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5. Research School. Both the Formal Methods and Tools group at Twente, and the Software
Technology group at Nijmegen participate in the Research School of the Institute for Programming
Research and Algorithmics (IPA).

6. Description of Proposed Research.

(a) Problem statement and objectives.
In the past decade the development of theories and software tools to support the testing
of hardware and software systems has become an academically respectable area of research.
Whereas testing was once condemned as an inferior validation method – testing can only show
the presence of errors, not their absence – it is now recognized as a very important technique of
quality control, whose flexibility and scalability make it the most applied validation technique
in practice. In computer science research it has been identified as a promising application
area for formal methods, where semantic models and theories have been usefully applied to
develop formal testing theories. These have been used to give precise interpretations of funda-
mental testing concepts, such as correctness of implementations with respect to specifications,
soundness and completeness of test suites, test coverage, etc. Based on such formal defini-
tions algorithms can be developed for the generation of tests from formal specifications, the
validation of tests, and the interpretation of test results, among others. As most practical
testing is performed on an ad hoc basis, and with a low degree of automation, such results
are not only theoretically interesting, but also have enormous practical potential. This should
be understood in the current industrial setting, where testing may take up 30 to 50% of the
budget of a software development project.
Concrete examples of formal methods based test environments are TVEDA [Pha94], TGV
[JM99], and TorX [BFV+99]. TVEDA and TGV are tools that have been developed by
researchers from France Telecom and IRISA, in France. TorX has been developed at the
University of Twente, in collaboration with Eindhoven University, Philips Research, KPN
Research, and Lucent as part of the STW Côte-de-Resyste project [STW96]. Its main features
are:

• automated test generation for functional conformance properties from formal specifica-
tions. A distinguishing feature of TorX is its solid theoretical foundations, with its
test derivation algorithms firmly rooted in a specialization of De Nicola/Hennessy-testing
theory to input/output-automata, quiescent refusal testing [DNH84, Tre96b].

• support for test execution. TorX supports both on-the-fly test execution, i.e. test exe-
cution is directly driven by the generated test steps while they are being calculated, and
batch test execution, i.e. test execution is based on test suites that have been generated
before and stored.

• an open, modular architecture. This lends the tool great flexibility in handling different
specification formalisms. In principle any formalism whose specifications can be inter-
preted as labelled transition systems [Mil89] can be used in combination with TorX, if
an appropriate front-end translation module is provided. Currently, such translators are
available for the formalisms LOTOS [ISO89] and Promela [Hol91]. At the back-end, an
application-dependent adapter module makes it possible to cater for a wide variety of test
methods [ISO91] and architectures for the SUT (system under test).

On the basis of a number of realistic applications (the EasyLink protocol [BFHV01], ‘Rekeningrij-
den’ [VBF02], Cell Broadcast Centre [Chr01]), it has become clear that TorX is a practically
useful conformance test tool that compares favourably to other existing approaches [HFT00].
At the same time, two major areas for improvement have been identified, viz.:

• the lack of support for dealing with realtime features in specifications and implementations.
TorX and its underlying theory are restricted to untimed behaviour, and indeed many,
and probably most, aspects of a system can be validated in an untimed setting. Still, most
embedded systems do have features that depend upon their timing in an essential way,
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which are error-prone and must therefore be subjected to systematic validation methods,
such as testing.
Even if the functionality of a system itself is not time-dependent, its implementation may
have realtime features that interfere with testing. This typically has to do with the use of
timers that are used to guarantee the progress of a system. The time-out values determine
the observational criteria for identifying the deadlock/livelock properties of the SUT. This
problem occurred in the ‘Rekeningrijden’ application [VBF02].

• the lack of support for dealing with realistic data domains. TorX and its underlying
theory mainly deal with the control aspects of system behaviour. They originate in the
analysis of protocols in communication networks and distributed embedded systems, in
which the flow of control is the determining factor in system correctness. These control
aspects are usually modelled by some kind of state machine or labelled transition system.
The relevant data structures and domains are restricted to simple types (e.g. bits, bytes,
subranges).
With the advent of embedded (and communication) systems whose functionality is mainly
software-dependent, this situation has changed. The correctness of these systems is also
related to the correctness of complex data structures, variable values ranging over large
or infinite domains and constraints involving these values.
Another reason for dealing with data-intensive applications is the natural trend toward
wide-spectrum (testing) tools. Users have a preference for tools that can be applied
generically, so that working on different application areas does not require using different
tools and/or methods. This tendency makes it desirable that tools like TorX can also be
applied in the setting of more traditional, data-intensive software testing.
Currently, the support for data testing, both in theory and in tools, is insufficient as the
experiences with EasyLink [BFHV01] and the Cell-Broadcast-Centre [Chr01] have shown.

A success story in the application of formal methods to industrial problems is system verifica-
tion by model checking. In the past decade a substantial number of model checking tools have
been developed and successfully applied, such as SPIN, SMV, Murφ, JAVApathfinder, etc. A
number of such tools have also been developed for the analysis of real-time systems such as
Kronos, Hytech and Uppaal [Sof97].
Uppaal is a tool for modelling, simulating, and verifying real-time systems, developed in a
collaboration between the Department of Computer Systems at Uppsala University and the
Department of Computer Science at Aalborg University. The tool allows for the modelling
of real-time systems as collections of non-deterministic processes with finite control structure
and real-valued clocks (so-called timed automata) communicating through channels and shared
variables.
Much of Uppaal related research is devoted to new data structures and algorithms for efficient
symbolic representation and manipulation of the state spaces encountered during exploration
of system models. Through its lifetime, the performance of the tool has improved substantially:
on the full collection of industrial case studies both space-and time-performance has improved
by a factor of 10 every nine months. In particular, symbolic data structures dealing with the
infinite, continuous part of the state space due to the presence of clocks have been a primary
concern. One such data structure is a zone which allows certain subsets of the Euclidean space
to be represented as Difference Bound Matrices that constitute the central data structure in
the Uppaal verification engine.
A first attempt to apply the efficient symbolic techniques of Uppaal to the problem of test
generation based on timed automata specifications has been carried out in Nielsen’s disser-
tation [Nie00]. The results have been implemented in the RTCAT test case generation tool.
Applications to realistic cases show promising results. They also identified a number of open
issues, such as the limited expressiveness of the specification formalism, the lack of a solid
testing theory for dense timed systems, limited size of the systems that can be systemati-
cally analysed, and the efficient handling of timing non-determinism (timing uncertainty) in
specifications, implementations, and test execution environments.
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From the overview above it is clear that the objectives of the STRESS project should be:

(1) development of a realtime theory of quiescent refusal testing. In order not to sacrifice the
formally robust approach of TorX, the effort to support the testing of realtime system
features must be based on solid theory. In our case this entails working on a realtime
extension of the theory of quiescent refusal testing.

(2) development of a testing framework for complex data structures.
As under the previous point, we must also extend the theory of quiescent refusal testing
with ways to deal with data-oriented aspects. This involves methods to specify, represent
and manipulate complex data structures and large data domains in such a way that the
extension is well-defined, consistent with the theory of quiescent refusal testing, and leads
to computationally tractable algorithms for test generation and test data selection.

(3) implementation of a test tool environment for embedded software systems.
The goal is to extend and adapt TorX with features that support the two previous
objectives: realtime testing and testing of data-oriented aspects. The tool should be able
to generate tests from specifications in the appropriate formalisms, execute these tests,
and analyse their results. It will be most challenging to create a realtime test execution
environment that both precise and sufficiently fast to support realtime interaction with
the system under test. This will require a careful revision of the existing tool architecture,
and of the TorX and Uppaal components that we intend to reuse. Their use ensures the
availability of robust and proven technology for untimed, control-oriented testing, exploits
the considerable investments already made in the tools and should make compatibility with
the current version of TorX easier to achieve.

(b) Method
To explain our approach to the realization of the objectives we start with three sections that
give background information relevant to the scientific ingredients of the proposed project.
They are followed by sections describing the way in which the actual research is to be carried
out.

Quiescent refusal testing. The testing theory underlying TorX has its roots in the sem-
inal work of De Nicola and Hennessy that proposed a family of semantic models for process
algebras and labelled transition systems based on observing of the behaviour of processes by
composing them in parallel with observer processes [DNH84, DN87]. Such so-called testing
pre-order models studied as semantic models for reactive systems. Their first use in the con-
text of actual testing was proposed by Brinksma [Bri88], where the theory was used to derive
from a specification a set of observers that suffices to detect non-conforming implementations.
Subsequent work by Tretmans improved on this basic testing theory in at least two respects.
First, it replaced the assumption that SUT and its tester (observer) are communicating via
synchronous interaction [Tre96a]. In practice, testing almost always takes place in a context
where communication is asynchronous. This aspect was taken into account by specializing
the testing theory to the class of input/output automata [LT89]. In this class asynchrony
is implicitly modelled by the assumption of input-enabledness, i.e. the assumption that in
each state the system has a defined reaction to input from its environment. In asynchronous
communication this property is typically enforced by the buffer capacity of the communication
channels between processes. In this setting a process is never in a deadlocked state as it can
always accept new inputs. The relevant concept here becomes quiescence [Vaa91], i.e. the
phenomenon that the process refuses to produce any output if no further input is provided.
A second improvement by Tretmans was the generalization of I/O-testing to repetitive qui-
escence, i.e. the phenomenon that after observation of quiescence testing may continue by
providing new input of the system [Tre96b]. In practice, quiescence is assumed to have been
observed after the elapse of some system dependent maximal response time. In order not to
waste information it is attractive to try other test sequences out of a quiescent state when it is
reached. This idea is a generalization of the work on refusal testing by Phillips [Phi87] (and,
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independently, Langerak [Lan90]), in which testing continues after the observation of a refusal
(the incapacity to synchronize on a given set of actions).

Testing timed automata. Test derivation from timed automata is still a fairly undeveloped
research area. Although some work has been done [SVD97, ENDK98, CO00, CKL98, SS01]
(see section on related work), they all suffer from more or less serious defects, such as state
space explosion problems, or problems with the soundness and completeness of the derived
test suites.
So far only the work by Nielsen has led to results with a potential for practical applicability
[Nie00, NS00, NS01a, NS01b, NS02]. The main features of his work, as implemented in the
RTCAT tool, are

• test generation is based on a restricted class of dense and potentially non-deterministic,
timed automata specifications. Also here, the work makes use of (a simple timed extension
of) De Nicola and Hennessy’s testing pre-order theory [NH84].

• test selection for realtime systems (choosing at which time instances inputs should be
supplied to the system under test) is addressed by partitioning the state space into coarse
grained equivalence classes that in a systematic way preserve essential timing and dead-
lock information, and selecting a few instances for each class. This approach is inspired
by sequential black-box testing techniques frequently referred to as domain- or partition
testing [Bei90], by regarding the clocks of a timed specification as (oddly behaving) input
parameters.

• the test case generation algorithm systematically ensures that the specification will be
covered such that the relevant Hennessy tests for each reachable equivalence class are
generated. Uppaal verification techniques are used to interpret the timed automata
specification, to compute and cover the reachable equivalence classes, and to compute the
timed test sequences.

Data testing. Testing and test derivation for data-oriented aspects based on formal spec-
ifications is still an underdeveloped area. The best developed theory, to our knowledge, the
algebraic abstract data type testing theory by Gaudel et al. [Gau95]. Test data are selected
based on formally expressed assumptions referred to as test hypotheses. A tool is available
[Mar95]. Also some approaches to testing based on Z specifications are known [Hie97], most
of which are based on some kind of formalization of the classical equivalence partitioning
approach [Mye79]; see also the section on related work.
The current approach toward dealing with data in TorX is inherited from the front-end
translation tools which are used. The approach is rather naive and straightforward: all data
domains are expanded by explicit enumeration of all their possible values. This leads to models
where all data aspects are completely encoded in the control flow (labelled transition systems),
which leads to obvious disadvantages: data domains can only be of limited size, combining
multiple data variables leads to the infamous state-space explosion problem, and important
information on how data and data sets are structured is lost. Such structuring information is
useful for test data selection.

Developing a theory of realtime testing A robust theory that can serve as the foundation
for a TorX-Uppaal realtime testing tool must provide a suitable formal implementation
relation that characterizes precisely when an implementation conforms to a given specification.
Such a relation also provides indirectly the formal criterion of what should be tested, and serves
as the basis for test generation.
It stands to reason that in the STRESS project it should be attempted to apply the ideas of
quiescence refusal testing to timed automata. To do so the following technical issues must be
addressed:
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• input-enabledness in timed automata. In the untimed case input-enabledness is an ab-
stract semantic representation of the fact that in practice SUTs (systems under test)
cannot refuse to accept new (test) inputs because of the buffer capacity of the test envi-
ronment of an implementation. They are usually chosen to be unbounded, which presents
a problem in the case of timed automata, whose control state space must be finite. It
will important to identify the right class of input-enabled timed automata that suffice to
model the SUTs and have finite control. Fortunately, realtime media of a test system typ-
ically have a finite maximal transfer delay, which suggests that bounded media suffice. An
elaboration of quiescent refusal testing for bounded I/O capacity can be found in [Hee98].

• time delay actions and quiescence. Observations of timed automata do not only involve
observable actions, but also observations of the passage of time, usually formalized by
special time delay actions. In the presence of such actions the notion of quiescence must be
refined. The refusal of a time delay corresponds intuitively to (bounded) non-quiescence:
the system must react before such a delay would have occurred. A system is quiescent if
can only execute a sequence of diverging delays.

• nondeterminism in timed I/O automata. Testing typically occurs in a context of non-
determinism. Even if an implementation itself is deterministic the test context (the en-
vironment needed to execute the test) will usually introduce nondeterminism into the
system. Nondeterministic timed automata are strictly more expressive than deterministic
ones, and language inclusion between nondeterministic timed automata is undecidable
[AFH94, YJ94]. This is not a death-blow to testing theory, as complete testing is only
obtained as a theoretical limit of finite approximations, but it is clear that a judicious
choice of the allowable class of nondeterministic systems must be made to obtain good
(practical) results.

Developing a theory of data testing. New methods of dealing with complex data struc-
tures and large data domains in testing have to be developed. Whereas for realtime testing
there is an obvious candidate formalism – timed automata – and tool – Uppaal– for in-
tegration with quiescent refusal testing and TorX, this is not the case for integration of
data-oriented aspects. Consequently, the research consists of two phases. Firstly, criteria have
to be identified and analysed for selecting a data formalism with accompanying tool support
and, secondly, data test theory has to be elaborated for a selected data formalism.
Since it is unlikely that one particular data formalism will suit all possible application areas of
data testing, the results of the first phase are at least as important as of the second. A modular
approach must be developed where criteria are given for a well-defined interface between the
control-flow formalism and the data formalism to allow different data formalisms to be plugged
in. Such an interface definition should extend from the semantic level to the level of a modular
tool structure. In this respect it is noted that the interface should be flexible enough so that
not only semantically well-defined (academic) languages can be considered, but also standard
(industrial) languages for data description as IDL [Nes90], ASN.1 [ISO90] and XML [GQ99].
For a data formalism at least the following aspects have to be considered. First, it should
consistently integrate and not sacrifice or obscure the existing well-defined theory of quiescent
refusal testing. Second, an important issue is finite and efficient representability of data.
Instead of explicit enumeration of all possible values, other, more symbolic ways of representing
data and data domains are necessary. Thirdly, the manipulations and calculations which are
necessary for test generation and test data selection have to be taken into account. It should
lead to computationally tractable, implementable and efficient algorithms and/or heuristics
for test generation and test data selection. Fourthly, usability of the data formalism should
be considered or, at least, it should allow a user-friendly data specification language to be
built on top of it. Finally, since it is not the prime intention of the STRESS project to define
yet another data specification formalism, selecting, adapting and integrating an existing data
formalism is preferred. In this respect is important to consider also existing tool support and
the feasibility of consistent and modular integration within the TorX architecture.
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Considering the above constraints there are many candidate data formalisms and accom-
panying tools, which may be considered. A prime candidate is the use of functional lan-
guages. Functional languages enjoy a rich underlying theory, they allow to define (infinite)
data structures and computations on these structures are easily specified. Moreover, elaborate
and professional tool sets are easily available including static analysis and typing, interpre-
tation, compilation, rewriting and dedicated proof support. In particular, the project has
easy access to the Clean System which is an environment for the functional language Clean

[PE93, PE99, PE01]. It includes the theorem prover Sparkle [MEP02]. Provided it meets
the criteria for integration into the formal testing framework, the combination of Clean and
TorX will be elaborated. It is expected that the computations necessary for test generation
can be expressed over functional languages. It might be that for test data selection extensions
are necessary, e.g., incorporating ideas from constraint solving techniques.
Alternative approaches exist, should the approach via functional languages turn out to be less
successful. Other candidate data formalisms include algebraic abstract data types as currently
used within LOTOS, or some (user-friendly) extensions thereof, with corresponding rewriting
and narrowing tool support. In this respect the data selection tool LOFT which works on such
data types can be useful [Mar95]. Also languages which are supported by powerful theorem
provers, e.g. PVS [COR+95], may be considered. This is triggered by our conjecture that
for the computation of quiescence in a symbolic setting some kind of proof support will be
necessary. But also more concrete data type languages derived from programming languages
can be considered, just as industrial languages for the description of data, like IDL or ASN.1;
see above.

Common Issues. The common issue in both timed testing and data-oriented testing is that
in the current test theory (and TorX) they lead to large or infinite state systems. Exploring
finite and efficient representations for such state spaces, lifting implementation relations and
test algorithms to these representations and transforming the results of the algorithms into
executable tests are problems which are encountered for both in an analogous manner. Con-
siderable effort will therefore be given to finding generic solutions that can be instantiated for
both problem areas.
One particular common problem is that of test selection. If transition systems are large or
infinite exhaustive testing is not possible. The question then is how to select the data values
or the instances in time for a test case. The principle observation here is that there can be no
formal argument why one instance or data value is better than another. Selection is usually
based on heuristic arguments. Examples of such arguments can be found in classical software
testing, e.g. equivalence partitioning or domain testing (partitioning the input space into
subsets based on the assumption that all values in a subset have an equal chance of being right
or wrong; this technique was implemented in RTCAT; see above) or boundary value analysis
(based on the assumption that values on the boundary of input partitions have a larger chance
of leading to erroneous behaviour). Although based on heuristics and not on formal arguments,
there is a wish to measure the error detecting capability of test suites generated with different
strategies. Such measures, referred to as coverage functions, can be used to compare test suites,
to select the best ones, and, indirectly, to compare system implementations passing such test
suites. First attempts have been made in this direction [Bri93, MV95, CG97, FGST02]. Test
selection strategies and their specifications, the integration of (classical) selection heuristics in
the formal framework, and measures for expressing coverage and error-detection capabilities
of a test suite will be investigated within the STRESS project.
Another issue of common interest are application case studies to test the theory and the
tools. The case studies will be selected later in the project (year 3) on the basis of their
suitability to evaluate the progress made in realtime test generation, realtime test execution,
test data selection, test selection, etc. Both cases combining these aspects, and those focussing
on specific aspects will be relevant. The provision of these case studies, as well as smaller
example cases for initial studies, is warranted the extensive industrial contacts of the project

7



consortium (see embedding), in particular in the area of conformance testing.

Test tool implementation. Starting point for tool development is the formal test tool
TorX. TorX integrates automatic test generation and automatic test execution in an on-
the-fly manner based on the theory of quiescent refusal testing; see above.

Driver Adapter SUT

... and ... ... execution

PrimerExplorer

on-the-fly derivation...

S

P

E

C

Figure 1: TORX tool architecture

The basic architecture of TorX consists of four components (Figure 1). A specification is fed
into the Explorer; the explorer explores the state space of the specification. The Primer

calculates test primitives : the events of the tests that will be executed. It implements the
test generation algorithm of the quiescent refusal testing theory using the state exploration
functions of the Explorer. The Driver keeps the on-the-fly test running and controls the
other components. The Adapter is an important, but application specific part: it en- and
decodes abstract primitives from and to application specific formats. The Sut is the System
under Test. The left-hand side constitutes the formal part: the Explorer and Primer

manipulate formal objects, such as the specification, to generate the tests. The right-hand
side constitute the concrete part: the Sut is the real system that is being tested, which can
be any piece of software, or hardware, or (usually) a combination of these. The Adapter

transforms the abstract objects, e.g. an abstract data value, into a form which the Sut can
understand, e.g a bit-string, and vice versa.
To extend TorX with realtime testing and data-oriented extension different modules are
involved, both on the formal and on the concrete level.
For realtime test generation the Uppaal engine should be integrated into TorX, replacing
or extending the current Explorer and Primer. This requires enriched interfaces between
the Uppaal engine and the other components to convey realtime information. Also new
techniques for test selection must be implemented.
For realtime test execution it is important to make TorX fast enough for on-the-fly selection
of test data and for handling realtime responses. Many different techniques, such as from Real
Time Operating Systems (RTOS), distributed implementations and pre-computations (look
ahead), will be needed to make TorX fast enough, and to adapt the Adapter to deal with
realtime stimuli and responses.
For data-oriented test generation TorX is extended with modules supporting test data selec-
tion. This includes computations on data, data selection strategies and, probably, constraint-
solving or theorem-proving functionality. Also for this extension interfaces must be upgraded
to cater for the richer information to be communicated. If it turns out that functional lan-
guages are indeed a good solution then the Clean-environment is a candidate for integration
with TorX.
For all tool development activities it is important to maintain as much as possible the open,
modular architecture with clear and generic interfaces, and to reuse and integrate existing
components and tools wherever possible. This will lead to a flexible tool structure where
future extensions or replacements of components, e.g., replacing one data formalism with
another, are easy to be made.

(c) Scientific Interest
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The scientific interest of the project is clear: a usable formal basis for realtime testing is long
due. Independently, also a more rigorous treatment of test data selection is clearly a desirable
goal. Although perhaps less fundamental, it is an essential ingredient to make the theory
effective for testing real embedded software systems.
A lesson that can be learned from formal methods research in the past decade is that theory
development and tool development must go hand in hand to obtain the best results, both in
terms of theory and in terms of practical relevance. This makes the work on tool development
an indispensable part of the project.
The proposed approach, based on the combination and adaptation of tool functionalities of
the TorX and Uppaal tool sets will also create a very interesting link between realtime
testing and realtime model checking, echoing the existing trend to view model checking and
model-based testing as closely related activities. This will also create a natural opportunity
to link other Uppaal-related developments, such as cost-optimal search techniques [LBB+01],
with testing.
The proposed project is urgent in at least two ways. First, there exists a real need for formally
supported testing of realtime embedded software systems, which should be addressed. Second,
the proposed research is urgent in terms of the current availability of the necessary expertise.
The Côte-de-Resyste project that has developed the TorX tools et will finish by mid-2002.
In order to profit from the expertise that was built up during this project, STRESS should
ideally start up in the second half of this year.

(d) Related Work
An important part of the academic literature on testing is about the (automatic) derivation of
tests from (formal) specifications or models. The first approaches to testing the control-flow
of communication protocols and embedded systems were inspired by hardware testing. These
approaches use Finite State Machines (FSM – Mealy machines) to model the behaviour of the
system. From an FSM tests are generated following algorithms known as ‘checking sequences’,
‘W-method’, ‘UIO’ and others [Cho78, BU91, LY96]. They mainly work for deterministic
systems without data (although some extensions in these directions have been investigated).
Their applicability to software testing is limited because of their restricted modelling power,
mainly due to lack of compositionality. Moreover, the completeness claims of these methods
with respect to testing critically depend on the (unrealistic) assumption that the number of
states of any implementation never exceeds the number of states of the specification. Fi-
nally, we showed experimentally that these methods perform less than other testing methods
[HFT00], and will therefore not consider FSM testing for this project.
Most of the current research on testing control-flow aspects concentrates around labelled tran-
sitions systems. It has its basis in the formal theory of testing equivalences by Hennessy and De
Nicola and one of its main results are the theory of quiescent refusal testing and ioco-testing,
as described in the previous sections; see also [BT01] for an overview of these developments.
With the increasing interest in model-based test derivation there are test generation tools, both
academic and industrial, starting to emerge. One of the first ones was ‘The RNL Conformance
Kit’ developed by the Dutch PTT and based on the FSM theory [BKKW90]. Later this tool
was adopted by Philips and incorporated into Phact [FMMW98, HFT00].
Test tools based on the theory of quiescent refusal testing (ioco-testing) include Tveda

[Pha94], Tgv [JM99], Testcomposer [KJG99], TestGen (Stirling) [HT99]. and TorX [BFV+99].
Related tools are Autolink (part of the Telelogic TAU tool set [SEK+98]), Agatha (using SDL
and StateMate) [LRG01], SaMsTaG [GSDD97], STG [CJRZ01], and RT-Tester [PS97]. Except
TorX, all these tools use the batch-approach as described in the previous sections. On-the-fly
testing was also used for testing IBM’s CICS system [Gri99].
In the area of test execution there are many, mostly commercial tools available, such as protocol
testers and analysers, capture & playback tools, spreadsheet-based approaches (test are manu-
ally specified and written in a standard spreadsheet from which they are read and interpreted
by test execution tools [BK99]), and code-coverage tools (which calculation implementation-
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code coverage which is to be distinguished from specification coverage measures as used in the
previous sections). For an overview of such test tools see [Sit00].
For testing based on timed automata, most other proposals are based on a discrete time
interpretation or a discretized state space, combined with traditional FSM-based checking
sequences for deterministic finite state machines [SVD97, ENDK98, CO00]. Besides the con-
ceptual limitations as described above, this approach suffers severely from the resulting very
large state spaces. Another approach is test purpose based derivation [CKL98, SS01] where
a test case is constructed from an explicit scenario to be tested and a specification. None of
these apply the efficient symbolic reachability analysis techniques of Uppaal, and in addition
have problems with soundness and completeness.
Data selection techniques for traditional sequential programs based on heuristics – equivalence
partitioning, boundary value analysis – are already described in the first serious book on testing
[Mye79]. These principles form the basis for some formal approaches to testing based on Z
[Hie97, BCM00], usually by using some disjunctive normal form; cf. RTCAT.
A more systematic approach to testing data aspects is based on abstract data types [BGM91,
Gau95]. A tool – LOFT – accompanies this approach [Mar95].
The tool STG is one of the first ones to combine control-flow testing and data testing in a
non-trivial manner [Rus01, CJRZ01]. It restricts the data type language to something which is
completely decidable, viz. Presburger arithmetic. Although this severely limits its applicability
and also the use of some kind of trace preorder as the implementation relation is not so realistic,
it is a first step towards symbolic test generation.
Other sources of inspiration for integration of data and process calculi are found in the work
on value-passing processes [Lin93, IL01].
An approach to testing properties of functional programs, with a corresponding tool, is de-
scribed in [CH00]. It is a testing solution to the kind of problems that Sparkle tries to conquer
via theorem proving.

(e) Local Embedding
At the University of Twente the proposed research is part of the Formal Methods and Tools
research theme of the Centre for Telematics and Information Technology. Formal methods
based testing is one of the focal points of this theme. Part of the CTIT is the Twente Embedded
Systems Initiative (TESI), where Formal Methods and Tools is one of the 6 core research
groups.
The work will take place in an environment with a number of closely related research activ-
ities, such as the PROGRESS project ATOMYSTE (action refinement in embedded systems
testing), the PROGRESS project HaaST (Verification of Hard and Softly Timed Systems), the
NWO projects CASH (Compositional Analysis and Specification of Hybrid Systems, with the
group of Van der Schaft at Twente), and SPACE (Specification-based Performability Check-
ing). International projects are the EU projects AMETIST (Advanced Methods for Timed
Systems) and ARTIST (Advanced Realtime Systems), and the Dutch-German VOSS (Vali-
dation of Stochastic Systems). There also exists an intensive research collaboration with the
group of Larsen at Aalborg (Denmark).
At Nijmegen University the work will be embedded in the research programme of the Software
Technology group. This group recently started a new line of research on Model Based Software
Testing. Of special interest for the data-oriented testing part of the project are the group’s
research activities on functional languages in general, and the Clean System in particular.
This includes the dedicated proof system Sparkle which is currently under development. The
Software Technology group is involved in ATOMYSTE and will participate as subcontractor in
ARTIST mentioned above. The Software Technology group has strong links with the Technical
Applications group of Vaandrager via the common research theme “Quality of Software”. The
Technical Applications group has substantial expertise in the analysis of realtime systems
including testing and the use of Uppaal. Also experience with theorem provers is available.
The group is a partner in the in the HaaST project, the EU project AMETIST and VOSS
mentioned above.
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Through the various projects there is contact and collaboration with various industries in the
area of software testing, such as CMG Government B.V., CMG Transport, Trade & Industry,
Ericsson Aachen, InterPay B.V., Lucent Technologies, Philips and Siemens Aalborg.

7. Work Programme

The work will be carried out in the form of two PhD research projects, one on realtime extensions
at Twente, and one on testing with complex data at Nijmegen. The implementation work will
be supported by a programmer, who will be stationed at Twente, where until now all TorX

development work has taken place.

We anticipate a close form of interaction between the persons and groups. This will be needed to
ensure the compatibility of the approaches to realtime and data and their smooth integration in
the TorX extension. On top of this, substantial collaboration between the sites on the common
issues, in particular that of test selection for symbolic data representations, is anticipated.

Given the already strong collaboration of the Formal Methods and Tools group at Twente with
Nijmegen (AMETIST, ARTIST, ATOMYSTE, HaaST, VOSS) the organization of this joint project
will be fairly straightforward. In practical terms it will be implemented in the form of regular joint
project meetings (every 2 months) and (more) frequent mutual site visits by the PhD students and
the programmer.

The outline of the activities of the PhD students, in addition to their IPA educational programme,
is as follows:

AIO 1: realtime extensions

• year 1:

– study relevant background material
(formal testing theory, timed automata, TorX, Uppaal, RTCAT);

– simple extensions of quiescent refusal testing

• year 2:

– quiescent refusal testing for interesting classes of input-enabled timed automata;
– initial development of test derivation/selection algorithms (realtime);
– study of (realtime aspects of) test-execution environments.

• year 3:

– efficient test derivation/selection algorithms (realtime);
– test execution strategies (realtime);
– application case study

• year 4: wrap-up, writing of thesis

AIO 2: testing with complex data

• year 1:

– study relevant background material
(formal testing theory, test data selection methods, symbolic transition systems, TorX,
Clean);

– study and select data specification techniques.

• year 2:

– integration of structured data representations in formal testing framework;
– initial development of test derivation/selection algorithms (data);
– study of (data aspects of) test-execution environments.

• year 3:

– efficient test derivation/selection algorithms (data);
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– test execution strategies (data);
– application case study

• year 4: wrap-up, writing of thesis

A programmer will be needed to carry out most of the implementation work and to coordinate the
practical aspects of the work on extending TorX. The main tool functionalities will be implemented
in two rounds, the second versions being based on the evaluation of the application case studies
carried out in third year.

Based on previous experience with formal methods related tool development, we will be looking
for a programmer with an academic background who can handle the advanced and rather abstract
concepts that are central to the project.

The outline of the programmer’s work is:

Programmer

• year 1:
– familiarization with TorX and Uppaal;
– familiarization with RTOS;
– time-optimization of TorX component implementations

• year 2:
– revision of TorX tool architecture
– interface adaptations for realtime & data testing

• year 3:
– implementation of symbolic test derivation/selection;
– realtime test execution support;
– tool support application case studies

• year 4:
– implementation of symbolic test derivation/selection (version 2);
– realtime test execution support (version 2);
– tool optimization, documentation, maintenance

8. Expected use of Instrumentation.

3 workstations (1 x programmer, 2 x AIO)

9. Literature.

Relevant publications of the Twente team are: [Bri88, Bri93, BT01, LPY97, LBB+01]
Relevant publications of the Nijmegen team are: [PE93, Tre96b, Tre99, BT01, MEP02].

10. Requested Budget

AIO/postdoc 2 AIO 2 x 129.879 259.758
bench fee 2 x 4.538 9.076

programmer 1 ac. 4 yrs 1 x 222.731 222.731

comp. equipment 3 workstations 3 x 5.000 15.000

total 506.565
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[JM99] T. Jéron and P. Morel. Test generation derived from model-checking. In N. Halbwachs
and D. Peled, editors, Computer Aided Verification CAV’99, pages 108–121. Lecture
Notes in Computer Science 1633, Springer-Verlag, 1999.
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[SS01] Hacène Fouchal Sébastian Salva, Eric Petitjean. A simple Approach to Testing Timed
Systems. In Ed Brinksma and Jan Tretmans, editors, Formal Approaches to Testing
of Software, FATES’01, Aalborg, Denmark, august 2001.

[STW96] Dutch Technology Foundation STW. Côte de Resyste – COnformance TEsting of RE-
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