
Connectivity Testing through Model-Checking

Jens Chr. Godskesen12, Brian Nielsen1, and Arne Skou1

1 Center of Embedded Software Systems, Aalborg University,
Fredrik Bajersvej 7B, DK-9220 Aalborg, Denmark

{jcg,bnielsen,ask}@cs.auc.dk
2 IT-University of Copenhagen

Glentevej 67, DK-2400 Copenhagen NV., Denmark

Abstract. In this paper we show how to automatically generate test sequences
that are aimed at testing the interconnections of embedded and communicating
systems. Our proposal is based on the connectivity fault model proposed by [8],
where faults may occur in the interface between the software and its environment
rather than in the software implementation.
We show that the test generation task can be carried out by solving a reachabil-
ity problem in a system consisting essentially of a specification of the commu-
nicating system and its fault model. Our technique can be applied using most
off-the-shelf model-checking tools to synthesize minimal test sequences, and we
demonstrate it using the UppAal real-time model-checker.
We present two algorithms for generating minimal tests: one for single faults and
one for multiple faults. Moreover, we demonstrate how to exploit the unique time-
and cost-planning- facilities of UppAal to derive cheapest possible test suites for
restricted types of timed systems.

1 Introduction

Testing modern embedded and communicating systems is a very challenging and diffi-
cult task. In part, this is due to their complex communication patterns and by their re-
duced controllability and observability caused by the embedding and close integration
with hardware. Although testing is the primary validation technique used by industry
today, it remains quite ad hoc and error prone. Therefore there is a high demand for
systematic and theoretically well founded techniques that work in practice and that can
be supported by automated test tools.

A promising approach to improve the effectiveness of testing is to base test genera-
tion on an abstract formal model of the system under test (SUT) and use a test generation
tool to (automatically or user guided) generate and execute test cases. A main problem
is to automatically generate and select a reasonably small number of effective test cases
that can be executed within the time allocated to testing.

This paper presents a technique for (formal) model-based (extended-finite state
machines) black-box behavioral testing of embedded systems where a particular fault
model, connectivity faults, is used to select test cases. Moreover, we demonstrate how
such test cases can be generated using the diagnostic trace facility of a standard, un-
modified, model checking tool using standard reachability analysis.



1.1 Connectivity Testing

An embedded system may as presented in [8] idealistically be regarded as consisting
of embedded software encapsulated by hardware, like depicted in Figure 1(a), where
all communications to and from the software pass through the hardware. This is visu-
alized by letting the inputs from the system environment to the software (a, b, c, d, e)
pass through the hardware towards the software via connections (the unlabeled arrows).
Likewise the outputs (0, 1, 2, 3) generated by the software have to pass via connections
through the hardware in order to emerge at the system environment.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

a

b

c

d

e

1

2

3

0

Hardware

software
Embedded

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

a

b

c

d

e

1

2

3

0

Hardware

software
Embedded

(a) (b)

Fig. 1. An idealized view on embedded systems (a) and faulty embedded systems (b).

A connection is by assumption related to exactly one input or output. This assump-
tion implicitly implies that there is a one to one correspondence between external inputs
to the system and the inputs to the embedded software, likewise there is a one to one
correspondence between the outputs from the software and the outputs from the system.

Ideally it should be ascertained that the specification of the software component is
correct. For instance, it may have been verified by some FSM verification technique.
Then exploiting the ability to automatically generate executable code from specifica-
tions and assuming a careful construction of such compilers it would be reasonable to
expect the generated code to be correct with respect to the specification, that is the two
perform the same FSM behaviour.

In the composition of the two system components it then follows that the hardware
(and probably drivers managing the interaction between the hardware and the software
or malfunctioning sensors and actuators) may be the only error prone part. Therefore,
in order to manage the multitude of potential errors we shall make an abstraction and
regard the hardware (and the drivers, sensors, and actuators) as a black box interfacing
the embedded software through the connections. As a consequence system errors may
now only be referred to in terms of the connections.

In the system in Figure 1(a) a fault could for instance be that one of the input
connections is missing as shown in Figure 1(b), where the b-input is disconnected. In
the physical world, say for a mobile phone for instance, this may correspond to the



situation where some button of the phone is not connected such that the software will
never receive the input, and therefore the pressing of the button will cause no effect.

To ensure that the faults are testable they are assumed to be permanent. Testing in
order to detect the kind of faults addressed in this paper is a matter of providing se-
quences of inputs that will reveal the missing connections. If say the b-input connection
in Figure 1(a) is missing this may be revealed by an input sequence containing b and
where eventually an expected output event is not produced or (in case the system is not
input enabled) an expected input is not allowed.

We require that test generation is sound and complete, but from a practical perspec-
tive the generated suite should also be cost effective, e.g., in terms of test execution
time. Thus, the suite should be minimized in the number of tests and length.

1.2 Contributions

We provide algorithms for generating tests for embedded systems with respect to fault
models for input connectivity errors where for the system under test, it is assumed that
the embedded software behaves as an FSM. By exploiting a real-time model-checker
like UppAal [13] we are able to generate timed test sequences. However, to ease pre-
sentation we define our algorithms in the untimed setting of I/O deterministic EFSM
(previous work [8] defined connectivity errors in term of Mealy machines). We prove
that a minimal length sound and complete test (with respect to single connectivity faults)
can be found via a reachability question of a composition of the system model, its fault
model, and a simple environment model. We extend the basic algorithm to generate
a minimal length test for multiple connectivity faults, and we prove its soundness and
completeness.

Previous work [8] provided dedicated, heuristic polynomial time reduction algo-
rithms; ours always produce the minimal (at the expense of increased complexity). Our
algorithms can be implemented in most model-checking tools, but are additionally valid
for a particular class of timed automatons using a real-time model-checker like UppAal.
It symbolically solves clock constraints to perform reachability analysis on a network
of timed automata, and produces a timed diagnostic trace (an alternating sequence of
discrete transitions and time delays) to explain how the property is (is not) satisfied.
We demonstrate the applicability of the algorithms on a medium size example (a cruise
controller) – both in an untimed and a timed version, and indicate how the unique time-
and cost- optimizing features of UppAal can be used to generate optimal tests.

The paper is organized as follows: Section 2 formally presents I/O EFSM’s and
tests. Section 3 presents the modelling of connectivity faults and illustrates how to test
for such faults. Section 4 and Section 5 respectively present the algorithm for single
and multiple faults. Section 6 presents the case study, and Section 7 elaborate on gener-
ation of time- and cost- optimal tests using UppAal’s unique diagnostic trace features.
Section 8 concludes and outlines future work.

1.3 Related Work

The use of diagnostic traces produced by model-checkers as test sequences has been
proposed by many others [2, 3, 5–7, 10, 11, 15, 9]. A simple approach is based on man-



ually stated test purposes, (i.e specific observation objectives to be made on the system
under test) such as observing a given output, or bringing the SUT to a given state or
mode, see e.g.,[6]. The test purpose is then formalized and translated to a logical (reach-
ability) property to be analyzed by a model-checker. The resulting diagnostic trace is
interpreted as a test case for that test purpose.

Another common approach is based on producing test suites that satisfy some cover-
age criteria of the specification, e.g. state- or transition- coverage, def-use pair coverage,
MC/DC coverage etc. The simplest way of realizing e.g., ṫransition coverage is to for-
mulate a property for each transition separately and use the model checker to produce a
test case for each transition. More advanced techniques will naturally try to reduce the
size of the test suite by removing redundant prefix-traces [15] or composing test cases
by generating (minimal [9]) transition tours, [11, 9].

In [2] mutation testing is considered although in another setting than ours (they
consider software testing). Mutations are used for generating tests to implementations
of FSM’s using model checking. Given is an FSM, M , and a constraining temporal
logic formula, φ. A mutation may be either a change of a transition in M , or a change
of φ. For each mutation a test is generated as a counter example as to why M �|= φ (if
M �|= φ). Duplicates and test being prefixes of other tests are removed, hence they do
not as in our case generate a smallest possible test suite.

2 I/O EFSM

In this section we define input/output extended finite state automata (I/O EFSM) and
their semantics.

Definition 1. An I/O EFSM is a tuple

M = (S, I, O, X, s0,−→)

where S is a finite set of states, s0 ∈ S is the initial state, I and O are finite disjoint
sets of input and output labels respectively, X is a finite set of integer variables, and
−→⊆ S ×GX × (I ∪O)×AX ×S is a transition relation, GX is a set of guards, over
the variables in X , and AX is a set of finite sequences (possibly the empty sequence
ε) of assignments to variables in X . Each guard is a boolean expression over integer
constants and variables in X , and each assignment is on the form x := e where x ∈ X
and e ∈ EX is a arithmetical expression over the variables in X and integer constants.

Whenever (s, g, α, a, s′) ∈−→ we write s
g,α,a−→ s′. We write s

g,α−→ s′ (s
α,a−→ s′)

instead of s
g,α,ε−→ s′ (s

true,α,a−→ s′). We write s
α−→ s′ instead of s

α,ε−→ s′. Often we
write α! (α?) whenever α is an output (input) symbol. Note that, for reasons of clarity
and ease of presentation, we have omitted internal τ actions; our algorithms can easily
be adapted to handle these as well.

2.1 Semantics

The semantics of an I/O EFSM M is a labelled transition system defined wrt. a valua-
tion function assigning values to the variables of M and used to evaluate the guards on
transitions.



Definition 2. A valuation v for a set of integer variables X is a function v : X → N .
We let VX denote the set of all valuations for X . 0X ∈ VX is the valuation where
0X(x) = 0 for all x ∈ X . For n ∈ N , v[x �→ n] evaluates all variables y to v(y)
except x that is evaluated to n.

Given a valuation v ∈ VX , the value of a guard g ∈ GX with respect to v, denoted
by v(g), is the obvious evaluation of the boolean expression g relative to v. Moreover,
for a sequence of assignments a ∈ AX , v(a) ∈ VX is defined inductively by v(ε) = v
and v(x := e, a) = v[x �→ n](a) where n is the value obtained by evaluating expression
e using the valuation v.

The semantics of an I/O EFSM is defined as a labelled transition system.

Definition 3. Let M = (S, I, O, X, s0,−→M ). The labelled transition system induced
by M is

TM = (S × VX , I ∪ O, (s0, 0X),−→)

where (s0, 0X) ∈ S × VX is the initial state. The labelled transition relation −→⊆
(S × VX) × (I ∪ O) × (S × VX) is the least relation satisfying:

s
g,α,a−→M s′

v(g) is true
(s, v) α−→ (s′, v(a))

Whenever (s, v) α−→ (s′, v′) we write (s, v) α?−→ (s′, v′) if α ∈ I , otherwise if α ∈ O

we write (s, v) α!−→ (s′, v′).

We say that a transition system is I/O deterministic if for any state there are at
most one output transition and at most one input transition for any input. M is I/O
deterministic if its induced transition system TM is I/O deterministic.

Two automatons M and M ′ are equivalent, M ∼ M ′, if the initial states in TM and
TM ′ are trace equivalent.

We only consider the parallel composition of I/O EFSM’s at the semantic level. By
convenience, and without loss of generality, we assume all machines have the same
variables. It follows from the definition that output actions are broadcasted.

Definition 4. Let Ti = (Si × VX , Li, (si
0, 0X),−→i), i = 1, . . . , k be I/O EFSM in-

duced labelled transition systems. The parallel composition Π k
i=1Ti is defined by

Πk
i=1Ti = ((S1 × . . . × Sk) × VX , L, ((s1

0, . . . , s
k
0), 0X),−→)

where L = ∪k
i=1Li, and −→ is the least relation satisfying

(si, v) α!−→i (s′i, v
′
i) ∀j �= i. (sj , vj)

α?�−→j (s′j , v
′
j)

((s1, . . . , sk), v) α−→ ((s′1, . . . , s
′
k), v′)

where (s, v) α?�−→n (s′, v′) if (s, v) α?−→n (s′, v′) and (s, v) α?�−→n (s, v) if (s, v) � α?−→n

and v′ is a valuation accumulating all the updates v ′
1, . . . , v

′
k.3

3 We leave out the formal definition of v′. Our algorithms make use of shared variables between
automatons but carefully ensure that simultaneous updates cause no problems.



2.2 Tests

In our setting a test is an I/O EFSM except that each state is annotated by either the
verdict pass or fail .

Definition 5. Let I and O be finite disjoint sets of input and output symbols respec-
tively. Let α1 . . . αn ∈ (I ∪ O)+. Define the test

Mpass
α1...αn

(I, O) = ({s0, . . . , sn}, I, O, s0,−→)

such that −→ is the least relation where

s0
α1−→ s1

α2−→ . . .
αn−→ sn

and where sn is annotated by pass and all s0, . . . , sn−1 are annotated by fail . Define
M fail

α1...αn
(I, O) as Mpass

α1...αn
(I, O) except that the state sn−1 is annotated by pass and

the remaining states by fail .

If in every complete run of TM ‖ TMv
t (I,O) the component TMv

t (I,O) terminates in the
state pass (fail ) we say that M passes (fails) the test M v

t (I, O); otherwise M is said
to fail (pass) M v

t (I, O). Notice, that if M is I/O deterministic TM ‖ TMv
t (I,O) has

precisely one complete run.

3 Modelling and Testing Connectivity Faults

As mentioned previously, a connection is assumed to be related to exactly one input 4.
That is, when the connection related to a given input (say α) is faulty, the software will
not receive any α-input, i.e. the state of the software will remain unchanged, when-
ever the environment makes an input to the system via α. We can therefore model a
connectivity fault as a so-called mutation M [α] of a correct model M by changing all
α-transitions so that the state is not changed. This is made precise in the following
definition:

Definition 6. Let M = (S, I, O, X, s0,−→) and α ∈ I . Define

M [α] = (S, I, O, X, s0,−→1)

where −→1 is −→ except that all transitions s
g,α,a−→ s′ are replaced by s

g,α−→1 s.

Figure 2 shows a simple model with 3 inputs (a,b,c) and the mutants M [a],M [b],M [c].
An α-connectivity fault may be found by applying a test that distinguish M from
M [α]. For the mutants M [a], M [b], and M [c] in Figure 2, we may construct the tests
Mpass

aw (I, O), M fail
awbc(I, O), and M fail

awcb(I, O) respectively where I = {w} and O =
{a, b, c}. Clearly, the tests are minimal (in terms of the number of synchronizations be-
tween the tester and the system) and M fail

awbc(I, O) and M fail
awcb(I, O) are sufficient to

distinguish M from all three mutations. There exists no single test distinguishing M
from all the mutations.

4 We restrict ourselves to input faults. However, the extension to output faults is straightforward.



s0

s1

s2

s3 s4

a?

w!

a?

b? c?

a?a? s0

a?

s0

s1

s2

s4

a?

w!

a?

b? c?

a?

s0

s1

s2

s3

a?

w!

a?

b?
c?

a?

Fig. 2. A simple model M and its mutants M [a], M [b], M [c]. The initial location is doubly
encircled.

4 The Test Generation Algorithm

In this section we present an algorithm for generating a test that distinguish an I/O
EFSM from a single mutation (if they are distinguishable). In the algorithm we use the
following two operators: M? is M where outputs become inputs and M(x := e) is M
where on any transition x is updated by e. Formally we have

Definition 7. Let M = (S, I, O, X, s0,−→) then M? = (S, I ∪ O, ∅, X, s0,−→).

Definition 8. Let M = (S, I, O, X, s0,−→). Then for any x and e ∈ EX∪{x}

M(x := e) = (S, I, O, X ∪ {x}, s0,−→1)

where −→1 is −→ except that for every α ∈ I ∪ O, any s
g,α,a−→ s′ is replaced by

s
g,α,a′
−→ 1 s′ where a′ is a, x := e.

We let M(x1, . . . , xk := e1, . . . , ek) be M(x1 := e1) . . . (xk := ek) whenever
ei ∈ EX∪{xi}, i = 1, . . . , n.

4.1 The Algorithm

The problem we want the algorithm to solve is the following:

Given an I/O deterministic EFSM M and one of its input symbols α, if M �∼
M [α] then find a test M ′ with fewest possible states such that M and M [α]
respectively passes and fails M ′.

Intuitively, the idea behind the algorithm is to put M and its mutation together in
parallel with a third machine, the environment E. Only E is allowed to submit actions,
the other machines are modified to contain solely input actions. The role of E is to
broadcast actions such that whenever the two other machines do not agree on receiving
an action (recall they are I/O deterministic) a fault has been detected. The algorithm
searches for a shortest possible trace of actions broadcast by E leading to a fault.



Pseudo Code

1. Let x, y and z be disjoint variables none of which belong to X .
2. Let E = ({s}, ∅, I ∪ O, X ∪ {x, y, z}, s, {(s, β, s) |β ∈ I ∪ O}).
3. Let c1 and c2 be distinct constants and let M1 = M?(x, y, z := (x + 1)%2, y, c1)

and M2 = M [α]?(x, y, z := x, (y + 1)%2, c2).
4. Construct TE ‖ TM1 ‖ TM2 with initial state sT .
5. Let t, if it exists, be a minimal trace such that sT

t−→ (st, vt) with vt satisfying
x �= y. If t doesn’t exists return false.

6. If vt(z) = c1 return M pass
t (O, I), otherwise return M fail

t (O, I).

The only technicality of the algorithm is the use of the variables x, y, and z. The
role of x and y is to count (modulo 2) whenever M? and M [α]? respectively have
synchronized with E. Hence, whenever x �= y a fault have been detected. The role of
z is to register which of M? and M [α]? engaged in a synchronization with E, this is
important as to wheter the returned test should be a test with verdict pass or fail .

The correctness of the construction of the test automaton follows from the theorem
below.

Theorem 1. If the algorithm on input M and α returns false then M ∼ M [α], other-
wise it returns a test M ′ with fewest possible states such that M passes M ′ and M [α]
fails M ′.

4.2 Example

If we apply the algorithm on input M (Figure 3) and action b then the three machines
put in parallel, M1, M2, and E, are as devised in Figure 3. For illustrative clarity x++
is taken to mean x incremented modolus 2.

a!

b!

c!

w!

s0

s1

s2

s3 s4

a?
x++,
z:=c1

w?
x++,
z:=c1

a?
x++,
z:=c1

b?
x++,
z:=c1

c?
x++,
z:=c1

a?
x++,
z:=c1

a?
x++,
z:=c1

s0

s1

s2

s4

a?
y++,
z:=c2

w?
y++,
z:=c2

a?
y++,
z:=c2

b?
y++,
z:=c2

c?
y++,
z:=c2

a?
y++,
z:=c2

E M1 M2

Fig. 3. Annotated automata.

The test M fail
awbc({w}, {a, b, c}) is a minimal length test that may be constructed

by the algorithm. Clearly, awbc is a shortest possible sequence leading to a state in
TE ‖ TM1 ‖ TM2 where x �= y, and since only M2 can engage in the last event c the
value of z is c2.



5 The Generalized Algorithm

Next, we generalize the algorithm above such that a whole suite of test automatons are
generated for a set of mutations (if all mutations are distinguishable from M ).

5.1 The Algorithm

The problem the algorithm solves is

Given M = (S, I, O, X, s0,→), an I/O deterministic automaton, and a set of
input symbols A ⊆ I , if M �∼ M [α] for all α ∈ A, find a minimal test suite
M such that 1) M passes all automatons in M, and 2) for all α ∈ A, M [α]
fails M ′, for some M ′ ∈ M.

Notice, that a minimal test suite M satisfies that for all M ′ ∈ M there exists α ∈ A
such that M [α] fails M ′ and M [α] passes all other test automatons in M, i.e. all tests
returned by the algorithm are indeed needed and cannot be removed from the suite if
all connectivity faults are to be revealed.

The main idea is to extend the previous algorithm by running all mutants concur-
rently, but tightly synchronized, with the unmutated automaton M . Whenever the un-
mutated machine M cannot match a transition by one of its mutations a connectivity
error has been detected, and M needs to be reset (and only then) to extend the sequence
to kill more mutants.

Pseudo Code

1. Let {x, xα, yα, z |α ∈ A} be fresh variables disjoint from X . Extend M to contain
the variables Y = X ∪ {x, xα, yα, z |α ∈ A}.

2. Let M ′ = M?(x := (x + 1)%2) and let for all α ∈ A, Mα = M [α]?(xα :=
(xα + 1)%2)

3. Let go and reset be two new fresh actions not in I ∪ O. Add {go, reset} to the
set of output labels for M ′. Let M ′′ be M ′ with any transition s

g,α,a−→ s′ where

α ∈ I ∪O, replaced by s
g,α,a−→ s′′

go−→ s′ reset−→ s0 where for each replacement s′′ is
a new fresh state.

4. For each α ∈ A, add {reset} to the set of input labels for Mα and add a reset

transition, s
reset−→ s0, for any state s in Mα to its initial state s0.

5. Let E = ({s0, s1}, {go, reset}, I ∪ O, Y, s0,−→) where

−→ ={(s0, (α, z := 0), s1) |α ∈ I ∪ O} ∪ {s1
go,z:=1−→ s0, s1

reset,z:=1−→ s0}

6. Construct M ′
α = ({s0, s1}, ∅, ∅, Y, s0,−→) for all α ∈ A where s0

g,τ,a−→ s1 with
a = (yα := 1) and g = (x �= xα).

7. Construct TE ‖ TM ′′ ‖ Πα∈ATMα ‖ Πα∈ATM ′
α

with initial state sT .
8. Let P be z �= 0 ∧ ∀α ∈ A. yα �= 0.
9. Let t = t′β, if it exists, be a minimal trace such that sT

t−→ (st, vt) with vt

satisfying P . If t doesn’t exists return false.



10. Let t1, . . . , tk be such that u = t1reset t2 . . . reset tk where u is t′ with all go and
τ ’s removed.

11. Return M = {M fail
t1 (O, I), . . . , M fail

tk−1
(O, I), Mv

tk
(O, I)} where v is fail if β =

reset , otherwise if β = go then v is pass .

To control when M has to be reset every α transition by M is now followed by a
new output action called go which intuitively acknowledge to the environmentE that M
could match α. After having ouput an action, E waits for this acknowledgement before
it sends a new action. If the acknowledge does not arrive E knows that M could not
perform the action, implying that a test has been found for at least one of the mutations.
In that case the only possible synchronization is a reset between M and the environment
automaton.

In order to detect when a connectivity error has been identified we introduce an
observation automaton M ′

α for each mutation α. It consists of two states and one tran-
sition that fires when M and M [α] does not agree on some input or output transition,
i.e. when x �= xα. All mutations have been revealed when all observation automata has
fired, i.e, when all yα = 1.

Based upon the trace t = t′β found (if a trace is found) a set of test automatons
are constructed. First all go’s and τ ’s are removed from t ′. Then t′ is split in the parts
t1, . . . , tk separated by reset labels. For all ti, but tk, fail test automations, M fail

ti
(O, I)

are created, since M clearly cannot perform those traces—that was the sole reason why
M was reset. To be able to tell whether the final part, tk, should give rise to a fail or pass
test automaton we force the trace to always end with either reset or go. This is done
by introducing a variable z in the environment automaton that is set to 0 on transitions
with labels in I ∪ O and to 1 when a go or reset is performed. Then searching for t we
require z is not zero. Clearly, if the last event in t, i.e. β, is a go then M pass

tk
(O, I) is

created, otherwise if it is reset then M fail
tk

(O, I) is created.
Notice, that a test automaton M v

ti
(O, I) may detect several mutations.

Theorem 2. If the algorithm on input M and A returns false then M ∼ M [α] for some
α ∈ A, otherwise it returns some M satisfying the properties in Section 5.1.

5.2 Example

Given the I/O EFSM M in Figure 2 the algorithm produces the sequence awbb.reset .-
awcb.reset , resulting in the two tests M fail

awbb({w}, {a, b, c}) and M fail
awcb({w}, {a, b, c}).

Both tests for connectivity of a. The used annotated models are depicted in Figure 4.

6 Cruise controller Example

In this section we exemplify and benchmark our technique on a medium sized cruise
controller example. The cruise controller is commonly studied and found in many vari-
ations in the literature, and thus serves as an illustrative example, see e.g., [14, 2].



reset?

z:=1

go?

z:=1

a!
z:=0

b!
z:=0

c!

z:=0

w!
z:=0

E

killed

x!=x_[actionid]
y_[actionid]:=1

M ′
b

s0

s1

s2

s3 s4

a?
x++

w?
x++

a?
x++

b?
x++

c?
x++

a?

x++

a?
x++ go!

go!

go!go!

go!

go!

go!

reset!

reset!

reset!

reset!
reset!

s0

s1

s2

s4

a?
x_[bid]++

w?
x_[bid]++

a?
x_[bid]++

b?

x_[bid]++
c?

x_[bid]++

a?
x_[bid]++

reset?

reset?

reset?

reset?

M ′′ Mb

Fig. 4. The annotated automata (Ma, Mc, M ′
a, M ′

c, omitted). The notation v[i] is UppAal notation
for indexing array v at position i. bid is the position for action b.

6.1 The Cruise Controller

The model consists of two automatons. The user interface controls the different modes
of operation according to the various user inputs, whereas the speed control keeps the
actual speed close to a given desired speed by affecting the throttle of the engine.

The user interface (Figure 5(a)) basically has four modes, i.e. inactive when the
engine is turned off, active when the engine is turned on, cruising when the speed
control is enabled, and standby when the speed control is temporarily suspended. When
the engine is turned on, the desired speed is cleared, and when cruise mode is entered,
the actual speed is recorded and set as the desired speed. The cruise mode may be
reentered from standby mode.

The speed control (Figure 6) switches between its two operational modes disabled
and enabled according to enable and disable control signals from the user interface. In
disabled mode, it sets the desired speed to zero or to the sampled actual speed when
commanded by the user interface. In enabled mode, it samples the actual speed and
based on the difference between actual and desired speed (represented by variables
cSpeed, dSpeed), it stops acceleration of the engine (output inc0), or commands the en-
gine to do medium (output inc1) or high (output inc2) acceleration. Further, in enabled
mode, the user can manually increase or decrease the desired speed.

The actions of the user interface are Iu = {engineOn, engineOff , on, suspend},
Ou = {clearSpeed , recordSpeed , enableControl , disableControl}. The actions of the
speed ontroller are Is = Ou ∪ {incr , decr , getspeed , }, Os = {inc0 , inc1 , inc2}. For
the system composed of the user interface and speed controller synchronizing inter-
nally5 on actions Ou ∩ Is, the actions are Ic = Iu ∪ Is \ Ou, Oc = Os.

5 Recall that our technique can be adapted to handle these. The semantics of the input fault
mutations in a composed system is as if they were made to their (synchronous) product I/O
EFSM, hiding internal communication channels.



inactive

active

cruising

on_requested

standby

engineOn?

clearSpeed!

on?

recordSpeed!

enableControl!

engineOff?

engineOff?

suspend?

engineOff?

resume?

on?

disableControl!

disableControl!

inactive

C1<=0

active

cruising

on_requested C1<=0

C2<=controlDelay

C2<=controlDelay
standby

C1<=resumeDelay

C2<=controlDelay

engineOn?
C1:=0

clearSpeed!

on?
C1<onDelay

recordSpeed!
C2:=0

enableControl!
C2==controlDelay

engineOff?

engineOff?
C2:=0

suspend?
C2:=0,
C1:=0

engineOff?

resume?
C2:=0

C1==resumeDelay

on?
C1==resumeDelay

C1:=0,C2:=0

disableControl!
C2==controlDelay

on?
C1>=onDelay

C1:=0

on?
C1<resumeDelay

resume?
C1<resumeDelay

disableControl!
C2==controlDelay

(a) (b)

Fig. 5. User Interface Automaton (a) Timed user interface (b)

6.2 Generated Test Sequences

Unless the length of the test suite is important, the normal and computationally most ef-
ficient method is to generate a separate test sequence for each mutant. Our experimental
results show that a sequence could be successfully generated for each mutant; also the
sequences are quite short. The test suites generated for the cruise interface, the speed
controller and the composed system contain respectively 5 (16), 7 (31), 8 (34) test cases
(total steps). All were generated on a standard PC in less than one second. Table 1 lists
some examples.

These results indicate that our technique may be feasible for much larger systems,
both in terms of test suite size and model size (number of inputs and state space). Since

disabled enabled
adjust

disableControl?
acc:=0

enableControl?

recordSpeed?

dSpeed:=cSpeed

clearSpeed?
dSpeed:=0

recordSpeed?
dSpeed:=cSpeed

enableControl?

cSpeed-dSpeed>=maxdiff && 
cSpeed>dSpeed
acc:=(acc>0)?acc-1:acc

dSpeed-cSpeed>=maxdiff && 
dSpeed>cSpeed
acc:=(acc==maxacc)?acc:acc+1

clearSpeed?
dSpeed:=0

cSpeed-dSpeed<maxdiff, 
dSpeed-cSpeed<maxdiff

acc:=0

incr?
dSpeed:=dSpeed==maxspeed?
dSpeed:dSpeed+1

decr?
dSpeed:=dSpeed>0?
dSpeed-1:dSpeed

getspeed?

acc==0
inc0!
cSpeed:=(cSpeed>0)?cSpeed-1:0

acc==1
inc1!
cSpeed:=(cSpeed+1)%maxspeed

acc>1
inc2!

cSpeed:=(cSpeed+2)%maxspeed

Fig. 6. Speed Control Automaton



Mutant v Generated Event Sequence t

User Interface
engineOff P engineOn.clearSpeed.engineOff.engineOn
suspend P engineOn.clearSpeed.on.recordSpeed.enableControl.suspend.disableControl
resume F engineOn.clearSpeed.on.recordSpeed.enableControl.suspend.disableControl.resume.engineOff

Speed Controller
incr P enableControl.incr.incr.getspeed.inc1
decr P enableControl.incr.incr.decr.getspeed.inc0
clearSpeed P enableControl.incr.incr.clearSpeed.getspeed.inc0

Cruise Controller System
engineOn F engineOn.engineOn
resume F engineOn.on.suspend.resume.resume
incr P engineOn.on.incr.incr.getSpeed.inc1

Table 1. Selection of Generated Tests (if v =P then Mpass
t (O, I); if v =F then M fail

t (O, I)).

the algorithm generates the minimal sequences, some of them are quite surprising and
would not likely be found by hand, e.g., the test for engineOn. Observe especially that
it is not obvious how the desired and current speed should be set to distinguish the mu-
tants of the speed controller. For instance, it would be incorrect to use the intuitive test
Mpass

enableControl.incr .getspeed.inc0 (Os, Is) to check for connectivity of incr because inc0
would also be output if incr was disconnected (given that maxDiff = 2, dSpeed and
cSpeed initially equals 0, acc becomes 0 in both cases). Hence at least two increments
are needed.

Also note that—because our algorithms does not require the specification or imple-
mentation to be input enabled—not all sequences end with an output, meaning that if
the last input can be performed by the tester, the test will pass (or fail, depending on the
verdict). If this is felt to be unnatural for some applications, it is very easy to force our
algorithms to produce tests that ends with an output. The generated test for engineOff
is then Mpass

engineOn.clearSpeed.engineOff .engineOn.clearspeed(Ou, Iu).

6.3 Multi-fault Test Sequences

In some cases it is important to produce a smallest test suite with as few and short
tests as possible. A simple reduction technique like prefix elimination does not work
well for connectivity testing (see sequences presented in Section 6.2). Our generalized
algorithm from Section 5 is therefore more involved and guarantees that the minimal
length test suite is computed, although at the expense of computational complexity
(the problem is NP-hard [8]). It involves analyzing a system consisting of all mutants
running concurrently in a synchronized step-lock fashion. Thus, state space explosion
theoretically limits how many mutants can be composed, and it should be examined
where this limit occur in practice. The following experiments are run on a 8x900 MHZ
Sun Sparc Fire v880R workstation with 32 GB memory running Sun Solaris 9 (SunOS
5.9). However, UppAal only exploits one CPU and addresses at most 4 GB of memory.
The results are tabulated in Table 2.

For the user interface, it turns out that it is possible to compute (using only a
few seconds and megabytes of memory) a single test of 11 steps that detects all in-
put faults M pass

t (Ou, Ou) where t = engineOn.clearSpeed.on.recordSpeed.enable-



Speed Control
Mutant(s) CPU-time(s) Memory (KB)
enableControl 0.21 3704
+disableControl 0.37 5672
+clearSpeed 10.98 29008
+recordSpeed 152.77 281072
+incr 1917.02 2128824
+decr - -
+getspeed - -

Cruise System
Mutant(s) CPU-time(s) Memory (KB)
engineOn 0.16 5232
+engineOff 0.29 5584
+resume 27.51 97608
+on 39.01 100208
+suspend 50.60 131192
+incr 874.00 1516800
+decr - -
+getspeed - -

Table 2. Performance of multi-fault algorithm.

Control.suspend.disableControl.resume.enableControl.engineOff.disableControl,giving
a reduction of 31% (11 versus 16 steps).

The speed controller and the composed system have much larger state spaces and
are more challenging. Still, all mutants but two could be composed in both cases. The
multiple-fault test suite (up to and including the incr mutant) for the speed control con-
sists of two tests: M fail

t1 (Os, Is) and M fail
t2 (Os, Is) where t1= enableControl.incr.incr.-

getspeed.inc1.recordSpeed.incr.getspeed.inc0.clearspeed.getspeed.inc1, t 2= enableCon-
trol.disableControl.incr, giving a reduction of 25% compared to detecting the same
faults using seperate sequences. In addition many system resets are avoided. The cruise
system (up to incr) requires only one test: M fail

t (Oc, Ic) where t= engineOn.engineOff.-
engineOn.on.suspend.resume.incr.incr.getspeed.inc0, giving a reduction of 40%. The
order of addition of mutants was arbitrary. Even if the test suite is generated by more
rounds composing only some of the mutants each time, the reduction in test suite size
is significant.

7 Timed Test Generation

We next demonstrate how connectivity tests for a class of timed systems can be gen-
erated. The tester now needs to be time aware to reveal them. This result requires no
change to the basic algorithm if a real-time model-checker like UppAal is used.

Informally, a timed automaton [1] is an I/O EFSM equipped with a set of non-
negative real-valued variables called clocks that may be used in guards, and may be set
to zero on transition assignments. In addition, location invariants forces the automa-
ton to take a transition before it becomes false. The semantics of a timed automaton
is defined in terms of an infinite timed transition system consisting of both discrete
transitions and time delay transitions. To ensure testability we impose similar semantic
restrictions as in [16]: Our model, called DOUTA, are deterministic, output urgent (an
output or τ occurs as soon as it is enbled) timed automata. DOUTA is formally defined
in [9].

Consider the following real-time requirements for the user-interface automaton in
Figure 5(a). 1) For safety reasons, the engine must be on for at least onDelay before
cruise control may be switched on. Earlier requests must be ignored. 2) When cruise



mode is suspended, at least resumeDelay must elapse before reengagement to avoid
too rapid enabling and disabling of the speed controller. 3) It takes controlDelay to
enable or disable the speed controller (involves external communication), whereas the
speed can be set or cleared with a zero delay (assumed internal communication). These
requirements are satisfied by the DOUTA in Figure 5(b). Boldfaced clock constraints
below locations are location invariants.

Given this specification (onDelay=5000, controlDelay=3000, controlDelay=200)
UppAal produces the following timed test M fail

t (Ou, Iu) to reveal disconnection of the
resume action, where t= 0.engineOn.0.clearSpeed.5000.on.0.recordSpeed.200.enable-
Control.0.suspend.200.disableControl.2800.resume.0.engineOff . Note that the delays
are not a trivial insertion of the delay constants occurring in the model (e.g the 2800 ms
between disableControl and resume). It is usually infeasible to compute these by hand
because it involves solving a large set of inequations on clock variables. The zero delays
in the above sequence can be avoided by replacing the universal environment E by a
more accurate (and slower) environment model timed automaton E ′ which restricts the
choices of the tester.

UppAal also has efficient facilities for generation of time- and cost- optimal di-
agnostic traces [4, 12]. In fact, the above test is not only of minimal length, but also
the fastest (minimal accumulated time delay). To avoid expensive operations, e.g., re-
sets, UppAal can be used to generate suites with the fewest such operations. As a
simple example, the generated multi-fault test presented in Section 6.3 for the speed
controller required two tests, and thus one reset. Searching for a test with fewer re-
sets UppAal found one (only two communication events longer that the minimal length
test suite): Mpass

t (Ou, Iu) where t= enableControl.incr.clearSpeed.incr.getspeed.inc0.-
incr.getspeed.inc1. disableControl.enableControl.clearSpeed.recordSpeed.incr.incr.get-
speed.inc1 . It is also possible to take the actual time/cost for a reset into account.

8 Conclusions and Future Work

This paper describes two sound and complete algorithms that generate minimal test
cases and test suites respectively for input connectivity faults. The algorithms are based
on reachability analysis and may thus be implemented in most model-checkers. Based
on experiments with a concrete model-checker, UppAal, and a medium sized example,
we conclude that our techniques are feasible, and for the simple algorithm appear to
scale to larger systems. For the generalized algorithm the number of simultaneous mu-
tants that can be handled is limited due to state space explosion (recall that the problem
is NP hard). Finally, we show how timed connectivity and examples of cost optimized
test suites can be generated by the same algorithms.

We only looked at input connectivity faults, however it is trivial to generate test
sequences for output connectivity faults, since this amounts to finding a sequence that
visits a transition where the output is produced, hence making it observable.

As future work we plan to examine other more involved fault models, e.g. models
where connections may be whole protocols. Since our algorithms are based on finding a
trace that can be performed by the original automaton and not its mutant, or vice versa,
our algorithms appear to be so general that many other fault models can be supported.
In particular we plan to investigate how to test wrongly interconnected communicating



(distributed) components that have been tested or verified in isolation. Also, we plan
to investigate a timed connectivity fault model where disconnects are not permanent
and we intend to do practical application and further experiments with time-and cost-
optimal test suite generation.

References

1. R. Alur and D.L. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126(2):183–235, April 1994.

2. P. Ammann, P.E. Black, and W. Majurski. Using model checking to generate tests from
specifications. In ICFEM, page 46, 1998.

3. P. Ammann, W. Ding, and D. Xu. Using a model checker to test safety properties.
4. G. Behrmann, A. Fehnker, T. Hune, K.G. Larsen, P. Pettersson, and J. Romijn. Efficient

Guiding Towards Cost-Optimality in UPPAAL. In T. Margaria and W. Yi, editors, TACAS
2001, number 2031 in LNCS, pages 174–188. Springer–Verlag, 2001.

5. J. Callahan, F. Schneider, and S. Easterbrook. Automated software testing using modelcheck-
ing. In 1996 SPIN Workshop, August 1996. Also WVU Report NASA-IVV-96-022.

6. A. Engels, L. Feijs, and S. Mauw:. Test generation for intelligent networks using model
checking. In Ed Brinksma, editor, Tools and Algorithms for the Construction and Analysis
of Systems. TACAS’97, number 1217 in LNCS, 1997.

7. A. Gargantini and C.L. Heitmeyer. Using model checking to generate tests from require-
ments specifications. In ESEC / SIGSOFT FSE, pages 146–162, 1999.

8. Jens Chr. Godskesen. Complexity issues in connectivity testing. In Ed Brinksma and Jan
Tretmans, editors, Proceedings of the Workshop on Formal Approaches to Testing of Soft-
ware, FATES ’01, (Aalborg, Denmark, August 25, 2001), 2001.

9. A. Hessel, K.G. Larsen, B. Nielsen, P. Pettersson, and A. Skou. Time-Optimal Test Cases
for Real-Time Systems. In 3rd Intl. Workshop on Formal Approaches to Testing of Software
(FATES 2003), Montréal, Québec, Canada, October 2003.

10. H. Hong, I. Lee, O. Sokolsky, and S. Cha. Automatic test generation from statecharts us-
ing model checking. In Ed Brinksma and Jan Tretmans, editors, Workshop on Formal Ap-
proaches to Testing of Software, FATES ’01, (Aalborg, Denmark, August 25, 2001), 2001.

11. H.S. Hong, I. Lee, O. Sokolsky, and H. Ural. A Temporal Logic Based Theory of Test
Coverage and Generation. In J.-P. Katoen and P. Stevens, editors, TACAS 2002, pages 327–
341. Kluwer Academic Publishers, April 2002.

12. K.G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, and J. Romijn.
As cheap as possible: Efficient cost-optimal reachability for priced timed automat. In
G. Berry, H. Comon, and A. Finkel, editors, Proc. of CAV 2001, number 2102 in LNSC,
pages 493–505. Springer–Verlag, 2001.

13. K.G. Larsen, P. Pettersson, and W. Yi. UppAal in a Nutshell. International Journal on
Software Tools for Technology Transfer, 1(1):134–152, 1997.

14. Magee and Kramer. Concurrency: State Models and Java Programs. Wiley, 2002.
15. M.P.E. Heimdahl and S. Rayadurgam and W. Visser and G. Devaraj and J. Gao. Auto-

generating Test Sequences Using Model Checkers: A Case Study. In A. Petrenko and A. Ul-
rich, editors, 3rd Intl. Workshop on Formal Approaches to Testing of Software, FATES 2003,
volume 2931 of LNCS, pages 42–59, Montréal, Québec, CA, 2004.

16. J.G. Springintveld, F.W. Vaandrager, and P.R. D’Argenio. Testing timed automata. Theoret-
ical Computer Science, 254(1-2), March 2001.


