ex-
presses real-time and synchronization constrains. This per-
mits a component based approach to the construction of
real-time systems. Our language is explained both concep-
tually and formally. Our operational semantics give an ab-
stract interpretation of the interaction constrains—this inter-
pretation is used directly in our implementation proposal.
Future work includes implementation work, both on the
compiler and runtime system side.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press, Los Alamitos, California,
1986. ISBN 0-262-01092-5.

[2] G. Agha. Concurrent Object-Oriented Programming. Com-
munications of the ACM, 33(9):125–141, September 1990.

[3] G. Agha. Modeling Concurrent Systems: Actors, Nets, and
the Problem of Abstraction and Composition. In 17th In-
ternational Conference on Application and Theory of Petri
Nets, Osaka, Japan, June 1996.

[4] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A
Foundation for Actor Computation. Journal of Functional
Programming, page 68pp, To be published.

[5] M. Akşit, J. Bosch, W. van der Sterren, and L. Bergmans.
Real-Time Specification Inheritance Anomalies and Real-
Time Filters. In Proceedings ECOOP, pages 386–407, 1994.

[6] R. Alur, C. Courcoubetis, and D. Dill. Model–checking for
real–time systems. In Proceedings of the Fifth IEEE Sympo-
sium on Logic in Computer Science, pages 414–425, 1990.

[7] S. Frølund. Constraint-Based Synchronization of Distributed
Activities. PhD thesis, Department of Computer Science,
University of Illinois at Urbana Champaign, September
1994.

[8] R. Gerber and I. Lee. Communicating Shared Resources: A
Model for Distributed Real-Time Systems. In Proc. Real-
Time Systems Symposium, pages 68–78, Santa Monica, CA,
USA, 1989. IEEE.

[9] R. Gerber and I. Lee. A Layered Approach to Automating
the Verification of Real-Time Systems. IEEE Transactions
on Software Engineering, 18(9):768–784, September 1992.

[10] B. Kirk, L. Nigro, and F. Pupo. Using Real Time Constraints
for Modularisation. In Joint Modular Language Conference,
March 1997. Linz.

[11] X. Nicollin, J. Sifakis, and S. Yovine. Compiling Real-Time
Specifications into Extended Automata. IEEE Transactions
on Software Engineering, 18(9):805–816, September 1992.

[12] S. Ren. An Actor-Based Framework for Real-Time Coordina-
tion. PhD thesis, Department Computer Science. University
of Illinois at Urbana-Champaign, 1997. PhD. Thesis.

[13] S. Ren and G. Agha. RT-Synchronizer: Language Support
for Real-Time Specifications in Distributed Systems. ACM
Sigplan Notices, 30(11), November 1995. Proceedings of
the ACM Sigplan 1995 Workshop on Languages, Compilers,
and Tools for Real-Time Systems.

[14] M. Saksena, P. Freedman, and P. Rodziewicz. Guidelines for
Automated Implementation of Executable Object Oriented
Models for Real-Time Embedded Control Software. In 18th
IEEE Real-Time Systems Symposium, pages 240–251. IEEE,
December 1997.

[15] I. Satoh and M. Tokoro. Semantics for a Real-Time Object-
Oriented Programming Language. In Int. Conf. on Computer
Languages, pages 159–170, Toulouse, France, 1994. IEEE.

[16] S. Schneider. An Operational Semantics for Timed CSP. In-
formation and Computation, 116:193–213, 1995.

[17] B. Selic, G. Gullekson, and P. T. Ward. Real-time Object-
oriented Modeling. Wiley Professional Computing. John Wi-
ley & Sons, Inc., New York, 1994. ISBN 0-471-59917-4.

[18] L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized Rate-
Monotonic Scheduling Theory: A Framework for Develop-
ing Real-Time Systems. Proceedings of the IEEE, 82(1):68–
82, January 1994.

[19] P. Zhou and J. Hooman. A Proof Theory for Asynchronously
Communicating Real-Time Systems. In Proc. Real-Time
Systems Symposium, pages 177–186, Phoenix, AZ, USA,
1992. IEEE.

