
Test Generation for Time Critical Systems: Tool and Case Study

Brian Nielsen and Arne Skou

Aalborg University
Department of Computer Science

Fredrik Bajersvej 7E
DK-9220 Aalborg, Denmark

Email: �bnielsen | ask�@cs.auc.dk

Abstract

Generating timed test sequences by hand is error-prone
and time consuming, and it is easy to overlook important
scenarios. The paper presents a tool based on formal meth-
ods that automatically computes a test suite for confor-
mance testing of time critical systems. The generated tests
are selected on the basis of a coverage criterion of the speci-
fication. The tool guarantees production of sound test cases
only, and is able to produce a complete covering test suite.
We demonstrate the tool by generating test cases for the
Philips Audio Protocol.

1 Introduction

Testing consists of executing a program or a physical sys-
tem with the intention of finding undiscovered errors. Con-
formance testing is a black box approach that aims at check-
ing that the behavior of an implementation complies to the
behavior of the specification. Testing is the most dominat-
ing validation activity used by industry today. However,
there are two well documented problems with the current
state of the art. First, testing is very expensive; depending
on application as much as 20% to 50% of the total devel-
opment time is spent on testing. Second, despite this effort
and the hard work of dedicated test engineers, a significant
amount of errors remain.

A potential improvement that is being examined by re-
searchers is to provide theoretically well founded tools that
automate test generation and execution. Test generation
tools are usually much faster than humans, and has the po-
tential for being more systematic than humans, and thereby
generate important tests that could easily be overlooked.

This approach has experienced some level of success
[5, 15, 19, 21], and commercial test generations tools are

emerging [5, 19]. However, these tools do not address real-
time systems, or only provide a limited support for testing
the timing aspects. They often abstract away the actual
time at which events are supplied or expected, or do not
select these time instances thoroughly and systematically.
Exhaustive testing is usually infeasible, and because a real
time system consists of an enormous amount of time in-
stances that could be relevant to test, it is not likely that an
arbitrary or random choice of such time instances will result
in good coverage. It is therefore important to make good de-
cisions of when to deliver an input to the system, and when
to expect an output.

This paper presents a tool for automatic generation of
timed tests from a restricted class of dense, but possibly
non-deterministic, timed automata specifications. The tech-
nique is applied to a realistic case: a Phillips Audio Protocol
specification.

The test cases are generated systematically from a cov-
erage criterion of the specification. The state space of the
specification is partitioned into coarse grained equivalence
classes which preserve essential timing and synchronization
information, and a few tests for each class are generated.
This approach is inspired by sequential black-box testing
techniques frequently referred to as domain- or partition
testing [3]. We regard the clocks of a timed specification as
(oddly behaving) input parameters. Our technique guaran-
tees that every reachable equivalence class will be covered
by a set of relevant tests, and that every generated test is
sound, i.e., failure to pass the test implies that the system
under test is non-conforming.

Analyzing a timed specification is no easy task, and
nearly impossibly to do by hand, even for moderate size
specification. We therefore employ efficient automatic sym-
bolic reachability techniques based on constraint solving
that have recently been developed for model checking of
timed automata [9, 13].

The emphasis of this paper is our test generation tool

1

and an application thereof. The underlying algorithms and
testing theory, which is based on Hennessy’s work [16], are
described in detail in [18, 17]. Section 2 summarizes the
related work. Section 3 presents the specification language,
and Section 4 gives an overview of the techniques imple-
mented in our tool, which is further described in Section 5.
Section 6 provides a first, but realistic case study. Section 7
concludes the paper and suggests future work.

2 Related Work

Springintveld et al. proved in [22] that exhaustive test-
ing wrt. trace equivalence of deterministic timed automata
with a dense time interpretation is theoretically possible,
but highly infeasible in practice. Another result generating
checking sequences for a discretized deterministic timed au-
tomaton is presented by En-Nouaary et al. in [10]. Although
the required discretization step size (����� ����, where �� �
is the number of clocks) in [10] is more reasonable than
[22], it still appears to be too small for most practical appli-
cations because too many tests are generated.

Clarke and Lee [8]—like we—propose domain based
test selection for real-time systems. Although their primary
goal of using testing as a means of approximating verifica-
tion to reduce the state explosion problem is different from
ours, their generated tests could potentially be applied to
physical systems as well. Compared to timed automata their
language for specification of time requirements appear very
restricted.

Castanet et al. presents in [7] an approach where timed
test traces can be generated from timed automata specifica-
tions. Test selection must be done manually through engi-
neer specified test purposes (one for each test) themselves
given as deterministic acyclic timed automata. Such explicit
test selection reduces the state explosion problem during
test generation, but leaves a significant burden on the en-
gineer. Our goal has been fully automatic test generation.

Cardell-Oliver and Glover showed in [6] how to de-
rive checking sequence from a discrete time, deterministic,
timed transition system model. No test selection is per-
formed in the time domain. Finally, test generation from
a discrete time temporal logic is investigated by [15].

3 Event Recording Automata

Two of the surprising undecidability results from the
theoretical work on timed languages described by timed
automata are that 1) a non-deterministic timed automaton
cannot in general be converted into a deterministic (trace)
equivalent timed automaton, and 2) trace (language) inclu-
sion between two non-deterministic timed automata is un-
decidable [2]. Thus, unlike the untimed case, determinis-
tic and non-deterministic timed automata are not equally

expressive. The Event Recording Automata model (ERA)
was proposed by Alur, Fix, and Henzinger in [2] as a deter-
minizable subclass of timed automata, which enjoys both
properties. This property is highly desirable for systematic
generation of Hennessy based tests and their assigned ver-
dicts.

Definition 1 Event Recording Automaton:

1. An ERA � is a tuple ������� ��� 	� where ��� is
the set of actions, � is a (finite) set of locations,
�� � � is the initial location, and
	 � � �
���� ����� is the set of edges. The
term location denotes a node in the automaton, and
the term state denotes the semantic state of the
automaton also including clock values.

2. � � ��� � � � ���	 is the set of clocks. The guards

��� are generated by the syntax ��� � �

where � is a constraint of the form �� � � or
�� � �� � � with �� �� ���� ���	, � a
non-negative integer constant, and ��� �� � � .

Like a timed automaton, an ERA has a set of clocks
which can be used in guards on actions, and which can
be reset when an action is taken. In ERAs however, each
action � is uniquely associated with a clock ��, called the
event clock of �. Whenever an action � is executed, the
event clock �� is automatically reset. No further clock as-
signments are permitted. The event clock �� thus records
the amount of time passed since the last occurrence of �. In
addition, no internal � actions are permitted. These restric-
tions are sufficient to ensure determinizability [2]. Exam-
ples are given in Figure 4 and Figure 8.

4 Test Generation Technique

4.1 Partitioning

Since exhaustive testing is generally infeasible, it is
important to systematically select and generate a limited
amount of tests. A test selection criterion (or coverage cri-
terion) is a rule describing what behavior or requirements
should be tested. Coverage is a metric of completeness
with respect to a test selection criterion. Our stable edge
set criterion partitions the state space of the specification
into coarse equivalence classes, and requires that the test
suite for each class makes a set of required observations of
the implementation when it is expected to be in a state in
that class.

The states (a pair consisting of automaton locations and
clock valuations) of the automaton are partitioned such that
two clock valuations belong to the same equivalence class
iff they enable precisely the same edges from the set of

2

states that the automaton currently possibly can occupy, i.e.
the states are equivalent wrt. the enabled edges. We justify
this partitioning by the following observations:

� Because the enabled edges change when the specifica-
tion moves from one equivalence class to another by
executing an action or letting time pass, the implemen-
tation must somehow perform a matching action or an
internal timeout to change the enabled edges, and it
must consequently be checked that the implementation
responds correctly after that internal action or timeout.

� Because the enabled edges are the same we believe that
it is reasonable to expect that the implementation treats
these states uniformly. Interior and extreme clock val-
ues for the equivalence class can be used to support
this hypothesis.

� The partitioning has the nice formal property that all
states in the same equivalence class also satisfy the
same basic Hennessy observations.

� This partitioning is based on the guards that actually
occur in a specification, and is therefore much coarser
than e.g., the region partitioning which is based on the
guards that could possibly occur in an automaton ac-
cording to the syntax in Definition 1.

In conclusion, it is more important to test different
classes than it is to test the same one many times.

4.2 Symbolic Analysis

Densely timed automata cannot be analyzed by enumera-
tive finite state techniques, but must rather be analyzed sym-
bolically [1]. We employ the so-called zone and difference
bound matrix techniques [9] that have proven efficient [13]
for model checking of timed automata.

A zone � over clocks � � � is a constraint system con-
sisting of conjunctions of linear inequalities on clock vari-
ables of the form :

��� � �� � ��� � �� � �	 � ��� � ��	 � ��� � ��	�
where�� ���	, ��� � ��� �� are integers including�,
and ��� �� � � .

Zones can be represented efficiently by the difference
bound matrix (DBM) data structure [9]. A DBM represents
clock difference constraints of the form � � � �� ��� by a
����������� matrix such that ��� equals matrix element
��� ��, and where � is the number of clocks. To represent
constraints of the form �� �, DBMs use a special zero
clock � which has the constant value 0. Figure 2 shows an
example of a DBM.

A concrete state of a timed automata can be represented
by a pair ���� ��� consisting of location (vector) �� and clock

� �� ��
� � �	 ��
��
 � �
�� � �� �

Figure 2. DBM representation of the con-
straint � � �� � �� �
 �� �
 �� � 	

valuation �� st. ����� is the current value of clock �. A sym-
bolic state ��� �� is a pair consisting of a location (vector)
and zone �. It represents the possibly infinite set of states
������ ��� � ��� � ��
 �� � �	. An efficient set of operations on
zones allows the following to be computed:

� The symbolic state that results by taking an edge from
a given source symbolic state can be computed. Such
a forward execution sequence is started in the initial
state of the automaton ����� ���.

� The reachable state space can be computed by check-
ing, at each forward step as above, whether the target
symbolic state is included in one previously visited.
If so, it can be concluded that no new states can be
reached from it, and hence further exploration is not
needed.

� Given a symbolic path to a symbolic state, a concrete
trace leading to it can be computed.

To ensure soundness of the produced tests, symbolic (reach-
ability) analysis is needed to select only states for testing
that are reachable, and to compute only timed traces actu-
ally in the specification.

4.3 Timed Trace Computation

When a desired target symbolic state is reached, it can
be concluded that all concrete states in the symbolic tar-
get states are reachable. However, it is not ensured that all
states along the path of symbolic states used to reach it, nec-
essarily will end in a state in the target symbolic state, but
only that some of the states traversed underway will end up
in the target state. Therefore, when a trace leading to the de-
sired target is to be computed, the trace must pass through
the states only that can reach the desired target. It is rela-
tively straight forward to compute the preconditions for the
required subsets by back-propagating the zone constraints
of the target states back along the path used to reach it. Back
propagation results in a strengthened symbolic trace repre-
senting a possibly infinite set of concrete traces leading to
the target.

From this set the tester can choose a specific trace by
controlling when actions are offered and observed, i.e., by

3

choosing the specific delay to wait between actions. This
process is started at the initial state. The possible delays
which can be chosen are defined by the strengthened sym-
bolic states. Let � be the set of possible delays before an
action. There are three immediate strategies for choosing
delays:

1. Choose the smallest delay � � �. This checks the
promptness of the implementation by executing the
succeeding action at the earliest time possible in the
current trajectory.

2. Choose the delay (possibly stochastically) to be in the
middle of �. This checks the persistence of the im-
plementation, i.e., that the succeeding action can be
executed in the interior of its enabling interval.

3. Choose the delay to be the largest delay in �. This
tests the patience of the system, i.e., that the succeed-
ing action is also executable at the latest required en-
abled time.

Of the above strategies, it seems most important to check
the promptness of the system as this checks for missed
deadline errors, which are common in real-time systems.
But also the patience may be important, since this may de-
tect errors where a timer times out prematurely.

4.4 Overall Algorithm

The test generation procedure, outlined in Algorithm 3,
first constructs the equivalence classes and stores them in
a data structure which we refer to as the equivalence class
graph. It preserves all timed traces of the specification, and
furthermore preserves the required synchronization infor-
mation for our timed Hennessy tests. All timed Hennessy
tests that the specification passes can thus be generated from
this graph.

Algorithm 3 Overall Test Case Generation Algorithm:
input: ERA specification � .
output: A complete covering set of timed Hennessy tests.

1. Compute �� � Equivalence Class Graph���.

2. Compute �� � Reachability����.

3. Label every symbolic State � � �� with the Hennessy
observations satisfied by �.

4. Traverse �� . For each reached equivalence class � in ��:

(a) Choose a state to be tested � � �

(b) Compute a timed trace � from initial state to �.

(c) Make test cases to be passed: For each Hennessy
observation � in �, trace � followed by observation �

is a sound test.

5 Tool Facilities

We have implemented our approach and algorithms in a
prototype tool called RTCAT. RTCAT inputs an ERA spec-
ification in AUTOGRAPH format [20]. A specification may
consist of several ERAs operating in parallel, and communi-
cating via shared clocks and integer variables, but no inter-
nal synchronization is allowed as stated in Section 3. Other
features include:

Termination: By default, the entire equivalence class
graph is constructed. Reachability graph construction
terminates when no further equivalence classes can be
reached. The result is generation of a complete cover-
ing test suite.

We have also implemented a few pragmatic strate-
gies for handling specifications whose reachability or
equivalence class graphs are too large to be completely
computed, stored, or tested. Construction of both
graphs can also be terminated by specifying a maxi-
mum trace depth, using bit-state hashing, or both. Bit-
state hashing [11] is a technique that limits the number
of nodes in a graph, and is believed to result in a better
(under) approximation of the state space than random
exploration, which has a tendency of confining itself to
small parts of the state space.

Construction Order: Both breadth first and depth first
construction of the equivalence class and reachability
graphs are implemented. The tests for a given equiv-
alence class are generated the first time it is reached
during forward reachability analysis. Consequently,
the traversal order may affect the number and length
of tests generated.

Our experience suggests that breadth first construc-
tion results in the most economic test suite in terms of
length. Depth first results in slightly fewer test cases
but much longer test suites, and should be used when
a covering test suite should be obtained that also tests
the behavior after relatively long sequences of actions.

Test Structure: Tests can be constructed either as individ-
ual timed Hennessy tests (Algorithm 3) or as test trees
which merge the individual tests when possible.

Trace Generation: Timed traces can be generated using
prompt, interior, or patience selection as described in
Section 4.3.

Extreme value selection is currently not supported, but
can easily be implemented. The prototype operates in four
distinct phases, i.e., the preceding must be completed before
a new is started: parsing and initialization, equivalence class

4

graph construction, reachability graph construction, and fi-
nally timed trace computation and output of the test suite
to a file in DOT format [12]. RTCAT occupies about 22K
lines of C++ code, and is based on code from a simula-
tor for timed automata (part of an old version of the UP-
PAAL toolkit [14]). Its AUTOGRAPH file format parser
was reused with some minor modifications to accommo-
date the ERA syntax. Also its DBM implementation was
reused with some added operations for zone extrapolation
and clock scaling.

6 A case study

6.1 Example 1

The ERA example in Figure 4a demonstrates that com-
puting test cases from a timed automata specification by
hand is non-trivial, even for very small specifications. For

example, to compute a test that visits the edge ��
�������
�������

��, the edge ��
���������
�������� �� must be visited at least three

times in succession for the guard on the � edge to become
satisfiable, Furthermore, the � edge must be visited before
�� equals 1 time unit; otherwise, the guard on the succeed-

ing ��
�������
������� �� edge is not satisfiable. The tool gener-

ates the test automaton shown in Figure 4b; its locations are
labeled with the visited location of the specification, and the
test verdict (�=pass, �=fail) to be given if the test execution
stops in that location. A total of 12 such tests is generated
to cover the specification. It is thus easy to overlook an im-
portant scenario.

a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?
Xa<=1Xa<=1Xa<=1Xa<=1Xa<=1Xa<=1Xa<=1Xa<=1Xa<=1Xa<=1Xa<=1Xa<=1Xa<=1Xa<=1Xa<=1Xa<=1Xa<=1

a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?
Xa<2Xa<2Xa<2Xa<2Xa<2Xa<2Xa<2Xa<2Xa<2Xa<2Xa<2Xa<2Xa<2Xa<2Xa<2Xa<2Xa<2
Xa>1Xa>1Xa>1Xa>1Xa>1Xa>1Xa>1Xa>1Xa>1Xa>1Xa>1Xa>1Xa>1Xa>1Xa>1Xa>1Xa>1

b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!
Xa<=3Xa<=3Xa<=3Xa<=3Xa<=3Xa<=3Xa<=3Xa<=3Xa<=3Xa<=3Xa<=3Xa<=3Xa<=3Xa<=3Xa<=3Xa<=3Xa<=3
Xb>=7Xb>=7Xb>=7Xb>=7Xb>=7Xb>=7Xb>=7Xb>=7Xb>=7Xb>=7Xb>=7Xb>=7Xb>=7Xb>=7Xb>=7Xb>=7Xb>=7

s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1

s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0 ���� ��
�������

�

�������� ���� ��
�������

�

��������

���� ��
�������

�

�������� ���� ��
�������

�

��������

���� ��
�������
������ ���� ��

�������
������ ������

��� ���

Figure 4. Simple ERA example

6.2 Example 2: Philips Audio Protocol

The Philips Audio Protocol is a dedicated protocol for
exchanging control information between audio/visual con-
sumer electronic units. Consequently, the protocol must be
simple and cheap to implement. The data is Manchester en-
coded, and transmitted on a shared bus implemented as a
single wire. There are two interesting aspects of this pro-
tocol. One is that a certain tolerance is permitted on the

timing of events to compensate for drift of hardware clocks
and CPU contention. Philips permits a �	� tolerance on
all the timing, while still being able to decode the transmit-
ted signal correctly. The second aspect is that the collisions
of messages on the bus must be detected. The protocol was
first studied by Bosscher et al. in [4]. It was here proven
formally that the signals can be correctly decoded if toler-
ances are less than �

��
. The protocol has since been studied

numerous times in the context of model checking.
The goal of generating tests for the protocol is to com-

pute a test suite that can be used to determine if a given
audio component implements the Manchester encoding and
collision detection correctly, and within the allowed toler-
ances.

Sender Receiver

dn

in1 empty coll out0 endout1in0

VUPup isUp Bus

Figure 5. Overview of the Philips audio proto-
col.

A station is equipped with a module for encoding and
transmitting data on the bus, and a module for receiving and
decoding the data. An overview of the protocol is shown in
Figure 5. The sender obtains the bit stream to be transmit-
ted via three actions: in0, in1, and empty, respectively
representing a zero-bit, a one-bit, and an end of message de-
limiter. The sender Manchester encodes these bits, and uses
the actions up and dn to drive the bus voltage high and low
respectively.

The bus works as a logical or, so whenever a station
drives the bus high, the bus will be high even if other sta-
tions previously has set it low. A sender can detect collision
by checking that the bus is indeed low when it is itself send-
ing a low. The isUp action is used for this purpose. If a
collision is detected, the upper protocol layer is informed
via the coll action.

The receiver informs the upper layer of the decoded bits
via the out1, out0, and end actions. Philips uses rising
edge triggering to decode the electrical signal. A rising edge
is indicated to the receiver by the VUP action. To decode
the signal using only rising edge triggering as required by
Philips, messages must start with a logical one, and be odd
in length.

Using Manchester encoding, illustrated in Figure 6, the
time axis is divided into equal sized bit slots. In every bit
slot one bit can be sent. A bit slot is further halved into two
intervals. A logical zero is represented by a low voltage on

5

1 1 10 0 0 0Bit stream

Manchester
encoding

Figure 6. Manchester encoding of the bit
stream 1000110.

the wire during the first interval of a bit slot, a rising edge at
half the bit slot, and high voltage during the last interval. A
logical one is represented by a high during the first interval,
followed by falling edge, and a low through the last half.

A bit slot in the Philips protocol is ����� long. In the
modeling we use quarters of bit slots, denoted �, equaling
�����. The basic constants used in the model, and the de-
rived tolerance levels are summarized in Table 7.

Symbol Value Meaning
q 2220 one quarter of a bit slot (220��)
d 200 Detection ’just’ before up (20���
g 220 ’Around’ 25% and 75% of the bit-slot (22��)
w 80000 Station Silence (8��)
t 0.05 Tolerance (5%)
A1min 2000 q-g A1max 2440 q+g
A2min 6440 3q-g A2max 6880 3q+g
Q2 4440 2q Q2minD 4018 2q(1-t)-d
Q2min 4218 2q(1-t) Q2max 4662 2q(1+t)
Q3min 6327 3q(1-t) Q3max 6993 3q(1+t)
Q4 8880 4q Q4minD 8236 4q(1-t)-d
Q4min 8436 4q(1-t) Q4max 9324 4q(t+t)
Q5min 10545 5q(1-t) Q5max 11655 5q(1+t)
Q7min 14763 7q(1-t) Q7max 16317 7q(1+t)
Q9min 18981 9q(1-t) Q9max 20979 9q(1+t)

Table 7. Constants used in the ERA specifica-
tion of the Philips audio protocol.

The basic operating principle of the sender, shown in
Figure 8, is that it inputs a new bit while encoding the cur-
rent bit, i.e., it has read a bit ahead. The important states are
labeled SXtoY, where � represents the bit currently being
generated, and � the bit to be generated next. Observe that
whenever� and � differ, the sender waits twice the normal
duration before changing the status of the wire. The ERA
for the receiver can be found in [17].

To detect collisions the bus must according to Phillips be
sampled ’around’ three specific time points, namely after a
quarter of a bit slot after starting a low signal, again after
three quarters (if still transmitting a low as in the one-to-
zero transition), and ’just’ before setting the bus high.

The generated tests are exemplified in Figure 9. Test case
1 produces the bit string ’1001’, and checks whether the im-
plementation can produce this sequence, and whether it like
the specification refuses all actions at the state and time en-

tered thereafter (��). If one of the offered actions are ac-
cepted, the test execution will terminate in a state �� with
���� verdict. Test case 2 checks whether collision detection
is performed after, in this case, transmission of the single
bit message ’1’.

Using breadth first traversal RTCAT generates a test suite
consisting of 68 test cases with a combined length of 393
steps. Using depth first traversal it generates 67 test cases
with a combined length of 487 steps. The timed traces are
generated using prompt selection. Generating these tests
and writing them to a file took less that 2 seconds, and re-
quired less that 5 Mb memory in total. The resulting test
suite is so small that it can easily be executed, and there
is plenty room for generating longer test suites, and further
extreme values.

The case study illustrates that test cases can be generated
from a real-life case, but it has also revealed a point where
our current approach can be improved. For example, in our
modeling of collision detection, the sender is required to be
able to synchronize with the isUp action at all instances
in the � interval. This is probably not what the Philips
engineers have in mind. Rather, they intend to sample the
bus at some point in this interval. However, this form of
timing uncertainty cannot be readily modeled in the current
ERA language. It is possible to change the specification
(by using a non-deterministic choice) such that the proper
verdict (inconclusive) is assigned to the tests, but executing
them will most likely result in large number of inconclusive
verdicts, because the action could not be observed at the
chosen time.

Also it should be noted that the timing tolerances are
modeled by permitting the upper protocol layer to deliver
the next bit to be transmitted at some point in the “window
of opportunity”. The sender is therefore required to accept
bits at any time within the tolerance interval. If the interface
of the actual Philips components is different from this, the
test cases will not be directly executable as is. An impor-
tant lesson learned is that the specification model used for
test generation must accurately reflect the behavior at the
interface of the component to be tested.

We conclude that our technique is applicable “as is” for
strictly timed embedded controllers that are deterministic
with respect to time, but that it will be important to add
support for timing uncertainty.

7 Conclusions and Future Work

We have presented a prototype tool for automatic and
systematic generation of test cases, and have demonstrated
its applicability for generating tests via a real-life example.

The number of tests generated, and the size of systems
that can be handled, suggests that the basic technique is
sound and practically relevant, but we also have identified a

6

isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?
sent==1sent==1sent==1sent==1sent==1sent==1sent==1sent==1sent==1sent==1sent==1sent==1sent==1sent==1sent==1sent==1sent==1

coll!coll!coll!coll!coll!coll!coll!coll!coll!coll!coll!coll!coll!coll!coll!coll!coll!

isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?
Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000
Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440

isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?
Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440Xdn>=6440
Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880Xdn<=6880

isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?
Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000
Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440 empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?

Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218
Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662

empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?
Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436
Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324

up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!

dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!
Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218
Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662
sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1

dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!
sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1sent:=1

empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?
Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436
Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324

empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?
Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218
Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662

in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?
Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436
Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324

in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?
Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218
Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662

dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!
Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218
Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662

up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!

in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?
Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436Xup>=8436
Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324Xup<=9324

in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?
Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218
Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662

up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!

in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?
Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218
Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662

in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?
Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436Xdn>=8436
Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324

dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!

in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?in0?
Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218
Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662

up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!
Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218Xdn>=4218
Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662

dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!dn!

in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?
Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218Xup>=4218
Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662Xup<=4662up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!

in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?in1?
Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000Xdn>=80000
sent:=0sent:=0sent:=0sent:=0sent:=0sent:=0sent:=0sent:=0sent:=0sent:=0sent:=0sent:=0sent:=0sent:=0sent:=0sent:=0sent:=0

isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?
Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000Xdn>=2000
Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440Xdn<=2440

isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?
Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236Xdn>=8236
Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324Xdn<=9324

isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?
Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018
Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662

isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?isUp?
Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018Xdn>=4018
Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662Xdn<=4662

s12s12s12s12s12s12s12s12s12s12s12s12s12s12s12s12s12

s9s9s9s9s9s9s9s9s9s9s9s9s9s9s9s9s9

s10s10s10s10s10s10s10s10s10s10s10s10s10s10s10s10s10

s11s11s11s11s11s11s11s11s11s11s11s11s11s11s11s11s11

s6s6s6s6s6s6s6s6s6s6s6s6s6s6s6s6s6

s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0

s7s7s7s7s7s7s7s7s7s7s7s7s7s7s7s7s7

s0to0s0to0s0to0s0to0s0to0s0to0s0to0s0to0s0to0s0to0s0to0s0to0s0to0s0to0s0to0s0to0s0to0

s0to1s0to1s0to1s0to1s0to1s0to1s0to1s0to1s0to1s0to1s0to1s0to1s0to1s0to1s0to1s0to1s0to1
s5s5s5s5s5s5s5s5s5s5s5s5s5s5s5s5s5

s8s8s8s8s8s8s8s8s8s8s8s8s8s8s8s8s8
s1to0s1to0s1to0s1to0s1to0s1to0s1to0s1to0s1to0s1to0s1to0s1to0s1to0s1to0s1to0s1to0s1to0

s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4
s1to1s1to1s1to1s1to1s1to1s1to1s1to1s1to1s1to1s1to1s1to1s1to1s1to1s1to1s1to1s1to1s1to1s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3

configconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfigconfig
system sender;system sender;system sender;system sender;system sender;system sender;system sender;system sender;system sender;system sender;system sender;system sender;system sender;system sender;system sender;system sender;system sender;
int sent;int sent;int sent;int sent;int sent;int sent;int sent;int sent;int sent;int sent;int sent;int sent;int sent;int sent;int sent;int sent;int sent;
observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;observable in1, in0, up, dn, empty, isUp, coll;

sendersendersendersendersendersendersendersendersendersendersendersendersendersendersendersendersender

Figure 8. The sender ERA with collision detection.

Test Case 1.
���� ��

�	�������	����

����������� ���� ��

�������

��

��������� ��
� ��
�	����������	

���������� ������ ��
�	������

��

��������� ���� ��
�	�������	�
�
����������

������ ��

�������

��

��������� ���� ��
�	���������	

���������� ���� ��
�	����������	
���������� ������ ��

�������
��

��������� ��	� ��
�	�������	�
�

����������

������ ��
�	������

��

��������� ������
���������
�������� ���� ��

Test Case 2.
���� ��

�	�������	����

����������� ���� ��

�������

��

��������� ��
� ��
��������������	

������������ ���� ��
�	����	�
���

���������� ���� ��
�����������
���������

����� ��
�����������

���������� ���� ��
������������	����
������������� �������

Figure 9. Examples of tests generated for the Philips Audio Protocol sender.

7

number of areas which can enlarge the application domain
of our technique. It will be important to handle systems with
timing uncertainty more effectively than presently done.
Timing uncertainty means that an action may occur some
time in an interval, but which instant is non-deterministic.
Effective support will affect our technique in two areas.
First, the testing theory and algorithms need to distinguish
between actions that are inputs controlled by the tester or
environment, and actions that are outputs controlled by the
system self. Our modeling effort suggests that timing un-
certainty is typically associated with outputs. Second, be-
cause the time instances of actions with timing uncertainty
will not be known until runtime, and because this time
affects when the next action in the test case is to be of-
fered/observed, test cases will need to be symbolic. The
timed trace will thus be instantiated at test executed time
rather than as presently done at test generation time. Fortu-
nately, both aspects appear only to require a moderate effort
to incorporate, e.g., the time constraints needed to distin-
guish when to produce pass, fail and inconclusive verdicts
is available from the computed symbolic path.

A second aspect is to generate and select test cases
through manually stated test purposes, and to generate very
long test cases using a guided random simulation where the
probability of choosing a given delay between a pair of ac-
tions is guided by the equivalence class partitioning.

Finally, our work has focused on generating test cases.
It would be very interesting to also execute them against
real implementations. This will provide valuable insight in
what will be a good communication model between tester
and implementation in practice.

References

[1] R. Alur and D. L. Dill. A Theory of Timed Automata. The-
oretical Computer Science, 126(2):183–235, 25 Apr. 1994.

[2] R. Alur, L. Fix, and T. A. Henzinger. Event-Clock Au-
tomata: A Determinizable Class of Timed Automata. In 6th
Conference on Computer Aided Verification, 1994. Also in
LNCS 818.

[3] B. Beizer. Software Testing Techniques. International
Thompson Computer Press, 1990. 2nd edition, ISBN
1850328803.

[4] D. Bosscher, I. Polak, and F. Vaandrager. Verification of
an Audio Protocol. TR CS-R9445, CWI, Amsterdam, The
Netherlands, 1994. Also in LNCS 863, 1994.

[5] M. Bozga, J.-C. Fernandez, L. Ghirvu, C. Jard, T. Jéron,
A. Kerbrat, P. Morel, and L. Mounier. Verification and Test
Generation for the SSCOP Protocol. Science of Computer
Programming, 36(1):27–52, 2000.

[6] R. Cardell-Oliver and T. Glover. A Practical and Com-
plete Algorithm for Testing Real-Time Systems. In 5th in-
ternational Symposium on Formal Techniques in Real Time
and Fault Tolerant Systems (FTRTFT’98), pages 251–261,
September 14–18 1998. Also in LNCS 1486.

[7] R. Castanet, O. Koné, and P. Laurençot. On the fly test gen-
eration for real-time protocols. In International Conference
in Computer Communications and Networks, Lafayette,
Lousiana, USA, October 12-15 1998. IEEE Computer So-
ciety Press.

[8] D. Clarke and I. Lee. Automatic Test Generation for the
Analysis of a Real-Time System: Case Study. In 3rd IEEE
Real-Time Technology and Applications Symposium, 1997.

[9] D. L. Dill. Timing Assumptions and Verification of Finite-
State Concurrent Systems. In International Workshop on
Automatic Verification Methods for Finite State Systems,
pages 197–212, Grenoble, France, June 1989. LNCS 407.

[10] A. En-Nouaary, R. Dssouli, and F. Khendek. Timed
Test Cases Generation Based on State Characterization
Technique. In 19th IEEE Real-Time Systems Symposium
(RTSS’98), pages 220–229, December 2–4 1998.

[11] G. J. Holzmann. Design and Validation of Computer Pro-
tocols, chapter 11. Prentice Hall, New Jersey, U.S.A, 1991.
ISBN 0-13-539925-4.

[12] E. Koustsofios and S. C. North. Draw-
ing Graphs with dot. Technical Report
http://www.research.att.com/sw/tools/
graphviz/dotguide.ps.gz, AT&T Bell Laborato-
ries, Murray Hill, NJ, U.S.A.

[13] K. G. Larsen, F. Larsson, P. Petterson, and W. Yi. Efficient
Verification of Real-Time Systems: Compact Data Struc-
tures and State-Space Reduction. In 18th IEEE Real-Time
Systems Symposium, pages 14–24, 1997.

[14] K. G. Larsen, P. Pettersson, and W. Yi. UppAal in a Nut-
shell. International Journal on Software Tools for Technol-
ogy Transfer, 1(1):134–152, 1997.

[15] D. Mandrioli, S. Morasca, and A. Morzenti. Generating
Test Cases for Real-Time Systems from Logic Specifica-
tions. ACM Transactions on Computer Systems, 13(4):365–
398, 1995.

[16] R. D. Nicola and M. Hennessy. Testing Equivalences for
Processes. Theoretical Computer Science, 34:83–133, 1984.

[17] B. Nielsen. Specification and Test of Real-Time Systems.
PhD thesis, Department of Computer Science, Aalborg Uni-
versity, Denmark, april 2000.

[18] B. Nielsen and A. Skou. Automated Test Generation Timed
Automata. In T. Margaria and W. Yi, editors, TACAS 2001
- Tools and Algorithms for the Construction and Analysis of
Systems, Genova, Italy, April 2001.

[19] J. Peleska and B. Buth. Formal Methods for the International
Space Station ISS. In E.-R. Olderog and B. Steffen, edi-
tors, Correct System Design, pages 363–389, 1999. Springer
LNCS 1710.

[20] A. Ressouche, R. de Simone, A. Bouali, and V. Roy. The
FCTOOLS User Manual. Technical Report ftp://ftp-
sop.inria.fr/meije/verif/fc2.userman.ps,
INRIA Sophia Antipolis.

[21] H. Schlingloff, O. Meyer, and T. Hülsing. Correctness
Analysis of an Embedded Controller. In Data Systems in
Aerospace (DASIA99). ESA SP-447, Lisbon, Portugal, pages
317–325, 1999.

[22] J. Springintveld, F. Vaandrager, and P. D’Argenio. Testing
Timed Automata. TR CTIT 97-17, University of Twente,
1997. To appear in Theoretical Computer Science.

8

