
Semantics for an Actor-Based Real-Time Language �

Brian Nielsen Gul Agha
Department of Computer Science

1304 W. Springfield Avenue
Urbana, IL 61801, USA

Email: f nielsen j agha g@cs.uiuc.edu

Abstract

We give formal semantics for a distributed concurrent
object-oriented real-time programming language based on
a variant of the actor model which includes an extention
enabling the specification of time constraints on message-
invocation. Real-time semantics must capture both the qual-
itative and quantitative aspects of the language, and provide
a meaning for the real-time constructs. The real-time se-
mantics of our language is given as timed graph, an existing
real-time specification formalism. We present the semantics
by first defining an operational semantics for the untimed
language, and then translating this into a timed graph which
interprets the time constructs. Our semantics is formulated
independently of the underlying resources needed to execute
a program; the semantics of a program thus defines the set
of permissible concrete implementations.

1 Introduction

Semantics for concurrent programming languages usually
focus on qualitative aspects—e.g., defining what constitutes
a legal execution of a program and abstracting over the
quantitative aspects of the program execution. This is un-
suitable for real-time programming languages: the correct-
ness of real-time systems depends on what actions are per-
formed as well as when they are performed.

This paper demonstrates how such quantitative aspects
can be captured and described formally. Specifically, we
define semantics for a simple distributed object-based real-
time language based on a variant of the actor model which

�The research has been made possible by support from the Office of
Naval Research (N00014-93-1-0273), by the National Science Foundation
(NSF CCR 93-12495), and by grants from The Danish Technical Research
Council and the Danish Research Academy. The author’s would also like to
acknowledge helpful comments and criticisms from Arne Skou, and from
Dan Sturman, Shangping Ren, and other members of the Open Systems
Laboratory.

includes an extention enabling the specification of time con-
straints on message-invocations. Our work will set the foun-
dation for semantics for a considerably more complex lan-
guage [12].

Our primary objective is to formulate the semantics of a
real-time program independently of the resources (number
of CPUs, network topology, speed, etc.) needed to execute
it. Although the real-time behavior of a program is highly
dependent on execution resources, a semantics including
such information tends to be a formal model of a concrete
implementation, rather than a specification for a set of possi-
ble implementations. In our semantics a real-time program
is viewed as a (loose) specification for actual implementa-
tions. The semantics define what actions must take place as
well as when they are permissible or required. It remains to
be shown that a given implementation is satisfactory for the
real-time program: i.e., the implementation refines the spec-
ification. Thus, reasoning about an implementation requires
an explicit model of the specific resources that are available
for the program’s execution.

During design activities an overall system-wide specifi-
cation is (possible through a series of stepwise refinements)
broken down into a set of components and per-component
time constraints. The finished design is expressed as a pro-
gram in a real-time programming language. At this level,
it must be validated that the program satisfies the overall
system requirements. Then, the program is realized in a
concrete implementation by choosing the environment and
resources needed to execute the program. At this level it
must be validated that the implementation satisfies the time-
constraints expressed in the program. Formal semantics is a
necessary condition for performing these validations (pos-
sibly mechanically).

We define the semantics in two steps. First, we define
the operational semantics for an untimed actor language.
We then extend our language with timing constraints and
provide its semantics in terms of an existing real-time spec-
ification formalism, timed graphs.

2 The Actor Model

Actors [1, 2, 4] is a model for distributed concurrent com-
puting systems. An actor system is comprised of au-
tonomous objects, called actors, that communicate using
asynchronous message passing. Messages that have been
sent but not yet received are conceptually queued up in the
receiver actor’s mailbox. The receiver eventually removes
the message and processes it. An actor encapsulates a state
that can be accessed and modified from the outside only by
sending it messages.

Each actor has a mail-address used by other actors to
send it messages; an actor is able to send messages to actors
whose addresses it knows. Moreover, these addresses may
be communicated in messages thus allowing for dynamic
configuration of the communication topology. An actor is
inactive unless someone (including possibly the actor itself)
sends it a message to process. The invocation of an actor
by a message is called an event. The event that led to the
message being sent is called it’s cause.

As a response to a message a (thereby busy) actor may:

Compute and change state: When a message is invoked
on an actor, it executes its deterministic behavior. This
consists of computing expressions, changing state by
assigning to state variables, sending messages or cre-
ating new actors. An actor processes one message at a
time, i.e., actors are single threaded. After processing
a message it is ready to accept the next (queued) mes-
sage. (In [1, 2], an explicit become-primitive provides
a restricted form of multithreading that is possible to
represent in our semantics).

Send a message: The primitive send�a� cv� sends a mes-
sage with communication value cv asynchronously to
the actor with the address a.

Create new actors: The newActor�b� cv� primitive cre-
ates a new actor with behavior b and initialization value
cv. newActor returns the address of the newly created
actor. For brevity, the semantics of dynamic actor cre-
ation will be omitted in this paper.

Actors can model interaction with an external environ-
ment. We assume that the environment is itself modeled
as an actor system capable of sending and receiving mes-
sages. The actors that are part of the environment are called
external actors, and the actors within the system that are
able to receive messages from the environment are called
receptionists. Two actor systems can be composed to form
a combined system.

To illustrate our approach, we describe a small real-
time language based on the actor-model which supports
constraints on message invocation. Specifically, the send-
primitive has been extended to include timing information:

send�a� cv�hr� di

where d and r are positive real-valued constants that
specify, respectively, the earliest and latest time when the
message can be invoked. We call r the release time and d

the deadline. Constraints on message execution are speci-
fied relative to event that caused it: because the execution of
actors is asynchronous, the time the message is sent is not
relevant. Thus, activation time is bounded if all hereditar-
ily related causal events have a bound or, as we will discuss
later, if the causing event is external. Further, the program-
mer can specify bounds on the amount of time an actor may
use to process a message (computation time). This bound is
syntactically stated as part of method declarations.

The language is illustrated by the actor program in Fig-
ure 1. A controller requests a pressure-sensor for its value.
The sensor sends a message containing the value back to its
customer (the controller). If the received value exceeds a
certain critical value the controller opens a safety pressure
valve. By sending itself a message, the controller period-
ically (plus/minus some error) re-checks the sensor value.
Note that, the method-name to be invoked is, by conven-
tion, encoded as the first field of the communicated value.

actor pressureSensor () f
real value;
method read(actorAddr customer) h�if

send(customer,(reading,value))h�� �i;
g

g
actor controller (actorAddr sensor,valve) f

method readSensor() h�i f
send(sensor,(read,self))h�� �i;
send(self,readSensor)hP � e�P � ei;

g
method reading(real value)h�i f

if(value � critical) send(valve,open)h�� �i
g;

g

Figure 1: Actor Program

3 Untimed Actor Semantics

This section gives the operational semantics for the actor-
language without time. Operational semantics define how
the state of the system changes when a primitive operation
is performed, thus giving an abstract interpretation of the
language. The actor semantics presented here is inspired by
the work of [4].

The state of an actor system is represented by a config-
uration. A configuration can be thought of as an instanta-
neous snapshot of the system state made by a conceptual

observer. It is modeled as a four-tuple
��
� j�

���
�

where �
represents actor-states, � is a set of messages, and � and �

are sets of actor names. � is the set of receptionists, i.e.,
actors whose names have been exported to the environment.
� are the external actors known to this system.

The � mapping maintains the state of all actors in the
system. Given the actor-name, � returns its state. An actor
state holds the following information about an actor: execu-
tion state (busy or inactive), the values of its state-variables,
and how far the actor has come in its computation. The
state of a busy actor state is written �E � R�e� �a (square
brackets is the symbol of a busy actor). a is the address of
the actor having this state. E is an environment (mapping
from identifiers to their values) that keeps track of the val-
ues of the state-variables. R � e � is a reduction context
with a hole filled with subexpression e. Intuitively, e is the
sub-expression to be reduced next when the actor performs
a computation step. R is the remainder of the actor’s behav-
ior. An inactive actor is written �E � b�a. Here actor a is
waiting for an incoming message. When a message arrives
the actor’s behavior b is applied to the incoming message
and the actor becomes busy.

The messages sent but not yet received are represented
by a set � in the configuration. A message is a tuple

ha
r�d
� cvi consisting of a destination actor-addressa, a value

to be communicated cv, deadline d, and release time r. This
timing information is ignored in the untimed case.

In the operational semantics, it is necessary to distinguish
one or more actors from the set of actor states to indicate
which actors are being changed by the transition. We call
this the focus actor(s). The notation: � � as picks the focus
actor, where as ranges over actor states. Focus messages are
treated similarly. Each rule is given a label consisting of a
tag indicating the primitive operation used, the name of the
focus actor, and additional parameters. This label uniquely
identifies which system component has performed which
primitive operation. The operational semantics is given by
Definition 1.

The fun transition defines the effect on system state
when an actor performs a computation step (reduction of an
expression). An actor can reduce expression e to e� if the re-
duction rules (��) of the behavior allows it. The transition
system�� defines the semantics of the sequential language
used to express actor behaviors. Since we do not rely on a
specific language, we have omitted its definition.

Definition 1 Configuration transitions��

hfun � ai
E � R�e��� E� � R�e��DD
� � �E � R�e� 	

a
j�
EE�

�

��

DD
� � �E� � R�e�� 	

a
j�
EE�

�

hterm � aiDD
� � �E ��� 	

a
j�
EE�

�

��

DD
� �
E � b�

a
j�
EE�

�

hsnd � a� ha�
r�d
� cviiDD

� � �E � R�send
a�� cv�hr� di� 	ag j�
EE�

�

��

DD
� � �E � R�nil� 	

a
j� � ha� r�d� cvi

EE�
�

hrcv � a� ha
r�d
� cviiDD

� �
E � b�a j� � ha r�d
� cvi

EE�
�

��

DD
� � �E�FV
b� �� cv	 � b�� 	a j�

EE�
�

hin � ha
r�d
� cviiDD
� j�

EE�
�

��

DD
� j� � ha r�d

� cvi
EE�

��

�

if a � �� andFV
cv� 	Dom
��
 �

where�� � � �
FV
cv��Dom
���

hout � ha
r�d
� cviiDD

� j� � ha r�d
� cvi

EE�
�

��

DD
� j�

EE��
�

�

if a � ��where �� � � �
FV
cv� 	Dom
���
�

An actor terminates (term) its execution when it has
reached the end of its behavior, an empty reduction context.
The actor then becomes inactive and ready to process a new
message in an environment with the updated state variables
left by the previous processing. The interpretation of send is
given by the snd-rule. A new message is added to �. Mes-
sage reception (message invocation) is described by the rcv
transition. The message is removed form �, and the receiver
actor—formerly inactive, now busy—applies its behavior to
the message. in and out respectively imports and exports
messages, and updates the set of receptionists and external
actors.

4 Real-Time Actor Semantics

This section defines the semantics of the real-time actor
model. It is given in two steps. First, we give our inter-
pretation of timed graphs used the underlying formalism
for our semantics. The operational semantics for actors and

the timing constructs are then translated into a timed graph.
Timed graphs is a real-time specification formalism simi-
lar to timed automata, originally proposed by Alur and Dill
(see [5]), but has no accept states. The graphs we use here
are inspired by the ones defined in [11].

4.1 Timed Graphs

A graph consists of nodes and edges, where nodes re-
pressent system states, and edges repressent possible ac-
tions. Timed graphs are equipped with a set of clocks and an
enabling condition for each edge (transition). An enabling
condition is a predicate on the clocks: a transition can be
taken only if the associated predicate is true. Further, a sub-
set of clocks can be reset when the transition is taken. A
progress condition is associated with each node. The graph
may stay in a given node only if the progress condition for
that node remains true.

Let X be the set of clock names used in this graph. The
domain of clock values is chosen to be the set of positive re-
als,R� �. Let n range over the set of nodes of the graph, �
over the set of actions, � over the set of enabling conditions.

	 is a subset of clock names. We write n
�������
�� � n� when

the graph in state n can take action � with enabling con-
dition � and reset (set to zero) the clocks in 	 and thereby
reach state n�. Enabling conditions are built using the logi-
cal connectives (�, �,) and primitive predicates. Primitive
predicates have the form x
 c or x � c, where x ranges
over clock-names and c overR� �. Progress conditions are
defined similarly. The progress condition associated node n
is given by the function Act�n�.

An example of a timed graph is illustrated in Figure 2.

��
��

��
��

��
��

��
�

��I�
�

���
n� n�

n�

a� fxg� tt�

b� fyg� x � ��
c� �� y � �

tt x �

y

Figure 2: A timed graph with two clocks (x, y) and three nodes
(n�,n�,n�). The graph specifies that action b must occur between
1 and 3 time units after a, and c must occur 4 timeunits after b

Definition 2 Timed Graph�G:

haction � �i hprogress �
�d�i

n
�������
�� � n� � ����

�n� ��
�
��G �n�� 	����

�r � dAct�n��� � r�

�n� ��
	�d�
��G �n� �� d�

�

Our semantics of timed graphs is given by Definition 2.
It consists of a rule for making actions (action) and a rule

for delaying (progress). A configuration of the graph is rep-
resented by a �n� ��-pair. n is the graphs current node and
� maintains the state of its clocks which is a mapping from
clock-names to clock values. The notation 	��� denotes the
clock-mapping that is equal to � except for the clocks in 	

which are reset. By the pre-condition, the enabling condi-
tion must evaluate to true for the transition to be enabled. A
special action � denotes internal transitions in the graph.

The progress-rule defines how the system makes
progress. The passage of d time units is written
�d�. �� d

advances all clocks d time units. The graph may stay (let
time pass) in a given node only if the progress condition
for that node (Act�n�) remains true. Allowing the graph to
remain in a node for a specified amount of time enables the
specification of certain loose properties, e.g., an action must
happen in an interval.

4.2 Translation into Timed Graphs

So far, only the untimed semantics has been presented. We
define the real-time semantics by translating the untimed
transition system into a timed graph that takes into account
timing information. The translation is given in two steps.
First, the nodes and edges of the graph are defined, as well
as the use of timers and enabling conditions. The necessary
progress conditions follow.

The time bounds (r� d) carried by messages (ha
r�d
� cvi),

that was uninterpreted in the untimed semantics, will now
be given a meaning. The bounds specified on processing
time are represented semantically by a function u 	 ct�m�
returning the required upper bound (u), where m is a mes-
sage.

The nodes of the graph corresponds to system states, and
edges to possible actions that causes state change. There is
thus essentially a one-to-one correspondence between nodes
and actor-configurations, and between edges and possible
actions in a given configuration.

The nodes of the graph are actor configurations extended
with two mappings for bookkeeping purposes: ac, mc.
Whenever a message is invoked on an actor, we associate a
(fresh) clock x with that actor. The mapping ac (x 	 ac�a�)
records this association. The clock is reset when the mes-
sage is invoked, thus recording the amount of time passed
since the actor was activated. The clock is used to restrict
the amount of time an actor uses to process a message, and
to restrict the invocation time of messages sent as result
of this processing. Note that a fresh clock is needed for
each invocation because sent messages exist independently
of the sender. The mappingmc associates a clock with each
message (x 	 mc�m�) which, combined with the release
time and deadline, specify when it is invokable. Whenever
a message is sent this mapping is updated to record the cor-
rect timer.

Let A range over actor configurations, and let Aac
mc de-

note a node in the graph with actor configuration A and ac-
tor clocks ac and message clocks mc. The nodes and edges
of the graph is defined in Definition 3.

Definition 3 Nodes and Edges��

A
�
�� A�

Aac
mc

��������
�� � A�ac

�

mc�

case � � hrcv � a�mi �
�� � �� � 	 � fyg�
 � r x d� x � mc
m�
mc� � mc� ac� � ac�a �� y	� y fresh clock

where m � ha
r�d
� cvi

case � � hsnd � a�mi �
�� � �� � 	 � ��
 � tt

mc� � mc�m �� x	� x � ac
a�

case � � hfun � ai� � � hterm � ai �
�� � �� � 	 � ��
 � tt

ac� � ac� mc� � mc

case � � hin � mi �
�� � �� 	 � fyg�
 � tt

mc� � mc�m �� y	� y fresh clock� ac� � ac

case � � hout � mi �

�� � hout � ha
r��d�

� cvii

 � tt� 	 � �
r� � r � x� d� � d� x

where m � ha
r�d
� cvi� x � mc
m� �

Whenever an actor (a) recieves a message (m), a hitherto
unused clock� is reset and stored in the ac mapping. The
enabling condition (�) must be true for the invocation to take
place. When a message is sent, the clock needed to define its
invocation time is recorded in mappingmc. The appropriate
clock to use is the one allocated to the sending actor when it
became active. Thus, mc�m� 	 ac�a�. The invocation time
is thus correcly related to the invocation of the event that
caused it to be sent, as required by the informal language
definition. fun and term require no clocks and no enabling
conditions.

A message sent from the environment to the system (in-
transition) is handled similar to receive (rcv-transition): a
fresh clock is allocated (and reset) to record the age of the
message. Messages sent to external actors are forwarded
(out-transition) with modified release time and deadline to
compensate for the amount of time the message has spent
inside the system.

The progress conditions for our semantics, presented in

�Allthough not done here, it is possible to recycle this clock once all
messages referring to it has been invoked.

Definition 4, is defined by inspecting the transitions possi-
ble in a given node. These transitions each contribute with a
condition. The node’s progress condition is the conjunction
of these.

Definition 4 Progress Conditions Act�n�

�i� 	i�
i� � f
�� 	�
� j n
�������
�� �g

Act
n� �
�
i

acti

case �i � hsnd � a�mi� �i � hfun � ai� �i � hterm � ai �
acti � ac
a� ct
m�

case �i � hrcv � a�mi �
acti �

y � ct
m�� x �� d� �
y ct
m�� tt��

y � ac
a�� x � mc
m��where m � ha
r�d
� cvi

case �i � hout � mi �

acti � x d� x � mc
m��wherem � ha
r�d
� cvi �

case �i � hin � mi � acti � tt �

The progress conditions define what actions are required
to take place when, and are thus a crucial part of the se-
mantics. Both restriction on computation time and message
invocation affect the progress condition:

� An actor is allowed to perform its computation-steps
any time within the specified computation limit, but is
required to finish before the limit.

� A message is allowed to be invoked any time in its en-
abling interval. Since the receiver may be busy dur-
ing this interval, messages are not guarenteed to be
invoked. However, if the receiver actor is passive,
thereby ready to accept a new message, and the al-
lowed computation time has passed since its last ac-
tivation, the message must be invoked before its dead-
line.

5 Discussion

During the recent years research in formal specification lan-
guages for real-time systems have received a lot of attention.
A variety of time models and time extensions to traditional
specification languages has been proposed and debated. Of-
ten, the models take the form of extended automata (Timed
automata [5], Timed Graphs [5, 11], or process algebras
(Timed CCS and Timed Modal Specifications [9], Timed
CSP [15]). Although these are intended as specification lan-
guages, and not as programming languages per se, they have

served as foundation for our semantics, and have been im-
portant sources of inspiration.

Others have defined semantics for real-time languages.
In [14] semantics of a real-time object-oriented language is
given by translating programs to RtCCS—a version of CCS
[10] extended with time using explicit tick transitions. The
resulting translation includes an abstract model of the exe-
cution environment (number of CPU’s, scheduler, execution
time). Similarly the semantics presented in [16] assumes
knowledge about excution time of assignments and assumes
a CPU for each process. Both, these semantics thus model
relative concrete system, rather than being specifications for
a set of possible systems, as is our goal.

A system in the TRA-formalism (Time Restriced Au-
tomata) [7], consists of a set of TRA’s communicating by
signaling events asynchronously through communication
channels. A TRA specification defines timing constraints
on causal events on in and output channels. This approach
to specifying timing constraints resembles that of our send
primitive. In TRA, it is only possible to specify physically
realizable properties; time is required to advance between
causally dependent events. Our model allows physically un-
realizable programs to be specified, however, unrealizable
behavior is only required when demanded by the program-
mer (e.g., deadlines of zero). No physical implementation is
able to refine such a program. Actors differ from the TRA-
model in many other ways.

The problem of defining the behavior of a real-time pro-
gram in the presence of a limited set of shared resources is
addressed by the Communicating Shared Resources (CSR)
formalism [8, 13]. Here, a process always runs on some,
possible shared, resource. A set of processes can be mapped
to different sets of resources, hence describing different im-
plementations. However, unlike our proposal, one cannot
reason about program properties without giving a specific
resource model. We find the CSR approach useful when
validating refinements.

As future work, we plan to investigate if existing ver-
ification techniques for timed graphs can be used to ver-
ify properties for (restricted classes of) actor programs. We
are also examining (automated) testing techniques for val-
idating time constraints of implementations. Finally, we
are looking into semantics and implementation of a more
complex real-time language that allows expression of much
more general timing constraints than the simple language
presented here.

References

[1] Gul Agha. Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press, Los Alamitos, California,
1986. ISBN 0-262-01092-5.

[2] Gul Agha. Concurrent Object-Oriented Programming. Com-
munications of the ACM, 33(9):125–141, September 1990.

[3] Gul Agha. The Structure and Semantics of Actor Languages.
In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, edi-
tors, Foundations of Object-Oriented Languages, pages 1–
59. Springer-Verlag, 1991.

[4] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L.
Talcott. A Foundation for Actor Computation. Journal of
Functional Programming, page 68pp, To be published.

[5] Rajeev Alur, Costas Courcoubetis, and David Dill. Model–
checking for real–time systems. In Proceedings of the Fifth
IEEE Symposium on Logic in Computer Science, pages 414–
425, 1990.

[6] G. Berry and L. Cosserat. The ESTEREL Synchronous Pro-
gramming Language and its Mathematical Semantics. In
Lecture Notes in Computer Science, volume 197, pages 389–
448. Springer Verlag, 1984.

[7] Azer Bestavros. Specification and Verification of Real-time
Embedded Systems using Time-constrained Reactive Au-
tomata. In Proc. Real-Time Systems Symposium, pages 244–
253, San Antonio, TX, USA, 1991. IEEE.

[8] Richard Gerber and Insup Lee. Communicating Shared Re-
sources: A Model for Distributed Real-Time Systems. In
Proc. Real-Time Systems Symposium, pages 68–78, Santa
Monica, CA, USA, 1989. IEEE.

[9] Jens Chr. Godskesen. Timed Modal Specifications. PhD the-
sis, Department of Mathematics and Computer Science, In-
stitute for Electronic Systems, Aalborg University, October
1994.

[10] Robin Milner. Communication and Concurrency. Prentice
Hall International (UK), 1989. 0-13-114984-9.

[11] Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Com-
piling Real-Time Specifications into Extended Automata.
IEEE Transactions on Software Engineering, 18(9):805–
816, September 1992.

[12] Shangping Ren and Gul Agha. RT-Synchronizer: Language
Support for Real-Time Specifications in Distributed Systems.
ACM Sigplan Notices, 30(11), November 1995. Proceedings
of the ACM Sigplan 1995 Workshop on Languages, Compil-
ers, and Tools for Real-Time Systems.

[13] Richard Gerber and Insup Lee. A Layered Approach
to Automating the Verification of Real-Time Systems.
IEEE Transactions on Software Engineering, 18(9):768–
784, September 1992.

[14] Ichiro Satoh and Mario Tokoro. Semantics for a Real-Time
Object-Oriented Programming Language. In Int. Conf. on
Computer Languages, pages 159–170, Toulouse, France,
1994. IEEE.

[15] Steve Schneider. An Operational Semantics for Timed CSP.
Tech. Report TR-1-91, Oxford University, February 1991.

[16] P. Zhou and J. Hooman. A Proof Theory for Asynchronously
Communicating Real-Time Systems. In Proc. Real-Time
Systems Symposium, pages 177–186, Phoenix, AZ, USA,
1992. IEEE.

