Experiments with Video Communication on
ATM-networks*

Thomas Husfeldt, Brian Nielsen! Finn Norman Pedersen, Dao Van The

June 18, 1997

Abstract

This report presents the results of a set of performance measurements
related to communication of digital video on ATM-networks. High qual-
ity video produces large amounts data which must be communicated and
processed in real-time. Satisfaction of this requirements require knowledge
about the available system resources and the nature of the load that are
put on these. We therefore benchmark our testbed consisting of a local
area ATM network and a local area Ethernet to investigate the available
resources and compressed video’s use of bandwidth and cpu resources.

We examine three protocol /network combinations with respect to. through-
put, latency and jitter: AAL-5 on an ATM-network, UDP on ATM, and
UDP on Ethernet. The measurements show that AAL-5 gives the high-
est throughput, lowest latency, and lowest jitter. We find that a loaded
Ethernet produces very high jitter values, that require special attention
in a multi-media system. We conclude that AAL-5 is the better choice of
the three protocols for transmission of high bandwidth real-time sensitive
traffic.

We analyse and compare two video compression techniques, MPEG-1 and
MPEG-2. We record and compress a test video which we then analyze for
its usage of bandwidth and the cpu-time required compress and decompress
it. Our analysis indicates that MPEG-2 gives a better quality /bandwidth
ratio than MPEG-1, and also that the variation in bandwidth and cpu
usage is smaller, and thus is easier to manage.

For transmission of live video, the combination of AAL-5 and MPEG-2
gives the best result: The lowest end-to-end delay and the lowest variation
in end-to-end delay.

Our new insight in the real-time performance characteristics of communi-
cation protocols for video communication and of compressed video have
given us a solid foundation for designing and constructing multi-media
applications and support systems.

“This work has been carried out in the research programme “Networks and Paradigms
for the Next Generation of Distributed Systems” which is supported by the Danish Research
Council, SNF. We like to thank Birger Andersen, Wladyslaw Pietraszek, and Arne Skou, for
commenting a draft version of this report.

fAuthor for contact. E-mail: bnielsen@cs.auc.dk

Contents

1 Introduction

1.1 Distributed Multi-Media Applications
1.2 The Experiments
1.3 The Testbed o
1.4 Fore Systems QoS

Network Experiments

2.1 Throughput
2.2 Latency e
2.3 Jitter.

Compressed Video Experiments

3.1 MPEG Background oL
3.2 Bandwidth Analysis L L.
3.3 CPU-usage: Decompression
3.4 CPU-usage: Compression
3.5 Display performance oL
Discussion

4.1 Calculation of QoS-settings
4.2 Bandwidth Utilization
4.3 End-to-End Delay
4.4 Future Experiments
4.5 Related Work L oo
4.6 Conclusions e

11
11
15
16

31
32
33
38
41
44

1 Introduction

1.1 Distributed Multi-Media Applications

In the near future distributed multi-media applications like video conferencing,
computer supported cooperative work, remote education, and tele-robotics will
become feasible. A decisive factor is the introduction of new high speed network
technologies that can handle the bandwidth and real-time requirements put
forward by the new application-types. In addition to the transmission quality
delivered by the lowest level in the network, also the applied communication
protocols and other computer systems software have significant influence on the
achievable application quality.

Often distributed multi-media applications require video to be communicated
over the network. Video is a very demanding data type to support because
high volumes of data need to be transmitted on the network and processed at
hosts. To save bandwidth video frames are compressed by the sender before
transmission, and subsequently decompressed by the receiver, before they are
displayed. Normally compression reduces data volumes by about 20-30 times,
but even a compressed video stream in a decent quality is fairly demanding.
For example, VHS quality compressed video uses approximately 2 Mbit/s of
bandwidth, PAL broadcast quality uses 4-6 Mbit/s, studio production quality
uses 8-9 Mbit/s, and finally, high definition TV requires more than 15 Mbit/s.
Video conferencing type applications can usually do with a lower quality than
TV signals. A streams quality can be lowered by reducing picture size, using a
lower frame rate, and a less accurate compression (more lossy).

There are two primary disadvantages of using compression: First, it produces

variable bit rate (VBR) traffic because not every frame can be compressed by

the same amount. VBR-traffic makes it more difficult to manage network re-

sources than traffic with a constant bit rate. Second, compression/decompression
put heavy and variable computational loads on the hosts.

In addition to the bandwidth requirements numerous other real-time constraints
apply. For example, the total end-to-end delay, from a frame is grabbed until
the frame is replayed, should be less than 250 ms to preserve the user’s im-
pression of participating in a live interaction with each other. The frames of
the video stream must be replayed periodically with a jitter tolerance of about
10 ms to avoid visible distortion. Similarly, audio should be “lip-synchronized”
with the video such that a video frame and the corresponding audio-frame are
replayed within 120 ms of each other. It is important to realize that these re-
quirements are total end-to-end requirements, and cannot directly be converted
to host and network requirements. For example, fast hosts and buffering tech-
niques can to some degree compensate for a network with much jitter. Likewise,
the choice of compression technology can compensate for slow hosts by trad-
ing processing time for lower compression rate (thus higher bandwidth usage).
This reports evaluates a couple of specific protocol and compression technology
configurations.

The quality of applications and the techniques used to implement them are
sensitive to the network and protocol performance. Relevant metrics include
throughput, latency and variation in transmission delay (termed jitter in the fol-
lowing). Throughput influences the number of streams that can be supported.
Network latency determines how fast hosts can exchange synchronization in-
formation. Nework jitter causes a variable delay which the scheduling and
buffering strategies must take into account to satisfy real-time constraints.

1.2 The Experiments

To evaluate the significance of these influences we have designed and performed
a set of basic experiments which benchmark different aspects of typical net-
works, protocols, and compression techniques used to implement distributed
multi-media applications. This report contains our findings. The experiments
fall into two categories:

Network communication: These experiments compare two network tech-
nologies, Ethernet and asynchronous transfer mode (ATM), and two pro-
tocols, the ATM-native adaptation layer 5! (AAL-5), and the internet
protocol User Datagram Protocol (UDP/IP). We evaluate three combi-
nations, AAL-5 on ATM, UDP on ATM and UDP on Ethernet, wrt.
achievable throughput, average latency and jitter probability distribution.
The affect on jitter by a loaded network is also examined.

Compressed video: These experiments provide insight in the bandwidth,
computation compression and decompression load produced by a typical
compressed video fragment. We look both at the MPEG-1 and MPEG-2
compression techniques.

Figure 1 provides an overview of the network and MPEG experiments.

ATM has been announced as the future high-speed network technology, and has
from the beginning been designed to support different classes of services, and is
thereby able to carry constant, variable, or available bit-rate traffic, with loose
or strict timing requirements. Further, when an application opens a connection
it specifies the level of quality of service (e.g., service class and bandwidth)
it needs. The network’s admission control function uses this information to
reserve resources for that connection, or possibly reject it. ATM usually only
provides a soft (statistical) guarantee for the provision of the requested level
of service. If, however, an application should exceed its allocated bandwidth,
the network’s policing function lower the drop-priority of the outstripped cells,
or drop them altogether, depending on policy. Current Ethernets do not have

Normally ATM adaptation layer 2 (AAL-2) would be the prefered protocol to transfer
variable bit rate video traffic, but the ATM network in our testbed (see Section 1.3) does
(currently) not implement AAL-2. Instead we use AAL-5, intended for general purpose data
traffic.

these capabilities, and we therefore expect ATM to provide a more predictable
performance than Ethernet, particularly on loaded networks.

Network Experiments
SS20-SS20 U1-U1
AAL-5 | UDPgtm | UDP i}, || AAL-S | UDPatm | UDP 1,
Throughput 6) 5 6 5])
Latency 7 7 7 7 7 7
Jitterynioaded 12 13 14
Jitterloaded 15 16 17

MPEG Experiments
| MPEG-1 | MPEG-2

Bandwidth Profile 22 24
CPU decompression Profile 25 26
CPU compression Profile 28 29

Figure 1: Overview of the Experiments. The table contains the figure numbers of
the figure with the result.

Note that both of the examined protocols are only partly reliable. Both CRC-
checks the payload, but neither retransmits lost or faulty data. We chose
these protocols in preference to the fully reliable Transmission Control Pro-
tocol (TCP) because retransmission is rarely necessary or even desirable for
video. First, TCP’s unbounded retransmission may produce a high and un-
predictable delay on data units. For real-time applications it is usually more
important to get recent data rather than complete and ordered, but late, data.
Thus, it is usually better to skip a late video-frame rather than waiting for it,
and consequently also delaying subsequent frames. Moreover, many compres-
sion techniques are designed such that the receiver can recover from a faulty
frame or pixel block. Thus, retransmission can be avoided.

1.3 The Testbed

All experiments were run on an actual network. The testbed is a local area
network consisting of an ATM network, an Ethernet, and 4 hosts configured as
double homed internet hosts. The testbed is illustrated on Figure 2.

The following components were involved:

e Two identical Sparcstation 20 (SS20) workstations running Solaris 5.5.1
operating system from Sun Microsystems. FEach workstation has two
SuperSPARC 50 Mhz CPU’s and 96 Mbytes RAM (specInt95 rating <
2.462[5] per processor).

2for 75Mhz processor version

N -/ Ethernet

SCOM IP net 1
etherlink 1000

HUB

FORE
asx-200 >< ATM-net

ATM-switch IP net 2

Figure 2: The testbed consists of both an ATM network and an Ether-
net.

e Two identical Sparcstation Ultra 1 (Ul) workstations running Solaris
5.5.1. Each workstation has a single ultraSPARC 143 Mhz CPU and
64 Mbytes RAM (specINT95 rating: 4.81[5]). All 4 workstations can be
characterized as modern workstations, but has no special graphics capa-
bilities, such as graphics hardware accelerators.

e Two ATM SBA-200 Sbus adapters connected to the SS20 hosts, and two
ATM SBA-200e Sbus adapters connected to the Ul hosts. Both adapters
are from Fore Systems.

e ASX-200 ATM switch from Fore Systems equipped with two four-port
UTP-5 network modules. Both network modules have maximum port
speed of 155 Mbit/s.

e An IEEE 802.3 type Ethernet. This net connects all computers in the
computer science department, and the Ethernet in the testbed is therefore
shared with other computers. However, all 4 hosts in the testbed were
connected to the same HUB, a Linkswitch 1000 from 3COM. The HUB
is configured to forward Ethernet packets in a “fragment free forwarding
mode” which gives a forwarding delay of 64 us[1]. The Ethernet provides
10 Mbit/s between any two hosts in the testbed.

All ATM experiments were conducted with enabled Fore Systems’ proprietary
signalling protocol (SPANS) used for establishing switched virtual circuits (SVC)
on demand. The ATM network does not carry any traffic not produced by the

experiments. Applications access the network through Fore-Systems (sockets
like) APIL

To obtain as accurate time measurements as possible, disturbing effects caused
by unrelated system activity were minimized by scheduling all test-programs
in Solaris’ real-time mode, and by executing the tests when the network was
expected to be lightly loaded. Processes scheduled in real-time mode have
higher priority than competing user and system processes, but lower priority
than interrupts.

To measure elapsed time we use a nano-second resolution real-time timer. This
timer is unrelated to the systems real-time clock, and not subject to resets and
drifts performed manually or by network time synchronization protocols. The
timer is accessed through the gethrtime system call.

1.4 Fore Systems QoS

Since a connection’s performance depends on its quality of service settings, we
here briefly describe how QoS is set in the Fore Systems API, and describe what
settings are used in the experiments. Additional information about the testing
methods are described in the sections containing the test result.

Before a connection is established, the application and network negotiates the
connection’s QoS. The application states a certain desired target level and a
minimum acceptable level. The network replies with the actual allocated QoS
level; this is called the selected QoS. The network may not be able to honour the
target level, and consequently, the selected QoS may be less than the target. If
the network is unable to honour the minimum level, the connection is rejected.
Figure 3 shows the adjustable parameters.

Peak bandwidth | Mean bandwidth | Mean Burst length
Target 154000 154000 95
Minimum 0 0 95
| Selected | 154000 \ 154000 \ 95 \

Figure 3: QoS Parameters

The parameters have the following meaning [22]:

Mean bandwidth: the average bandwidth expected over the lifetime of the
connection, measured in kilobits per second.

Peak bandwidth: the maximum (burst) rate at which the source produces
data, measured in kilobits per second.

Mean burst length: the average size in kilobits of a burst sent at peak band-
width.

If no QoS parameters are specified for a connection, the network assumes that
the connection carries available bit rate traffic, i.e., no quality of service guar-
antees are provided. Such connections will always be admitted to the network.
In particular, our testbed implements UDP on available bit rate connections.

Unless otherwise noted, the experiments were run with a selected QoS close to
the networks upper limit: mean is 154000 kbit/s, peak is 154000 kbit/s, burst
is 95 kbit.

10

2 Network Experiments

This section reports the results of the network performance experiments. The
three performance metrics, throughput, latency, and jitter are determined for
each of the three configurations, AAL-5 on ATM, UDP on ATM, and UDP on
ethernet.

2.1 Throughput

Purpose

The goal is to determine the maximum throughput that can be achieved be-
tween two hosts for each of the three configurations. Throughput is the number
of megabits per second that can be transferred. Further, the purpose is to de-
termine the effect on throughput using hosts of different speeds.

Method

The throughput between two hosts is determined by measuring the round trip
time of a message: One host (client) sends a message of a given size to the
second host (server). The server sends a message of the same size back to the
client. The total amount of data transferred is thus twice the message size.
Throughput can be calculated by dividing the total data amount by the round
trip time, the time elapsed from the time the client begins to send its message
until it has received the server’s message. The message size is varied from 1
byte to 200 kbytes in steps of 200 bytes. The entire measurement series is
repeated 10 times to produce an average throughput. Note that by using this
method the throughput includes the overhead of two times latency. For small
packets this latency contributes significantly to the troughput, and the actual
achievable throughput will therefore be somewhat higher than our measured
throughput. For large messages the transfer time dominates, and the latency
is insignificant.

The computed average throughput is plotted against the message size. The
maximum throughput is achieved at the resulting curve’s extremum. Finally,
note that the UDP receiver buffers have been increased from the systems default
to 250KBytes using the setsockopt system call. This prevents loss of UDP
packets during the tests. The round trip program is sketched in Figure 4.

The influence of hosts is resolved by performing the experiments between pairs
of identical machines, i.e., SS20-SS20 and U1-Ul.

Expectations

We expect to see the 10 Mbit/s ethernet fully utilized, but it should be clearly
outperformed by the 155 Mbit/s ATM-net. We expect higher throughput from
the faster machines (Ul) as protocol processing should be done faster on these
machines. Finally, the throughput of AAL-5 should be higher than UDP on
ATM, because AAL-5 is ATM-native.

11

Client Server

for(number_iterations) { for(no_iterations) {
for(packsz=1 to 200KB step 200){ for(packsz=1 to 200KB step 200){
start=gethrtime(); do_recv (packsz);
do_send (packsz); do_send (packsz);
do_recv (packsz); }
stop=gethrtime(); }
}

do_send (packsz) {//packetize message
number_pks = packsz div MTU;
leftover= packsz - number_pks*MTU;
for(number_pks) {
send(MTU bytes);

send (leftover bytes);

}
do_recv(packsz) {//like do_send }

Figure 4: Code sketch for round trip measurements

Results

In Figure 5 we have plotted throughput versus packet size for the UDP-ethernet
(U1-U1), UDP-ATM (U1-U1), and UDP-ATM (SS20-SS20) configurations. The
throughput is low at first, but increases with larger messages. There are two
reasons for this. First, the cost of communicating small messages can easily be
dominated by latency (i.e., protocol and network controller setup time). Second,
larger messages are much better able to utilize pipelining, e.g, the copying of
the next message fragment (message transfer unit) to the controller, can be
overlapped with the controllers fragmentation into ATM cells of the previous,
which again can be overlapped with the sending of cells from a third message
unit.

UDP on ethernet reaches a saturation point very quickly and reaches a through-
put of 9 Mbit/s. The curve for the SS20 hosts are identical, and is therefore
omitted from Figure 5. This is close to the theoretical limit of 10Mbit/s, and
both host types seem to be able to fully utilize the ethernet.

The SS20 hosts achieve 57 Mbit/s for message sizes of 200 kbytes. As expected
the faster Ul hosts achieve a higher thoughput, 117 Mbit/s with 200 kbytes
messages. The theoretical bandwidth of an 155 Mbit/s ATM network that can
be used for user data is 134 Mbit/s (5 bytes of an 53 byte cell is used for cell
header, leaving 48 bytes for user data). Thus UDP on fast hosts is approaching
the theoretical limit.

Figure 6 shows the throughput of AAL5 versus message size for the Ul and

12

so1Aq azIs abessa

00000¢ 00008T 00009T 0000¥T 0000CT 00000T 00008 00009 00007 0000C

IR
)3::,{; %aaa ,Ei y
Vi /2
:) oY R <? A R
; i A ;?f PVALU SN :ka»}t ::Zixi ﬂ \r:#lzjf) JZ :
" \L/fe: :2?2, v Lizc\ri??;\: Ty i~ e
e

“““ ._va Hmc‘_mcum nn,

“““ «erep'wie 0z 0c.

L :.QWHGU.EHG J:: ” : ' : : . :
| | | | | i . . .

N.LN=3zIsjnq 00z=9zIsdals 1 INYIHLT SA INLY JaA0 Indiybnoiyl dan

08

00T

0ct

ort

097

29sMgn indybnoyy

Figure 5: UDP performance on ATM (U1-Ul), ATM (SS20-SS20) and

ethernet (U1-Ul). SS20 on ethernet gives identical performance as the

Ul hosts.

13

9zIs 190ed

00000¢ 00008T 00009T 0000¥T 0000CT 00000T 00008 00009 00007 0000C

\C: ‘J
: i
: | m\>L>>:) :
\\N,_ pons” ¥
, o T
v i~ \2{\,r:\f/\/\(?xs\rﬁ)\/(m VT ,

e NN TV : : : : : . .
ARSI e s R R P s

“““ .0¢ 9belane, W

—— .nNn'abeiane, , , , , , , W

]]]]]]]]]

yipimpueg

0c¢

ov

09

08

00T

0ct

ort

(98smqiA) Indybnoay L

Figure 6: AAL-5 performance on SS20-S520 and U1-Ul

14

SS20 hosts. Similar to the UDP measurements, the throughput is low at first,
but increases with message size. However, the figure shows a very unexpected
result. The slower SS20 hosts outperform the faster U1’s by far! The SS20 hosts
obtain nearly 120 Mbit/s whereas the Ul hosts obtain 65 Mbit/s. Moreover,
the Ul hosts’ throughput with the ATM-native AAL-5 is only half of what they
achieve using UDP. Observe however, that the Ul hosts get a higher throughput
for messages up to 15 kbytes, but then flattens abruptly, compared to the other
measurements. Our latency experiments confirm that U1’s indeed are faster for
small messages, see Section 2.2. We do not know the cause of the Ul’s poor
performance, and we have investigated probable causes: We have examined
a modified testbed where the Ul hosts has been replaced by two processor
Sun Sparc Ultra 2’s with 256 Mbytes of ram. However, the same low AAL-5
performance persisted in this configuration. Also, we tried sending from a SS20
to a Ul. Here the 120 Mbit/s could be reached. Thus, the problem occur when
a Ul host is used as a sender. It could seem like some sort of flow control
mechanism kicks in, but we are also investigating differences in adaptors and
software, operating system patches, differences in buffer space allocation.

A general comment about performance of the ATM network is that it seem to
require the transmission of very large chunks of data to utilize the theoretical
bandwidth on a single connection. From our experiment we cannot conclude
whether the large data chunk must be sent as few large packets or if it suffices
to send a large number of small packets in rapid succession.

Finally, we have observed that the network can drop packets when very large
messages (10 Mbytes and over) are sent at the fastest possible rate. This
indicates that it may not be possible to maintain the high throughput over
longer periods of time. We conclude that further experiments are needed to
uncover this problem.

2.2 Latency

Purpose

We like to determine the communication latency between two hosts. The la-
tency is the minimum time it takes to send a message from one host to another.
The effect on latency by using hosts of different speeds should be examined.

Method

The latency is decided by measuring the round trip time (see Section 2.1) of a
very small message (1 byte). Assuming symmetry in the communication delay
between the two hosts, the latency is calculated as half the round trip time.
The round trip time is measured 100 times to produce an average.

Expectations
We expect to see lower latency on the ATM network because of its order-of-
magnitude higher theoretical bandwidth. We also expect latency to be lower

15

on the faster machines (Ul) because protocol processing can be done faster. Fi-
nally, because AAL-5 is ATM-native, we expect it to be a little faster compared
with UDP on ATM.

Results

The results are tabulated in Figure 7. The lowest latency (201 us) is achieved
by Ul-hosts communication via AAL-5. This is considerably faster than using
UDP on ATM between the same hosts, 361 us. A partly explanation is that a
1 byte AAL-5 message can be transfered in a single ATM cell, whereas a UDP
message may require several cells due to the extra header information created by
IP and UDP encapsulation. However, we find it quite surprising that UDP on
ethernet is only slightly slower (408us). This indicates that protocol overhead
and controller setup time is the limiting factor.

On the SS20 hosts all average latencies have about doubled, i.e., the SS20’s are
only half as fast on latency compared to the Ul’s. AAL-5 is still the fastest
protocol with 491us. A new surprise is that UDP on ethernet (846us) appears
a little faster than UDP on ATM (889us). We do not have any apparent
explanation for this. Note however, that the difference is only 43 us, so this
result should be interpreted cautiously.

Latency (us)
SS20-SS520 U1-U1
AAL-5 | UDPgtm, | UDP .y, || AAL-5 | UDPatm | UDP .1,
average 491 889 846 201 361 408
minimum 408 835 675 186 230 353
maximum | 956 1046 4375 323 669 494

Figure 7: Network Latency

2.3 Jitter

In a perfect network for real-time communication the transfer time of packets of
equal size would be constant. This would make it easy to predict communication
delays, and to plan activities accordingly. However, real networks are imperfect.
Buffering at hosts and buffering at intermediate (shared) switched and HUBS
introduce a variable, and often unpredictable, delay. Jitter, to be defined below,
is a measure of the discrepancy between a real-network and an ideal network.

Purpose
The purpose is to determine the amount of jitter introduced by the network,
and the effect on jitter by network load.

16

Method

Due to the lack of accurate global clocks in a distributed system, measuring
the jitter requires some care due Let t; be the global time of the sending of the
message, t, the global time of its reception, and d the (constant) transmission
delay. The jitter € can then be calculated as the difference between expected
arrival time and actual arrival time:

e=t,—ts—d (1)

A frequency distribution of the jitter can be obtained by performing several
measurements. Under the (tentative) assumption that the delay variation is
caused by random error, the frequency distribution should be approximately
normally distributed around 0.

A direct measurement of jitter according to the above definition cannot be done
in a distributed system because it requires accurate global timing. Instead, we
use the following method to obtain an estimate of the jitter, see Figure 8. The
sender sends messages with a fixed period P to the receiver. The receiver
then marks the time of reception of that message. Let ¢; be the reception of
the message 7. Now, if we could rely on the first message getting transmitted
perfectly (i.e., without jitter) it would be easy to calculate the jitter of message

J € as:
Ej:tj—tl—P(j—l) ,jg>1 (2)
Sender %
ti tj th

Figure 8: Jitter

This assumption is obviously invalid, and jitter on the first message would cause
the subsequent, possibly ideally, received messages to appear being delayed
variably. Instead, we use a statistical trick to obtain an estimate &; of the jitter

17

of message 7. Instead of using only the first message, all messages are used as
zero-points®. The zero-points are then used as a basis for calculating an average
jitter for each message. The assumption of random error on the transfer delay
makes this estimate reliable.

The jitter £;; of message j with message ¢ as zero-point (thus assumed to be
received ideally, with constant delay) can be calculated as:

o tj—P(j—i)—tz', j>i
‘Sﬂ—{tj—tz- (i-jP, j<i ®)

Consequently:

_ Zlgign Eji

g.
J n—1

An alternative method would be to directly measure the jitter of a message
round trip. The disadvantage of this is however, that the round trip jitter
contains the sum of two network jitters. If jitter is assumed to be caused by
random error, the probability of getting two consecutive extreme delays would
be half, and hence, the resulting probability distribution would be ’slimmer’
than our used one-way method.

Jitter is measured by sending messages with a period of 5 ms between two
SS20’s. The code is ourlined in Figure 10. The message size is 8192 bytes on
the ATM-network and 1 kbytes on ethernet to compensate for Ethernets lower
bandwidth. The measurement processes were scheduled in real-time mode, and
the sender process busy waited to get more accurate timing than the scheduler
can produce. The influence of a loaded network is determined by letting two
processes, scheduled in timeshare mode, send available bit rate traffic at their
maximum speed. An added traffic load can be either cross traffic (U1-U1), or
parallel (SS20-SS20), and both experiments are conducted, see Figure 9. The
last experiment is meaningful because the SS20 machines are equipped with 2
processors each.

3 A sufficiently large random subset would suffice.

18

Figure 9: Two experiments with traffic load. Left: cross load. Right:
parallel load. Black arrows denote thea jitter sensitive traffic. Gray
arrows denote the added background load.

Sender Receiver

for(number_packs) { for(no_packets) {
start=gethrtime(); receive(packsize)
send(packsz); stop=gethrtime();
stop=gethrtime(); /| stop=reception time of packet i

/[verify stop-start is insignificant }
while(gethrtime() <nextPeriod);
/[busy wait until next period

Figure 10: Code sketch for jitter measurements

Expectations

We expect to see lower jitter values on the ATM-network because ATM is
designed to be able to carry time sensitive traffic, and it is therefore likely that
the implementors have considered issues like how long time a transfer unit (cell)
can be stored at a switch. Ethernet is based on an older technology, primarily
intended to carry time insensitive data traffic. We also expect that UDP on
ATM has slightly more jitter than AAL-5, primarily because AAL-5 is ATM-
native. In general, adding load on the network should cause more jitter, because
network resources (buffers, and switches) are now shared, and thus less likely to
be available at a given time. However, we in general expect to see small jitter
values because our testbed is a local area network with only one HUB/switch.
Measurements on a wide area network will likely give different results.

Results
The frequency distribution for the 3 configurations without additional load is
shown in the histograms in figures 12, 13, and 14. All three histograms are very

19

similar, and are centered around 0.

Most jitter values lie within +/- 200us., which are so small numbers that
scheduling disturbance can have a visible influence. UDP seems to have a small
top at the left of its center. Hence, without load all three protocols produce
insignificant jitter for video communication.

A few very extreme values have been omitted from the figure to produce a clear
graph. These values are tabulated in Figure 11.

| Configuration | Jitter (us) | count |
AAL-5-noload 1492 2
UDP-ATM-noload 3039 1
UDP-ATM-load 6570 1
UDP-ETH-noload 10143 1

Figure 11: Unplotted Jitter Values

Adding a cross load at the HUB/switch have no visible impact at all, so no
graphs of this are shown. The missing effect can be explained by the capacities
of the switch/HUB: The ATM switch has a switching capacity of 2 Gbit/s,
which is an order-of-magnitude more than the load which can be produced by
the two Ul hosts. Similarly the ethernet HUB is designed to feed 24 hosts with
10 Mbit/s each. More machines must be used to produce a significant load.

Figures 15, 16, and 17 show the effect of adding a parallel load. The jitter
values increase significantly and they are spread out more. Most jitter values
on AAL-5 and UDP on ATM lie between +/- 500 ps but many values are
beyond these limits. UDP jitter on ATM appear more focused than AAL-5.
We do not know whether the extra delay variation is generated by the switch
or (more plausible) at the sending/receiving queues.

The jitter on a loaded ethernet is affected extremely. Most jitter values lye
between +- 60 ms (mili-seconds), some even beyond. This amount is, as will
be discussed later, very significant for video communication and affects imple-
mentation strategies.

We have identified a probable cause of this amount of jitter. The plot in Fig-
ure 18 of the actual receive times of each sent message reveal that the receiver
makes sudden jumps in receiving time. An ideal plot should be a straight line,
like the one between message 235 and 245. A possible explanation can be found
in differences in the queuing strategies used by the two network types in hosts
and/or HUBS. Our ATM network uses per virtual connection queuing, i.e.,
cells belonging to one connection is queued up in its own private queue, see
Figure 19a. Our hypothesis is that the UDP on the Ethernet configuration
uses a common FIFO queue for storing packets to all receivers, see Figure 19b.
The consequence of FIFO queuing at the sender side is that the multiplexing
is done without consideration to the fact that one process is sending time sen-

20

AALS jitter over ATM without load

i | | | | | I
Lo o Lo o Lo o Lo o
< < ™ (92} N N — —

s19xoed Jo Ju

Figure 12: Histogram for jitter on AAL-5 without extra load.

21

400 600 800 1000

jitter in micro sec.

200

-200

UDP over ATM jitter without load

s19xoed Jo Ju

Figure 13: Histogram for jitter on UDP on ATM without extra load.

22

| | | T | | T
i d
3 [
U SO OO OO OOt SURUU OO SEUURUUUUUNS NUUUUUUUN AUUUURUR o -
: d
L ==
: H
[=
i i i i i i i
o o o o o o o o o
© ~ © o < ™ N —

400 600 800 1000

jitter in micro sec.

200

-200

UDP over Ethernet jitter without load

70

20
10 |

| |
o o
< ™

i i
o o
© T

s19xoed Jo Ju

Figure 14: Histogram for jitter on UDP on ethernet without extra load.

23

400 600 800 1000

jitter in micro sec

200

-200

AALS jitter with parrallel load

40

10

|
o
N

| I |
L0 o O
™ ™ N

s19xoed Jo Ju

Figure 15: Histogram for jitter on AAL-5 with parallel load.

24

2000

o
o
Te}
i

-500

-1000

jitter in micro sec

UDP over ATM jitter with parallel load

I I I I I
I SR e R E——
‘ =
3 3 —
3 o
: [
[I : :
‘ =
i 3 —
i i i i i
o o o o o o
© n < ™ I3y —

s19xoed Jo Ju

Figure 16: Histogram for jitter on UDP on ATM with parallel load.

25

-500 500 1000 1500 2000
jitter in micro sec

-1000

28s 0JoIw ul Janlf

00000T 00008 00009 00001 0000¢ 0 0000¢- 0000t- 00009-
ﬁ :] 0
IS 1R - LU :
R JERRH R ¥ eeee————— ot
IR 0 I e 0 B I s R SR GT
S e X ON
T :.mu_..mﬂv.m|._\NOH: : : : : : :
| | | | | | | ez

peo| |ajfesed yum 1aulayig Jano Janil 4an

s19xoed Jo Ju

Figure 17: Histogram for jitter on UDP on ethernet with parallel load.

26

UDP on ethernet: actual receive time vs. packet number

1250

[[[[
(7]
B« A -
E
=
[¢))
=
(0]
(&]
Q) ,,, —]
f -
©
5
2
(&]
©
i i i i
o o o o o o
o Lo o n o o
N — — o o (e}
— — — — —
(sw) swn

Figure 18: Actual receiving time for each message confirms the large
amount of jitter found on a loaded ethernet

27

205 210 215 220 225 230 235 240 245 250
message nr

200

sitive traffic. This traffic is delayed unpredictably by the non-realtime traffic
produced by other senders. A similar problem occur at the receiver side: The
real-time traffic is sent upstream and demultiplexed and in arrival order, not in
“priority” order.

& &
R SN

A

B

B

B B

B B

A B B

A B B

A B A
Network Network
interface interface

@ (b)

Figure 19: (a) Per connection (de) multiplexing. (b) FIFO
(de)multiplexing.

Another problem that may occur at the receiver side is unbounded priority
inversion[19]. Suppose a receiving process P}, scheduled with high priority
blocks because a lower priority process P, has to consume messages from the
queue head. Now a third process P, with medium priority wakes up and due
to its higher priority it preempts the low priority process. As long Py, has work
to do it prevents P; (and thereby P},) from running by an unbounded amount
of time. It should be noted that the Solaris OS supports real-time scheduling
and implements a priority inheritance mechanism to avoid unbounded priority
inversion due to blocking on locks to kernel data structures, but does not sup-
port real-time i/0[14]. However, the implementation of the ATM interface seem
more adequate at supporting real-time traffic than the Ethernet interface.

A further source of variation in communication delay on an ethernet is col-
lisions, and the following recovery through exponential backoff. However, we
meassured the amount on collisions on a host in the testbed and a heavily
loaded departmental server to be around 3% of the communicated packets on
their interfaces (using the netstat tool). This seems to infrequent to blame
collisions as a primary delay variation source.

28

A disadvantage of using UDP on ATM is that UDP is transferred as avail-
able bandwidth traffic, and therefore will be experience a penalty on a loaded
network. It is currently impossible to provide QoS guarantees for UDP based

applications, although work is in progress to allow qos to be provided for IP-
based applications[26].

29

30

3 Compressed Video Experiments

In this section we analyze compressed video with respect to bandwidth and cpu
usage. We compare two compression techniques defined by the Motion Picture
Expert Group, MPEG-1 and MPEG-2. MPEG-1 is the older technique aimed
at transmission and CD-ROM storage of sub TV-quality signals. MPEG-2 is a
newer, optimized and extended version of MPEG-1. It is intended to support
transmission various degrees of quality, up to high definition TV[20].

Figure 20: A frame from the test video

To perform our analysis we have recorded a short typical video conferencing test
video. In the beginning it shows a person talking to the camera. Later, another
person moves into the background from the right, and immediately thereafter,
a third person moves in from the left while the second person moves back out.
The video has a resolution of 400x320 pixels with 24-bit color depth, and is
recorded with 18 frames per second (fps), i.e. a new frame is grabbed /displayed
each 56 ms. The video contains a total of 175 frames, giving a playback time
of approximately 9.7 sec. Figure 20 shows a single frame of the video. Without
compression this video would require a bandwidth of (400*320*24*18 bits/s)

31

approximately 55 Mbit/s. Using compression this can be reduced to about 1
Mbit /s without severe degradation of quality. The test video was then com-
pressed with an using MPEG-1 and MPEG-2. The compressors and decom-
pressors were available in the public domain [2, 8, 9]. The results reported here
depends on the performance of these tools, and may not be exactly identical
with other implementations; your milage may vary. We expect the general
trend to be clear, though.

3.1 MPEG Background

We here summarize certain background information necessary to get a full un-
derstanding of the following analysis. Motion pictures can be compressed in
two ways: First, each frame can be compressed by reducing the amount of spa-
tial color redundancy information in a frame, e.g., areas with the same color.
A second important observation is that a movie rarely consists of a sequence
of unrelated pictures, but more often consists of the same objects moved in
some direction. The leads to reduction of temporal redundancy, i.e., only store
differences between frames.

In MPEG a frame is divided into areas called macro blocks of 8x8 and 16x16
pixels. These sizes turn out to suit motion prediction. A frame can be coded
in one of three ways*[20]:

I-frame: An intra-coded frame is a self-contained picture (a still picture). Each
macro block is Discrete Cosine Transformed (DCT), and then differences
between successive blocks are computed and represented using variable-
length encoding. Consequently, areas with little color difference can be
compressed a lot, whereas areas with large difference (such as sharp edges)
can be less compressed.

P-frame: A predictive-coded frame contains motion prediction information,
and its compression uses information from the previous I-frame or all
previous P-frames. A prediction error is calculated between macro blocks
in the current picture and the past references I or P picture.

B-frame: A bidirectional predictive coded frame contains motion prediction
from the previous and next I or P-frame, that is, compression of a B-
frame uses information from both a past and a future I/P frame. A
prediction error is calculated for a macro block between the two pictures.
Two motion vectors are calculated. The first determines the value and
direction of the forward prediction referencing the future frame. The
second determines the value and direction of the backward prediction,
referencing the past frame.

An application decides which order it uses these encoding techniques. The more
B-frames it uses, the higher compression rate. But many successive B-frames

‘MPEG describes in addition to I, P and B frames also a fourth type, D frames, which we
will not use here. D frames are used to provide fast-forward facilities.

32

makes it hard to do random access (or recovery after a dropped frame due to
transmission error). The pattern an application uses is called a GOP-pattern
(Group of Pictures). Our MPEG-1 test movie uses a recurring “IBBPBB” pat-
tern, and our MPEG-2 uses a recurring “IPPPPPPPPPPP” pattern. These
patterns reflect the order inwhich these frames are displayed, the display or-
der. Since B-frames in MPEG-1 references future pictures the order inwhich
frames are compressed is different: A “IBBP” pattern is compressed in the
order “IPBB”.

3.2 Bandwidth Analysis

Purpose
The goal is to determine the bandwidth variation of compressed video, and to
point out the differences between MPEG-1 and MPEG-2.

Method

We have constructed a tool that is able to parse MPEG files and extract the
size of each frame. The bandwidth required to transmit a frame is the frame
size divided by the frequency with which frames are transmitted. e.g., a frame
is sent every % second. We have applied the parser tool to the test movie.

Expectations

We expect to see that the frame size depends on frame type, and on the amount
of movement in the movie. We expect MPEG-2 to produce smaller frames than
MPEG-1.

Results

On Figure 22 we have plotted the frame size versus frame number (reflects the
order in which frames are recorded) for the MPEG-1 compressed file. The figure
shows the variation in frame size over time, and thus implicitly also the variation
in bandwidth usage. It can be seen that the frame size varies hugely. The largest
frame is 33Kbytes and the smallest is about 1.1 kbytes. The differences can
be explained by two main factors, frame type, and the amount of motion in a
movie clip.

To see how frame size depends on frame type consider Figure 23 where we have
focused on frames 20-40 of Figure 22, and annotated each bar with the frame
type. I-frames, storing complete compressed pictures, are the largest, P-frames
the second largest, and B-frames the smallest. It can also noted that the movie’s
GOP pattern “IBBPBB” is clearly distinguishable.

The second main influence on frame size variation is motion. From frame 1
to around frame 80 on Figure 22 one person is sitting calmly talking to the
camera. The plot is in this area relatively constant. Between frame 80 to 110
the second moves into the picture and between frame 110 to 140 the the third
person moves in, both creating large fluctuations in the frame sizes. In area

33

with movement frames generally becomes larger: P and B frames because they
accommodate the extra movement, and I frames because the background now
containing extra information, and consequently cannot be compressed as much.

Figure 24 shows the bandwidth profile for the test movie using MPEG-2 com-
pression. First, it can be noted that in B-frames in MPEG-2 have been replaced
by P-frames. Only I-frames are peaking up. The GOP pattern is clearly vis-
ible: an I frame succeeded by 11 P-frames. Although the B-frames that were
the smallest in MPEG-1 have been replaced with larger P-frames, the overall
frame size seems to be halved. Both I and P frames are generally half the size
of the corresponding frames in MPEG-2. Thus, MPEG-2 appear to compress
much better than MPEG-1.

However, a direct comparison is problematic because the visual quality of the
decompressed movie has to be judged. The authors’ subjective opinion is that
the MPEG-2 compressed moved has the best quality of the two. On the other
hand trying to compress the MPEG-2 movie additionally introduces a visible
quality degradation. We have been unable to adjust the MPEG-1 compression
rate with the used compression tool, and were thus unable to determine if the
MPEG-1 movie could have been compressed further without quality degrada-
tion (or be compressed less with quality gain).

Finally, it should be noted that the effect of movement appear different in
MPEG-2. In the movement area the P-frames seem a little larger than usual.
This increase is smaller than one would expect by looking at the corresponding
change in the MPEG-1 movie. It is surprising however, to see that I-frames
actually becomes smaller. Our explanation of this is that the MPEG-2 com-
pressor tries to maintain a fixed output bandwidth by compressing the outlined
frames harder than usual (possibly degrading the quality or using extra time for
compression). Thus, a MPEG-2 appear much more suitable for transmission
on a network, because it is easier predict bandwidth usage, and consequently
to determine appropriate quality of service settings.

Framesize (kbytes)
MPEG-1 MPEG-2
I-frame P-frame B-frame | I-frame P-frame
average 23.3 13.2 2.6 11.1 2.4
minimum 17.5 8.7 1.1 7.8 1.4
maximuim 33.0 22.2 7.4 13.5 3.5
Total | 1379.3 | 547.1 \

Figure 21: Bandwidth statistics

Figure 21 summarizes some statistical information about the frame sizes pro-
duced my the two compression techniques. This information can be used to
calculate an estimate for the QoS parameters used in ATM-transmission, see
Section 4.1.

34

MPEG-I Bandwidth Profile

(sa1£g) ozIS awe.H

Figure 22: Bandwidth profile for MPEG-1: frame size plotted against
frame number (display order).

35

35
30 -

25

20 b At
15

10

5

0

40 60 80 100 120 140 160 180
Frame Number

20

MPEG-I Bandwidth Profile

25000

20000 [b

15000 ||

10000 | b
0 R S e R e

(sa14g) azis swelq

Figure 23: Correlation between frame type and frame size (display

order).

36

30 35 40
Frame Number

25

20

MPEG-II Bandwidth Profile

(sa1£g) ozIS awe.H

Figure 24: Bandwidth profile for MPEG-2: frame size plotted against
frame number (display order).

37

180

100

80
Frame Number

3.3 CPU-usage: Decompression

Purpose
The purpose is to measure the variation in CPU-usage during decompression
of a movie, and compare MPEG-1 and MPEG-2 wrt. CPU-usage.

Method

We have instrumented existing shareware MPEG-1 and MPEG-2 software com-
pressors with code that measures the time spent on decompressing each frame.
Our movie was then compressed with these tools on Ul hosts.

Expectations
We should see a dependence on frame type and on the movement in the movie,
and that MPEG-2 is faster than MPEG-1.

Results

On Figures 25 and 26 we have plotted the amount of time used to decompress a
frame versus frame number for the MPEG-1 and MPEG-2 files respectively. The
figure shows the variation in CPU usage frame size over time. In MPEG-1, there
is a large variation: the smallest frame took 40.8 ms to decompress while the
largest 183.9ms, i.e., exceeding 400%. This difference in job size must be taken
into account when scheduling the decompressor: With 18 fps, decompression
must begin at least 4 frames earlier. The variation in MPEG-2 is much less,
about 10%.

There is an evident relation between the frame type and decompression time:
I frames consume the longest time, P frames second longest, and B frames the
least. It is interesting to note that B-frames are relatively hard to decompress
considering their relative small sizes. Further, the decompression profile appears
to follow the bandwidth profile exactly, thus there seem to be a correlation
between frame size (for each frame type) and the time used to decode it.

Decompression time (ms)
MPEG-1 MPEG-2
I-frame | P-frame | B-frame || I-frame | P-frame
average 103.1 80.7 42.9 80.1 79.9
minimum 81.8 40.8 35.0 78.3 77.0
maximum | 183.9 156.3 149.8 82.3 86.7
Total | 10414.8 | 13745.2 \

Figure 27: CPU usage statistics: decompression

Figure 27 summarizes the decompression statistic.

38

MPEG-I Decompression Profile

200

150
100
50

(sw) awn uoissaidwodag

Figure 25: Decompression time profile for MPEG-1: decompression
time plotted against frame number (display order).

39

80 100 120 140 160 180
Frame Number

60

40

R
! T ! T ®
: o
o _ e e e e e e e e e e e e e = O
[": —
:
y‘l‘; o
— FPTr e e — q-
h —
; o
— T . e e e e e e e e s =
Q@ —
= =
@) B
pust LT
o =
c
9 : =80
@ [- 5 S o
n = — c
= p
e)
(@] !
o — e
oL _— Hoa
- | *L
- [
o l“
L f
o -
= | - === - O
:\‘ O
- === =K}
g <t
L Ve ——————————————— H o
| N
i ¥ i i o
o o o o o o
8 [0} © < AN

(sw) awn uoissaidwodag

Figure 26: Decompression time profile for MPEG-2: decompression
time plotted against frame number (display order).

40

Observe that the MPEG-2 video is slower to decompress (about 13.7 sec.) than
the MPEG-1 video (about 10.4 sec.). Thus, neither decompressors are able to
decompress the 9.7 second video in real-time, although MPEG-1 is close.

3.4 CPU-usage: Compression

Purpose
We like to determine the variation in CPU-usage during compression of a movie,
and compare MPEG-1 and MPEG-2 wrt. CPU-usage.

Method

We have instrumented existing shareware MPEG-1 and MPEG-2 software com-
pressors with code that measures the time spent on compressing each frame.
Our test movie was then compressed with these tools on Ul hosts.

Expectations
We should see a dependency on frame type and on the movement in the movie.

Results

Figure 28 shows the compression time profile for the MPEG-1 compressed test
movie. There is a clear relation between frame type and compression time,
but now the situation is the inverse of decompression: I-frames are the fastest
to compress, P-frames the second fastest, and B-frames the slowest (See also
statistics summary in Figure 30). It can also be observed, that the movement
between frame 80 to 140 causes longer compression times, although not signif-
icantly. This is not surprising since, intuitively, a lot of movement should be
more difficult to predict than little movement.

Figure 29 shows the compression time profile for the MPEG-2 compressed test
movie. Again, I-frames are compressed faster than P-frames, about 2 times
as fast. In contrast to MPEG-1 there appear to much more variation in the
compression times of P-frames.

The most important observation that should be made from the compression
experiment, is that it appears infeasible to do real-time software compression.
In MPEG-1 measurement, it takes over half a second to compress a frame.
MPEG-2 is even worse, over 2 seconds. The compression used in these ex-
periments are thus asymmetrical: it takes longer time to compress than to
decompress. This is suitable for a system where compression is done once
and playback is done many times, as is done in video on demand applications.
Both MPEG-1 and MPEG-2 should be suitable for symmetrical compression
[20]. This cannot be directly concluded from our experiment. Observe however
that while MPEG-1 is faster in compression than MPEG-2, it also compresses
less (requires more bandwidth). Thus, it may be possible to get symmetrical
compression by configuring the tools to provide a higher output bandwidth, or

41

MPEG-I Compression Profile

I I I I
C
T
r
L
C
T
r
[
r
T ————Yf"|FK"TSS_——_—_—_——_—_—— e e =
L
[
C
i
\
[
L
r
C
: r
: L
: [
' [
| [
: L
: C
: T
. [
: L
= L] e D —]
: T
: C
J T
. I
. r
: L
: C
: T
: I
: [
. C
: r
: C
: I
: [
: C
= e —_— =
! [
: L
: C
: T
B [
: L
: T
: C
: T
' [
J L
. T
: r
: C
: C
- ey — e =
: T
. C
j T
: r
: C
: C
: T
| r
: L
: r
| L
B [
: C
L [—_— —
: L
' [
. L
. [
: L
: i
. L
| [
J L
: [
: L
. [
: C
ey — =
! i
: L
: i
| L
. [
: L
: h
: L
H [
. T
h [
: L
: L
- b e =
. r
: C
: [
: L
| [
: L
: i
: L
: [
: L
| [
| - T T t t
— [ee] © < N o
o o o o

(¥2s) awn uoissaidwo)d

Figure 28: Compression time profile for MPEG-1: compression time
plotted against frame number (display order).

42

80 100 120 140 160 180
Frame Number

60

40

20

MPEG-II Compression Profile

(~¥2s) awn uoissaidwo)d

Figure 29: Compression time profile for MPEG-2: compression time
plotted against frame number (display order).

43

180

T T T T T T T
-
| “l
i o
e _ e e e e e e = O
1 -
: i
|
=
s = =
R S —— =
; [y“ —
| [
— o
R e T TR E TS =
: = —
: =
! e
i i Qo
O e e —— = \C_>|D
E g
| z
5 ot 2
e = Q8
: -
s
SR R S _ ————————— ==
: 0 ©
rl“
I S =—————— = o
: £ <
i =
: :
‘ l‘
SRR SO RO e ——————————————— H o
‘ l“ T N
i |
i i i — T ; : o
<t To) ™ To) N To) — To) o
™ [qV} — o

compress less. We conclude that further experiments are needed to uncover
this possibility.

It should be noted however, that due to the high cost of software compression
most frame grabbers come with built in hardware compression.

Compression time (sec)
MPEG-1 MPEG-2
I-frame | P-frame | B-frame || I-frame | P-frame
average 0.54 0.66 0.69 1.32 2.51
minimum 0.52 0.63 0.67 1.02 2.20
maximum 0.57 0.71 0.75 1.41 2.84
Total | 115 [421 |

Figure 30: CPU-usage: compression statistics

3.5 Display performance

Purpose
The purpose is to determine the maximum frame rate a workstation can display.

Method

An arbitrary decompressed frame is selected and displayed using the X11 li-
brary. The time required to display the frame on an Ul host is measured. The
experiment is repeated 2000 times.

Results

The average display time, along with observed minimum and maximum values,
are tabulated in Figure 31. It takes about 12.7 ms to display a single frame.
This gives an upper bound on frame rate of 79 fps. Thus, the workstation is,
without decompression load, clearly able to display the movie in real-time (with
18 frames per second).

‘ | Display time (ms) |

average 12.7
minimum 7.2
maximum 13.3

Figure 31: 400x 320 (8bit color) display time

44

4 Discussion

4.1 Calculation of QoS-settings

ATM-networks provide QoS guarantees for its connections. The desired and
minimum acceptable QoS values must be specified when the connection is
opened. In our testbed the required parameters are mean bandwidth, peak
bandwidth, and mean burst length, see Section 1.4. Thus the application must
provide a reliable estimate of the bandwidth to be used during the connection.
If the estimate is less than what will actually be used the connection will be
policed, possibly leading to many cell losses, and ultimatively to a poorer play-
back quality. If the estimate is overly conservative, the network will be under
utilized because the network must reserve resources according to the specified
QoS demands.

One way to estimate QoS values is to calculate them from the bandwidth
statistics given in Section 3.2 of the video clip compressed with MPEG-1 and
MPEG-2. The total MPEG-1 video size is 1379.3 kbyte, and an easy calcula-
tion shows that sending this movie with 18 fps requires an average bandwidth
of about 1.14 Mbit/s. The same calculation for MPEG-2 gives an average
bandwidth requirement of 450 kbit/s. The largest MPEG-1 frame is 33 kbyte.
Sending this in % second requires a peak bandwidth of about 4.7 Mbit/s. The
MPEG-2 peak bandwidth is 2 Mbit/s. The mean burst length can in each case
be set to the average I-frame size, 23 kbyte for MPEG-1 and 11.2 kbyte for

MPEG-2.

However, this technique applies only to a particular video, and additionally
presumes that the entire video is available for analysis before a connection is
established. This technique is applicable to applications like video on demand
where the connection parameters can be pre-determined and stored along with
the video. It is clearly inapplicable to live video services. In this case it is
highly desirable to use a compression technology/tool whose output stream
conforms to a specified target data rate (average bandwidth) and worstcase
burstiness. Our MPEG-2 compressor is indeed capable of adjusting compression
to a specified target rate, however, it appears impossible obtain information
about or limit the burstiness of the produced data stream. No bandwidth
parameters could be specified for our MPEG-1 compressor.

A technique for managing an unpredictable stream is to drop frames occa-
sionally to limit the produced bandwidth/burstiness. In [11] we conducted a
number of experiments which showed that decoders are very resilient to frame
drops, although the quality can be visibly degraded in extreme cases. A further
technique is to adopt the connection’s QoS values to the produced stream, ei-
ther by re-establishing the connection when a discrepancy have been detected,
or by using the proposed concept of QoS renegotiation [18](not employed in
current ATM-networks).

45

4.2 Bandwidth Utilization

In Section 2.1 we measured the achievable throughput for each of our host/protocol
configurations, and in Section 3.2 we determined the bandwidth usage of MPEG-1
and MPEG-2 compressed video. Given these numbers we can make a statement
about the number of test video streams that in principle could be communicated
in each of our host/protocol combinations.

Number of streams
SS20-SS20 U1-U1
AAL-5 | UDP.tm | UDP.y || AAL-S | UDP,t1m | UDP i
MPEG-1 105 50 8 55 105 8
MPEG-2 266 128 21 140 266 21

Figure 32: Number of transferable test-video streams in each configuration

The number of transferable streams is calculated as the integer part of the
maximum throughput divided by the average bandwidth usage by the MPEG
compressed video. The result is shown in Figur 32. As expected the lowest
number of streams is obtained when the MPEG-1 stream is communicated
using UDP on an Ethernet (8 streams). The maximum number of streams is
the MPEG-2 video communicated between SS20 hosts using AAL-5, or between
U1 hosts using UDP (both 266 streams). Obviously the hosts would be unable
to process and display these—as previously noted in Section 3.3 decompression
is very CPU intensive, and neither of the streams can be decompressed in real-
time, although it is close with the MPEG-1 video.

Beware of another limiting factor: network buffer space at the sender and
receiver. If all streams send with their peak-rate simultaneously buffer overflow
and consequent cell-loss is likely. This may occur when too many video streams
are transmitted with I-frames coinciding. A solution is to send the streams
phase-shifted such that a large frames in one stream coincide with a small frame
in another stream.

4.3 End-to-End Delay

As stated in the introduction certain real-time requirements govern the trans-
mission of video. A frame in an interactive video stream must be delayed less
than 250 ms (the maximum delay between frame capture and display). This
implies that the grab, compression, communication, decompression and display
of a frame totally must take less than 250 ms.

Three factors influence the end-to-end delay: compression technology, speed
of compression/decompression, and network delay. A particular combination
of compression technology, host speed, and network protocol therefore gives
different end-to-end delay. In Figure 33 we have tabulated four configurations

46

(MPEG-1 on Ethernet, MPEG-1 on AAL-5, MPEG-2 on Ethernet, MPEG-2 on
AALD5; all with Ul hosts), versus the various delay contributing factors.

End-to-end delay (ms)
MPEG-1 | MPEG-1 || MPEG-2 | MPEG-2
+ETH | +AAL-5 +ETH | +AAL-5
SW compression 750 750 2840 2840
B-frame penalty 167 167 0 0
Transfer time >29 56 >12 56
Latency <1 <1 <1 <1
Jitter 60 <1 60 <1
Decompression 184 184 87 87
Display time 13 13 13 13
total (excl. SW comr) 454 422 173 158

Figure 33: End-to-end delay in four configurations

The factors are determined as follows: Software compression and decompres-
sion time found by the worstcase processing time in the software compres-
sion/decompression experiments in Figures 27 and 30. The B-frame penalty
is caused by MPEG-1’s use of B-frames that refers to future frames; with our
GOP pattern “IBBP” the first B frame cannot be compressed until the P frame
has been digitized and compressed. This causes a delay of 3 frames, equal to 167
ms. The transfer time is the time required to communicate the largest frame
(from Figure 21) on the network. In the AAL-5 case frames are transfered with
a rate determined by the QoS settings: If these values are set as defined in Sec-
tion 4.1 it will take at most %8 second to transfer one frame. In the Ethernet
case frames are transferred with anything between 0 and 9 Mbit/s, depending
on load. 9 Mbit/s is used in the above calculations; consequently the Ethernet
transfer times are best case values. The latency and jitter contributions are

measured in Section 2.2 and 2.3.

The total end-to-end delay is computed by adding all contributions except soft-
ware compression. With current computers this is infeasible and should be
done in dedicated hardware. However, since we have no numbers on hardware
compression we have decided to omit this contribution altogether.

From Figure 33 it can be seen that neither MPEG-1 configuration satisfies
the required 250 ms. This is primarily due to the B-frame penalty and the
slow decompression of the worst case frame. The situation could be improved
by avoiding the use of B-frames. This reduction (to 255 ms) is in fact nearly
sufficient to enable MPEG-1 data to be communicated on ATM within the time
limit. Jitter makes MPEG-1 communication on an Ethernet infeasible. Also,
the disadvantage of avoiding B-frames is the much lower compression rate.

Both MPEG-2 configurations are feasible; primarily because there is no delay
due to B-frames, and because the worst case decompression time is much less

47

than MPEG-1. Note the difference between Ethernet and ATM (173 ms vs 158
ms) is larger than illustrated because the transfer time on Ethernet is based on
a best case value.

In conclusion, the configuration with the lowest end-to-end delay is achieved
when MPEG-2 is combined with ATM.

4.4 Future Experiments

During our experiments we found a number of relevant supplementary experi-
ments that should be done:

e The causes of the poor performance of AAL-5 on the fast Ul machines for
large messages should be found. We suggest experiments that examine
the buffer space allocation for the AAL-5 protocol. Also differences in
software drivers and hardware should be examined more thoroughly.

o We observed that the networks started dropping messages when very large
messages were sent with maximum rate. An experiment should be per-
formed, that shows the actual achievable throughput for very large mes-
sages (sustained throughput), i.e., the sending rate should be regulated
such that message loss is avoided. In addition we suspect that the oper-
ating system’s available buffer space influence drop rate. Consequently,
it may be necessary add more memory and to adjust parameters in the
operating systems buffer allocation schemes.

e Our experiments were conducted on a local area network. It would be
interesting to see how the performance parameters change on a wide area
network.

e Qur jitter measurements with parallel load were subject to an uncontrolled
load (as much as possible). A future experiment should throttle the load
process to make the load known and predictable.

e The Ethernet measurements was performed on a 10 Mbit/s Ethernet.
However, it would be interesting to determine to which extent faster
versions of the Ethernet technology (100 Mbit/s FastEthernet or even
1 Gbit/s Ethernet) has the same profound problems. A simulation study
[27] of Ethernet performance for multi-media traffic suggests that 10 times
as large bursts of background traffic is required on a 100 Mbit/s Ethernet
to give the same amount disturbances as on a 10 Mbit/s Ethernet. An
open question is whether hosts can/will produce frequent large bursts on
a 100 Mbit/s Ethernet. If not, multi-media may possibly be supported
adequately by a high bandwidth Ethernet.

e We found that to compare MPEG-1 and MPEG-2 genuinely their pro-
duced bitrates should be related to their visual quality.

e We need to determine if symmetrical compression/decompression is pos-
sible at the expense of lower compression rate.

48

4.5 Related Work

Our experiments were designed to give insight in resource management prob-
lematics for video transmission on our local testbed. Others have made similar
types of experiments, and we review a few of these and other related work next.
These experiments are conducted with different aim than ours and in different
testbeds and cannot replace the benchmark of our testbed.

Measurements of throughput and latency is part of nearly all network /protocol
performance benchmarks. Measurements of jitter however, is almost exclu-
sively found in work related to network/protocols for real-time or multi-media
transmission. In the study reported in [16] jitter is measured in a network con-
sisting of a combination of Ethernet and FDDI. The measured jitter values are
in the same magnitude as found in our experiments, i.e., several mili-seconds,
and therefore seem to confirm our results. The study also found a corelation
between packet size and jitter: The larger packets the more jitter. This ob-
servation is significant because audio tend to be transmitted as frequent small
packets (therefore subject to less jitter) whereas video tend to be transmitted
as fewer large packets (subject to more jitter). Also the study finds that the
amount of background load influence jitter.

In contrast with our jitter experiments and [16] another study [6] finds much
smaller jitter values, less than 1 ms for an Ethernet (assuming low collision
rates, less than 3%) . The study uses a network simulator to determine jitter
at the MAC (medium access layer). Jitter is thus measured at a much lower
level in the protocol stack than in our experiments (UDP socket level). This
difference in jitter at the two levels indicates that protocol implementation in
operating systems plays a significant role. It would therefore be interesting to
see if it is possible to device a more real-time friendly implementation of the
UDP protocol.

There are numerous experiments that determine the bitrate of compressed
video. Results from such experiments are used in many studies where a char-
acterization of the traffic pattern is necessary, e.g., [18, 15]. These studies plots
bandwidth profiles with roughly speaking identical shapes as ours. Thus, the
dependency on frame type and on media contents seems to be confirmed by
others.

The MPEG-2 standart [13] includes a description of how compressed video
can be transported across a network. The output of the compressor is broken
up into socalled transport stream packets of 188 bytes. These packets contain
information that allows the receiver to select the appropriate decompresser (au-
dio/video), and enables the decompressor to decompress the packet in isolation.
i.e., without reference to other packets. A packet thus provide useful informa-
tion even if other packets in the same frame are dropped by the network. A
study [31] shows that MPEG requires advanced error concealment algorithms
to give a satisfactory quality on very lossy networks, such as a wireless local
network.

The ATM forum specification [3] defines how a constant packet rate MPEG-2

49

stream can be mapped to an ATM network using AAL-5. The document in-
cludes a specification of system configurations, interfaces, QoS parameters etc.
However, transmission of compressed video with a constant rate requires more
buffering at the hosts in order to smooth the variable bitrate produced by the
compressor. In [11] we examined another strategy where entire frames were
mapped to AAL-5 protocol data units which then are transmitted with a vari-
able bitrate.

The problems of communicating multi-media traffic on networks without QoS
support, which we have conformed here, are well accepted, and solutions have
been proposed at various levels. An isochronous Ethernet [28] is an extension of
the Ethernet technology that in addition to a normal 10 Mbit/s Ethernet chan-
nel also carries a channel with time sensitive data. The Resource Reservation
Protocol (RSVP) [30] is a proposal for a protocol that enable connections that
require quality of service guarantees to be supported on the internet. Applica-
tion level solutions also include the use neural networks [29] or probabilistic [7]
models to predict the network delay and use these predictions in the scheduling
of a multi-media stream.

4.6 Conclusions

This report documents a number of experiments related to technical conditions
of the realization of multi media communication. Multi-media applications re-
quire real-time communication and processing of large amounts of data. The
consequence of not satisfying the real-time requirements is unsatisfactory qual-
ity of the presentation.

Our goal has been to identify how different protocols and compression tech-
nologies influence our ability to satisfy multi-media’s real-time and bandwidth
requirements. In addition, it has been important for us to get practical ex-
perience with network real-time performance and compression techniques. We
therefore benchmarked the communication performance of our platform and
two compression techniques.

In our network experiments we compared AAL-5 (ATM), UDP (ATM), and
UDP (Ethernet) with respect to throughput, latency, and jitter performance.
Also the influence fast and slow hosts were considered. This gives a total of six
host/protocol configurations.

We found that ATM is superior to Ethernet in all three metrics. Of ATM’s
bandwidth of 155 Mbit/s (134 Mbit/s is available for user data) around 120
Mbit/sec. could be utilized at the hosts. This means in principle that a host
is able to send or receive 120 Mbit/s of multi-media traffic. 9 Mbit/s out
of the Ethernet’s 10 Mbit/s could be utilized. Three factors were found to
influence latency: host speed, protocol, and network type. As expected AAL-5
is the fastest with a latency of 201 us. UDP on ATM is second fastest, and
UDP on Ethernet is slowest. Fast hosts were about twice as fast as the slow
hosts. Our jitter measurements revealed a significant difference between ATM
and Ethernet. Both networks yielded low jitter values (less than 1 ms) on an

20

unloaded network. When a load was added, the ATM were still within 1 ms,
but Ethernet yielded extremely high values, often up to 60 ms and more. This
level of jitter creates problems for an video communication implementation
which must take extra care in its buffering and playback strategy. Thus, we
have confirmed that the quality of service concept in ATM networks is indeed
significant in practice.

We also found a few deficiencies of ATM. With its more than ten fold higher
bandwidth its latency was only twice as fast as the Ethernet. Thus, valuable
time is lost in operating system and network controller. The throughput on
the fast hosts only reached 65 Mbit/s using the ATM native AAL-5, whereas
UDP reached 120 Mbit/s. We have no definite explanation for this anomaly.
In addition, QoS cannot be specified in the UDP protocol.

In our compression experiments we compared the MPEG-1 and MPEG-2 com-
pression technologies with respect to their bandwidth usage, compression and
decompression cpu time usage. We recorded a test movie and analyzed this
with MPEG tools instrumented with measurement code.

We found that MPEG-2 was able to compress the test movie better (a data
rate of 0.45 Mbit/s) than MPEG-1 (1.1 Mbit/s) at the same or better quality,
subjectively judged. However, MPEG-2 seems to achieve its low bandwidth at
a higher compression cost than MPEG-1. MPEG compressors produce vari-
able bitrate traffic that depends on frame type (I, P or B) and frame contents,
e.g., movement. Both were apparent in our measurements. Likewise, CPU
compression and decompression time also varies with frame type. Moreover,
the variation in bandwidth usage and decompression time is so significant (in
particular for MPEG-1) that careful network and CPU scheduling is neces-
sary in order to achieve optimal resource utilization and to satisfy real-time
requirements. We found that software compression is infeasible with current
cpu-speeds. It takes in the magnitude of seconds to compress a single frame.
Thus, dedicated compression hardware is necessary. In contrast, decompression
is feasible now for low quality video (small picture sizes, low frame rate) and
will soon be feasible for higher quality videos.

The end-to-end transmission of multi-media data uses a combination of net-
work protocol and compression technology. Based on our measurements we
calculated the number of streams that a particular combination of protocol and
compression technology configuration could support, and its end-to-end delay,
including the delays related to communication and compression. The combi-
nation of AAL-5 and MPEG-2 stands out: it supports the most streams, and
gives the lowest end-to-end delay.

In conclusion, our experiments has given us a usefull insight in the real-time
performance characteristics of communication protocols for video communica-
tion and in compressed video. Also, many essential performance parameters
of our local testbed has been uncovered. With these numbers we have laid a
necessary foundation for design and construction of multi-media applications
and support systems. Our results are employed in the design and construction
of a multi-media support system [11, 12].

ol

22

References

[1]
[2]

[3]

[4]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

3Com. 3Com SuperStack IT 1000 switch: Users Guide.

Andy C. Hung (achung@cs.stanford.edu). MPEG-1 Compressor implementation.
Available from ftp://havefun.stanford.edu.

The ATM-Forum Technical Committee. Video on Demand Specification 1.0. Tech-
nical Report af-saa-0049.000, ATM Forum, 1995.

The ATM-Forum Technical Committee. Traffic Management Specification 4.0.
Technical Report af-tm-0056.000, ATM-Forum, April 1996.

Standard Performance Evaluation Corporation. SpecINT benchmark. Results
available at http://www.specbench.org/cgi-bin/osgresults.

Shuang Deng, Alan R. Bugos, and Paul M. Hill. Design and Evaluation of an
Etherned-Based Residential Network. IEEE Journal on Selected Areas In Com-
munications, 14(6):1138-1150, August 1996.

John F. Gibbon and Thomas D.C. Little. The Use of Network Delay Estimation for
Multimedia Data Retrieval. IEEE Journal on Selected Areas In Communications,
14(7):1376-1387, September 1996.

Greg Ward (greg@bic.mni.mcgill.ca). MPEG-1 Decompressor implementation.
Available from http://www.mni.mcgill.ca/users/greg/mpeg.html.

MPEG Software Simulation Group. MPEG-2 Compressor/Decompressor
implementation. Available from http://www.mpeg.org/MSSG/ and

ftp://ftp.mpeg.org/pub/mpeg/mssg/.

Kaj Henriksen, Rolf J. Hillemann, Wladyslaw Pietraszek, Arne Skou, and Michael
Aaen. Eksperiments with TCP/IP in ATM High-Speed Data Communications.
Technical Report R-95-2026, Aalborg University, Department of Computer Sci-
ence, December 1995.

Thomas Husfeldt, Finn Norman Pedersen, and Dao Van The. Video Communi-
cation using ATM. Internal s9d semester project report, University of Aalborg,
Institute for Electronic Systems, Department of Computer Science, January 1996.

Thomas Husfeldt, Finn Norman Pedersen, and Dao Van The. Adaptive Multi-
media Scheduling. Master’s thesis, University of Aalborg, Institute for Electronic
Systems, Department of Computer Science, June 1997.

ISO/IEC. Generic Coding of Moving Pictures and Associated Audio Information:
Video. ISO/IEC International Standard 13818-2, 1995.

Sandeep Khanna, Michael Sebreé, and John Zolnowsky. Realtime Scheduling in
SunOs 5.0. In Proceedings of Useniz Winter Conference, pages 375-390, San
Francisco, CA, July 1992. USENIX.

Soung C. Liew and Chi-Yin Tse. Video Aggregation: Adapting Video Traffic
for Transport Over Broadband Networks by Integrating Data Compression and
Statistical Multiplexing. IFEE Journal on Selected Areas In Communications,
14(6):1123-1137, August 1996.

Changdong Liu, Yong Xie, Myung J. Lee, and Tarek N. Saadawi. Multipoint
Multimedia Teleconference System with Adaptive Synchronization. IEEFE Journal
on Selected Areas In Communications, 14(7):1422-1435, September 1996.

23

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

Daved E. McDysan and Darren L. Spohn. ATM: Theory and Application. McGraw
Hill, Inc., 1994. ISBN 0-07-060362-6.

Daniel J. Reininger, Dipankar Raychaudhuri, and Joseph Y. Hui. Bandwidth
Renegotioation for VBR Video Over ATM Networks. IEEE Journal on Selected
Areas In Communications, 14(6):1076-1086, August 1996.

Lua Sha, Ragunathan Rajkumar, and John P. Lehoczky. Prioriry Inheritance
Protocols: An Approach to Real-Time Synchronization. IEEE Transactions on
Computers, 39(9):1175-1185, September 1990.

Ralf Steinmetz and Klara Nahrstedt. Multi-media: Computing, Communication,
and Applications. Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1995. ISBN
0-13-324435-0.

Morten Stor. Asynchronous Transfer Mode. Technical report, Tele Danmark
Research, 1994.

FORE systems. Unix man pages to ATM application programming interface.

FORE systems Whitepaper. ForeThought Bandwidth Management. Tech-
nical report, FORE Systems, 1977 Version 1.0, http://www.fore.com/atm-
edu/whitep /index.html.

FORE systems Whitepaper. ForeRunner ATM Switch Architecture. Tech-
nical report, FORE Systems, 1997 Version 1.0, http://www.fore.com/atm-
edu/whitep /index.html.

FORE systems Whitepaper. Traffic Management Version and Congestion Control.
Technical report, FORE Systems, 1994. Version 1.0, http://www.fore.com/atm-
edu/whitep /index.html.

FORE systems Whitepaper. Quality of Service Support for IP-based Appli-
cations. Technical report, FORE-systems, 1996. http://www.fore.com/atm-
edu/whitep /index.html.

Fouad A. Tobagi and Ismail Dalgig. Performance Evaluation of 10Base-T and
100Base-T Ethernets Carrying Multimedia Traffic. IEEE Journal on Selected
Areas In Communications, 14(7):1436-1455, September 1996.

Debra J. Worsley and Tokunbo Ogunfunmi. Isochronous Ethernet—An ATM
Bridge for Multimedia Networking. IEEE Multimedia, pages 58—67, Januar-March
1997.

Maria C. Yuang, Po L. Tien, and Shih T. Liang. Intelligent Video Smoother for
Multimedia Communications. IEEE Journal on Selected Areas In Communica-
tions, 15(2):136-146, February 1997.

Zhang, Deering, Estrin, Shenker, and Zappala. RSVP: A New Resource ReSerVa-
tion Protocol. IEEE Network, September 1993.

Jian Zhang, Michael R. Frater, John F. Arnold, and Terence M. Percival. MPEG2
Video Services for Wireless ATM Networks. IEEE Journal on Selected Areas In
Communications, 15(1):119-128, January 1997.

o4

