
The Design and Implementation of ZCRP

Zero Copying Reliable Protocol

Mikkel Christiansen Jesper Langfeldt Hagen Brian Nielsen

Arne Skou Kristian Qvistgaard Skov

August ��� ����

� Design

��� Service speci�cation

We begin by summarizing the services to be provided by the protocol and then describe the
overall ideas of how these are to be provided�

� E�cient transfer of datagrams over ATM network� The purpose of the protocol
is to transfer datagrams over ATM networks�

� Simplex communication� The protocol is only to provide the user with functionality
for one way transfer of messages� If two way communication is needed� the user needs to
establish a second connection in the opposite direction�

� Reliable communication� The service provided by the protocol is to be reliable� When
a message is transferred and handed to the receiver� the protocol is to guarantee the
integrity of the transferred data�

� Flow and congestion control� To adapt to the physical characteristics on which the
protocol is to be used� the protocol is to include �ow and congestion control�

� Minimal copying� To support e�cient transfer of data the copying of data is to be
minimized�

� Block acknowledgements� To ensure e�cient reliable communication acknowledge�
ments of received datagrams are to be sent in blocks�

� Asynchronous and synchronous communication� The protocol is to provided both
block and non�blocking communication�

��� Achieving e�ciency

The basic idea� which is to provide the protocol with e�ciency and speed is based on block�
acknowledge of received data blocks and minimal copying of data� ZCRP is designed to allow
data transfer to continue without disturbance as blocks of positive or negative acknowledge�
ments are transferred� This functionality is provided through the use of parallelism to handle
outgoing and incoming data and by attaching information about next coming data in transfer
units�

�



� Design �

����� Achieving minimal copying

The amount of copying is kept to a minimum through the use of a zero�copying scheme 	TK
���
Zero�copying is provided by using attached information in each data�block which is transferred�
The basic idea of zero�copying is provided by having precise information about where the next
coming data is to be placed� In this way a speci
c input bu�er is usually not needed�

����� Achieving synchronous and asynchronous communication

This functionality is handled by bu�ering send and receive bu�ers and then letting the protocol
handle data transfer when the necessary synchronization has been performed�

����� Achieving �ow control

The protocol is to include a window mechanisms which can control the �ow of datagrams to be
transferred� If too many datagrams are missing positive acknowledges� the protocol is to slow
down transmission accordingly� Similarly if acknowledges are returned regularly the protocol is
to transmit datagrams without limitations�

����� Achieving reliability

The protocol is to ensure reliability by returning acknowledges of received datagrams and re�
transmitting units which has not been correctly received�

��� Assumptions about the environment

The protocol is to be executed in an environment consisting of two users �a sender and a receiver�
and two processors connected with a FORE based ATM network as transmission channel� The
sender request the sending of a message and the receiver request the reception of a message�
These requests can be both blocking �synchronous� and nonblocking �asynchronous� in which
case the user must be supplied with ways of synchronizing for the completion of the request�

It is assumed that the transmission channel looses� reorders and duplicates messages� It is also
assumed that any distortion of messages is handled by the underlying ATM protocol and that
no spontaneous insertion of irrelevant messages is done� The FORE API which provides access
to the ATM protocol is used and the protocol is to be based on Adaptation Layer � of the ATM
protocol� This motivates the correctness of our assumptions�

The ATM network consists of the following elements�

� Two FORE ATM cards model SBA�����

� Two FORE ATM cards model SBA����e�

� One FORE ATM switch model ASX���� with four ports�

The network is connected by unshielded twisted pair cable conforming to the UTP category �
standard� Every card and switch port has a network bandwidth of ��� Mbps�

Processors used by the protocol can have varying speeds� In our setup we have the Sun mi�
crosystems workstations shown in table � to our disposal� As shown in the table we have
processors varying in size from very small to very large and we have both single and dual pro�
cessor systems� An important goal of the protocol is to e�ciently utilize any of these setups�



� Design �

Name�s� Model Processor�s� Memory size ATM card

Beta� Spring SPARCstation � �� MHz microSPARC II �� Mb SBA�		�e

Ahorn� Birk SPARCstation 	� 	 � �� MHz SuperSPARC 
� Mb SBA�		�

Altair� Sirius Ultra � ��
 MHz UltraSPARC �� Mb SBA�		�e

Spock Ultra 	 	 � ��� MHz UltraSPARC 	�� Mb SBA�		�e

Kirk Ultra 	 	 � ��� MHz UltraSPARC ��	 Mb SBA�		�e

Table �� The various workstations used in out setup�

This will ensure that the protocol can be broadly used on various platforms regardless of size
and speed�

��� ZCRP API

The basic primitives of communication in the ZCRP protocol is provided by the ZCRPAPI� This
is shown in table �� The API provides functions for message allocation� protocol initialization
and synchronous and asynchronous communication� These will be explained thoroughly in the
following�

Function Sender Receiver
Initialize protocol zcrp send init zcrp rcv init
Allocate message zcrp alloc msg zcrp alloc msg
Free message zcrp free msg zcrp free msg
Communicate message zcrp send zcrp rcv
Wait for communication termination zcrp wait zcrp wait
Probe for communication termination zcrp probe zcrp probe

Table �� The ZCRP API�

The data structure representing a message is the zcrp�msg structure�

struct zcrp�msg �

nbyte �buffer�

���

nlong message�size�

nlong buffer�size�

���

��

The buffer is the area holding the actual message� The message�size represents the size of
the message� and the buffer�size represents the size of the bu�er� which is larger than the
message size because of the extra space needed for trailer information�

Messages are allocated and freed with the allocation primitives�

struct zcrp�msg �zcrp�alloc�msg �nlong size	�

void zcrp�free�msg �struct zcrp�msg �message	�

The zcrp�alloc�msg allocates a message of size size and initializes the above mentioned 
elds
in the message structure� A message can be used for sending and receiving any message as long



� Design �

as the message can be 
tted within the bu�er �the size is smaller than or equal to the message
size�� The primitive returns NULL on failure� Messages are freed with the zcrp�free�msg

primitive�

In order to start up the protocol entities on either side� the initialization primitives are provided�

nbyte zcrp�send�init �int �file�descriptors	�

nbyte zcrp�rcv�init �int �file�descriptors	�

The file�descriptors points to a ��element array of 
le descriptors� The 
rst is the descriptor
to use for the communication channel from receiver to sender �carries block acknowledgement
and request to send datagrams� and the second descriptor represents the communication channel
from sender to receiver �carries units�� These can be simplex channels� A single duplex channel
can also be used� in which case the same 
le descriptor is provided in both positions of the
array� Both of these return � on success and � on failure�

Initiation of sending and receiving messages is done through the use of the communication
primitives�

nbyte zcrp�send �struct zcrp�msg �message
 nlong size	�

nbyte zcrp�rcv �struct zcrp�msg �message
 nlong size	�

In both of these� a message is provided �message� and the size of the message to send�receive
�size�� Both of these are nonblocking and returns immediately � on succes or � on failure�

Synchronization between sender and receiver is provided through the synchronization primitives�

nlong zcrp�wait �struct zcrp�msg �message	�

nbyte zcrp�probe �struct zcrp�msg �message	�

The zcrp�wait blocks until the speci
ed message is sent or received �depends on who makes the
call�� It returns � on success and � on failure� The zcrp�probe is the nonblocking alternative
which simply returns a boolean indicating whether or not the transmission has ended�

An example use of these primitives is shown in 
gure �� The 
gure also shows an example of
the tra�c generated by the protocol�

��� Protocol vocabulary

Internally ZCRP includes three types of messages� These are�

� message � which is a total block of data to be transferred�

� acknowledgement � which is used for returning block acknowledgements which includes
information about the state of received data�

� request to send � which are used for performing the necessary synchronization between
the sender and receiver protocol entities before data is actually transferred�



� Design �

zcrp_send_init

zcrp_send

zcrp_wait

zcrp_alloc_msg

zcrp_rcv_init

zcrp_rcv

zcrp_wait

zcrp_alloc_msg

req

unit

unit

unit

ack

unit

unit

ack

Sender Receiver

Figure �� An example of the use of the ZCRP API� The tra�c generated by the protocol is
indicated by arrows�



� Design �

��	�� Message and message number

At the highest level of abstraction is the message� This is the only entity of ZCRP that shines
through to the user of the protocol� It is simply a block of data with two attributes� identity

and size� The identity of a message is also called the message number or MN for short� The
identity is handed to the user and can be used to check the status of a message being transferred�

��	�� Unit and unit number 
PDU�

Since the FORE API can only send datagrams of sizes up to MTU� the protocol has to perform
fragmentation of messages into unit datagrams of size MTU� The unit includes a datafragment
to be transferred and information identifying the unit� Units are not fragmented further by
ZCRP and represents actual protocol datagram units �PDU�� This is explained in detail in
section ����

��	�� Block acknowledgement 
PDU�

Positive and negative acknowledgements are bu�ered in the receiver protocol entity �PE� and
returned to the sender protocol entity in blocks� The acknowledgment datagram is used for
this� By returning acknowledgements in blocks the overhead necessary to provide reliable
datatransfer is kept to a minimum�

��	�� Request to send 
PDU�

Before data can be actually transferred both the sender PE and receiver PE need to have the
necessary send and receive bu�ers ready� The necessary synchronization is handled by the
request to send datagram which is sent by the receive PE indicating the receiver is ready to
receive a set of identi
ed messages�

��	 Datagram formats

����� Unit

The unit datagram represents a fragment of a message� As mentioned in section ���� every
message is fragmented into unit datagrams of size MTU� since the ATM layer can only send
datagrams of size less than or equal to MTU�

In 
gure � the unit datagram is shown� The data corresponds to the fragment of data from the
message� In order to identify this data� each unit has a message number and a unit number�
The message number identi
es the message from which the unit belongs and the unit number
indicates the number of the unit within the message� The length is the length of the unit� In
every unit except the last in a message� this will be the same� namely the fragment size� In the
last unit of a message� this can be smaller than the fragment size� in which case the padding is

lled with meaningless data until the unit datagram has a size of MTU�

In order to handle positive and negative acknowledgement� each unit is assigned a unique
sequence number� Sequence numbers are taken from the increasing sequence of natural numbers�
When a unit is received� the sequence number attached can be sent back to the sender in a
positive acknowledgement� The sender can then determine exactly which unit has been received�
Negative acknowledgements can easily be calculated� If some sequence numbers are missing
between two successively received sequence numbers� negative acknowledgements can be sent
for these� The sender can then retransmit the units in question�



� Design �

data
���

padding �if necessary�
���

message number
unit number

sequence number
next message number
next unit number

length
�ags padding

Figure �� Unit datagram�

length
sequence number �
sequence number �

���
sequence number n

padding �if necessary�
���

type padding

Figure �� Block acknowledge datagram�

Zero�copying is achieved by always attaching a unit with the identity of the next unit to be
sent� This information is stored in the next message number and next unit number attributes�
Having this information� the receiving side can prepare the bu�er space in which to receive the
next unit� This way� the unit is received in place in most situations�

The �ags 
eld in a unit has two �ags� has next and is last� The 
rst is set if the next message

number and next unit number has been set� In some cases� there is no information on the next
unit to be sent� The latter is set if the unit is the last in a message� This is how the sender tells
the receiver the size of the message� Alternatively we could have attached the message size to
all units� but this would have added an unnecessary overhead to each unit�

����� Block acknowledge

Instead of sending positive and negative acknowledgements separately� several are combined
into a block acknowledge datagram� This is seen in 
gure ��

A series of acknowledgments of equal sign �positive or negative� can always be combined into
an interval 	a� b	 with a being the 
rst sequence number and b being the sequence number right
after the last sequence number� The block acknowledge datagram consists of a sequence of
intervals of alternating sign and the number of intervals is indicated by the length attribute�
The reason for alternating the sign is the simple fact that any transmission will ultimately be an
alternation between sending and dropping datagrams� In the 
gure is shown the representation
of the intervals



� Design �

length
message number �
receiver bu�er size �
message number �
receiver bu�er size �

���
message number n

receiver bu�er size n

padding �if necessary�
���

type padding

Figure �� Request to send datagram�

� 	sequence number �� sequence number �	�

� 	sequence number �� sequence number �	�

� � � �� and

� 	sequence number n� �� sequence number n	�

The sign of the 
rst interval is indicated by type 
eld in the datagram which has one of the
values positive and negative�

����� Request to send

The protocol is receiver initiated� This means that a message is not sent until the receiver is
ready� Zero�copying is the reason for this� If the receiver is ready when the sender initiates the
transmission� no bu�er is needed on the receiver side� The message can be received in place�

The way the receiver informs the sender of readiness is by the use of the request to send

datagram� It is shown in 
gure ��

The datagram consists of a sequence of pairs of message number and receiver bu�er size� The
length of this sequence is indicated by the length attribute� The type attribute has the value
request�

Since the block acknowledgement and request to send datagrams are only to be sent from the
receiver to the sender� they are de
ned to have the same length and share communication
channel� The value of the type 
eld indicates whether a datagram received on the sender side
is a block acknowledgement �by having values positive or negative� or a request to send �by
having value request��

��
 Procedure rules

Based on the previous descriptions we will now describe the algorithms responsible for the
internal �ow of messages and units� The following section does not go into many of the speci
c
details � we just give an overview of the protocol� We begin by giving an informal description
of the the sender protocol entity �PE�� the receiver PE and then continue with a description of
state diagrams for the threads which are used in ZCRP�



� Design 


Units to send

Units in transit

�
�
�
�

ATM network

Messages

Trashcan

Figure �� An abstract view of the Sender Protocol Entity�

��
�� Sender PE

Figure � shows an abstract view of the sender PE� ZCRP allows non�blocking communication
and due to this functionality the protocol needs mechanisms for queueing messages�

The user can issue several sends without worrying about the synchronisation with the receiver
PE� This is handled by the protocol� When the user calls zcrp send� the message is automaticly
stored and then used when the receiver PE is ready for receiving�

As described in section ���� the messages can only be transmitted through the FORE API in
blocks of MTU size �units�� Before a unit is sent it is tailored with the necessary information
needed for identi
cation�

Upon sending a unit it is transferred to a list of units in transit� The sender PE of ZCRP
waits for acknowledgements for each unit and if a unit has not been received properly it is
retransmitted� This is done by removing the unit from units in transit to units to send as
illustrated by the 
gure� For reasons of e�ciency retransmissions have high priority and are
placed 
rst in units to send�

Acknowledgements from the receiver PE are received in blocks� but ZCRP does not stop and
wait for acknowledgements to arrive� If there are messages ready to be sent and the receiver
is ready to receive� the sender PE continually sends units� ZCRP includes a sliding window
mechanism if that too many units are waiting for acknowledgement�

The transfer of Messages and Units is only done on a conceptual basis� zero copying� No
memory is copied�



� Design ��

��
�� Receiver PE

The ZCRP user interface both facilitates non�blocking send� zcrp send and non�blocking receive�
zcrp recv� Synchronization is handled by the protocol� When calling zcrp recv a bu�er is handed
to the receiver PE and then ZCRP transmits synchronization information about the speci
c
message to the sender PE�

The constant �ow of units to the receiver PE speeds up the transmission of messages by reducing
the overhead needed for making the protocol reliable� However in order to handle the steady
stream of units the receiver PE needs an intelligent algorithm for receiving units� This algorithm
is based on a principle of predicting which units are received and is then used together with a
zero�copying mechanism�

As described in section ��� each unit includes a trailer with information� not only about the
speci
c unit� but also about the next unit expected� With this information available the receiver
tries to guess which receive bu�er to use and then 
lls in units from the sender PE� If a received
unit turns out to be out of sequence it is copied to the right bu�er� This scheme of course has
special cases such as 
rst and last units of a message and units received out of order� But this
is all handled by the ZCRP�

The processing of received units is handled by a single thread� This ensures that trailers are not
overwritten by a new received unit before the information in the trailers has been processed�

Based on the trailer information from the received units the receiver PE regularly returns
information about successful and unsuccessful transmissions� As mentioned a sequence number
is used for each unit to keep track of the transmitted units� A timeout mechanism is included on
both receiver PE and sender PE for handling the case of lost units� When a message has been
successfully received by the receiver PE information about this is also transmitted to sender
PE�

��
�� Threads and ADT

Having given an informal description of the sender PE and receiver PE we now turn a detailed
description of the use of threads in ZCRP and their functionality� ZCRP uses a total of �
threads organized in � threads in the sender PE and � in the receiver PE� In 
gures � to �� the
state diagrams for each thread is given� These diagrams describe the main functionality but do
not include all details of the protocol�

User thread � sender PE The user thread on the sender PE is responsible for user
interaction and initiating data transfers after proper synchronization� A state diagram is seen
in 
gure �� When a request is received for sending a message� the user thread checks for
synchronization� as described in ��� a message is fragmented and handed to the sending thread�
If a zcrp wait call for a message is received the thread blocks until the message is received�

Sending thread � sender PE The sending thread has a simple functionality in ZCRP� This
thread is responsible for sending the actual units to the network and providing these with the
necessary trailer information� This is illustrated on 
gure ��

Update thread � sender PE This thread �see 
gure �� handles incoming requests to send�
positive and negative acknowledgements� When positive acknowledgements are received the
status of the corresponding unit is updated� If negative acknowledgements are received� update
thread initiates a retransmission of the units� Negative acknowledgements are generated if units
are received out of sequence� A request for synchronization is handed to the user thread�



� Design ��

1 probe

2

send

4

waitnot synchronized?

3

synchronized?

inject

message sent?

Figure �� User thread � sender PE�

1

2

unit injected?
send unit to network
and mark in transit

Figure �� Sending thread � sender PE�



� Design ��

1

2

receive block
acknowledgement

3

receive request
to send

4

handle acknowledgements within
block acknowledgement

synchronize

inject units

Figure �� Update thread � sender PE�

Timeout thread � sender PE If a unit has been waiting too long for acknowledgement
this thread is responsible for initiating a retransmission�

The threads uses two central ADT�s representing units to send and units in transit on 
gure

� The ADT representing units to send contains units ready to be sent to the network and
the ADT for units in transit keeps information about each unit that has been sent but not
acknowledged�

ZCRP also uses ADTs for handling the administration of messages� Internally information is
kept about each message re�ecting whether it is just bu�ered to transmission� is being sent or
has been fully acknowledged�

User thread � receiver PE Has similar functionality as the user thread in the sender PE�
When a request for receiving a message is initiated by the user this thread sends a request to
the sender PE� Similarly the user can issue a wait command which blocks until a message has
been successfully received �
gure ����

Receiving thread � receiver PE The receiving thread handles all receiving of units and
keeps track of the number of received units for each message� When a message has been
fully received a corresponding semaphore is signaled� For each message a semaphore is used
on both receiver PE and sender PE to indicate whether a message has been received or fully
acknowledged� This is used with the primitive� zrcp wait �
gure ����

Timeout thread � receiver PE This thread seen on 
gure �� is responsible for sending
reqeusts to send to the sender PE when the user has called zcrp recv and for regularly sending
update information of received units if this has not been done automaticly�



� Design ��

1

2

timeout

3

remove timed
out units

reinject

Figure 
� Timeout thread � sender PE�

1 probe

2

receive

3

wait
request to send 
 (synchronize)

message received?

Figure ��� User thread � receiver PE�



� Design ��

1

2

receive unit
from network

make acknowledgement pending
send block acknowledgement if full

Figure ��� Receiving thread � receiver PE�

1

2

timeout

3

send block acknowledgement
if any pending acknowledgements

request to send
if no activity
for some time

Figure ��� Timeout thread � receiver PE�



� Tests ��

The threads in the receiver PE uses ADTs of the same type for handling units and messages�

� Tests

In this section we describe the di�erent tests or experiments that have been performed on
ZCRP and TCP� The main goal of the tests has been to measure the e�ciency of the protocols
compared to network bandwidth and CPU resources�

First the test for measuring protocol throughput is described� followed by a message consistency
test and 
nally we describe the test for measuring CPU usage�

A full test is built from a number of basic tests with di�erent message size� In order to 
nd an
average performance� each basic test is repeated a number of times� typically 
ve� It should be
noted that the connection between the server and client is not closed during a full test�

To perform a basic test a message size and a number of messages is used� When the test is
started� both the server and the client allocates memory for the number of messages that are
needed for a measurement� The master calls zcrp send for each message one message at a time�
The client initiates the test by calling zcrp rcv for each message� and then calls zcrp wait for the
last message� The watch is started just before calling zcrp rcv the 
rst time and stopped when
zcrp wait return� this means that the measurement is taken over a number of asynchronously
sent messages of the same size�

In the case of TCP the full test is the same� The basic test uses write to initiate the sending
of all messages� and the use read to receive the messages� The watch is started before the 
rst
write and after the last read� It should be noted that read can be called more times that the
number of messages� because TCP does not guarantee that the whole message is delivered in
one call�

In order to ensure that all messages are fully consistent after transmission� tests were made
that checked the consistency of each message received� It was found that all messages were
fully consistent� Since the test takes CPU cycles it was disabled during the other tests�

The ZCRP is designed to minimize CPU usage� By testing how well the protocol will perform
on at loaded CPU� it is possible to tell whether this is true or not� To perform this test
we designed a program that will do nothing but incrementing a counter� when the program
receives a signal the value of the counter is written on the screen� The test was performed both
on ZCRP and TCP in order to compare the amount of resources needed by the protocols� The
results of this test is somewhat obscure� In the case of ZCRP it looks 
ne� because the protocol
performance is almost unchanged� In the case of TCP the situation is quite strange� since the
protocol performs better when the competitive process is running� Our opinion on this� is that
it must be due to the Solaris scheduler�

��� The performance tests

�� In most cases ZCRP exceeds TCP�IP in performance when the message size exceeds some
threshold �in the area of ������ bytes�� In the case of Ultra�II to Ultra�II� the TCP�IP
protocol outperforms ZCRP with �� Mbits�second�

�� In the cases involving Ultra and �� we see equal behavior in ZCRP despite the di�erence
in computing power present in the two platforms�

�� We see equal TCP�IP performance in Ultra to Ultra� Ultra to � and � to Ultra� It is
therefore quite disturbing to see a smaller performance in the � to � test �roughly ��
Mbits�second smaller��



References ��

5 60

20

60

Ultra-I

60

55

90

95

Ultra-II

90

60

60

60

60

60

Figure ��� The approximate results of the ZCRP tests�

�� In the dual�processor con
gurations we see that both protocols are faster from �� to Ultra�
II than from Ultra�II to ��� In the ZCRP case we can conclude that the �� outperforms
the Ultra�II in sending with roughly �� Mbits�second� while performance in reception is
the same� We see some quite disturbing behavior in the TCP�IP results� From the Ultra�
II to �� and �� to Ultra�II tests� we can conclude that both architectures can receive and
send at a speed of roughly �� Mbits�second� This contrasts with the results from the ��
to �� tests� where we see that the speed is no higher than rougly �� Mbits�second�

�� In the � to �� and �� to � we get rougly the same results� Sending is roughly ��
Mbits�second and reception is roughly �� Mbits�second�

�� TCP�IP performance in �� to Ultra and Ultra to �� is lying at �� Mbits�second� We see
that the speeds from �� to Ultra exceeds those from the Ultra to �� test with roughly ��
Mbits�second�

The results are summarized in 
gures �� and ��� Figures �� � �� illustrates the tests in more
detail�

References

	TK
�� Moti N� Thadani and Yousef A� Khalidi� An e�cient zero�copy I�O framework for
UNIX� Technical report� Sun Microsystems Laboratories� Inc�� May �

��



References ��

5 40

20

45

Ultra-I

55

45

35

45

Ultra-II

60

55

45

55

60

80

Figure ��� The approximate results of the TCP�IP tests�



References ��

010203040506070

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 (
lin

es
) 

vs
 T

C
P

 (
do

ts
).

 F
ro

m
 S

S
5 

to
 S

S
5.

Figure ��� From Sparc� to Sparc��



References �


010203040506070

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 (
lin

es
) 

vs
 T

C
P

 (
do

ts
).

 F
ro

m
 S

S
20

 to
 S

S
5.

Figure ��� From Sparc�� to Sparc��



References ��

010203040506070

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 (
lin

es
) 

vs
 T

C
P

 (
do

ts
).

 F
ro

m
 S

S
5 

to
 S

S
20

.

Figure ��� From Sparc� to Sparc���



References ��

010203040506070

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 (
lin

es
) 

vs
 T

C
P

 (
do

ts
).

 F
ro

m
 S

S
U

ltr
a 

to
 S

S
5.

Figure ��� From SparcUltra to Sparc��



References ��

010203040506070

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 (
lin

es
) 

vs
 T

C
P

 (
do

ts
).

 F
ro

m
 S

S
5 

to
 S

S
U

ltr
a.

Figure �
� From Sparc� to SparcUltra�



References ��

010203040506070809010
0

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 (
lin

es
) 

vs
 T

C
P

 (
do

ts
).

 F
ro

m
 S

S
20

 to
 S

S
20

.

Figure ��� From Sparc�� to Sparc���



References ��

010203040506070809010
0

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 (
lin

es
) 

vs
 T

C
P

 (
do

ts
).

 F
ro

m
 S

S
20

 to
 S

S
U

ltr
a.

Figure ��� From Sparc�� to SparcUltra�



References ��

010203040506070

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 (
lin

es
) 

vs
 T

C
P

 (
do

ts
).

 F
ro

m
 S

S
U

ltr
a 

to
 S

S
20

.

Figure ��� From SparcUltra to Sparc���



References ��

010203040506070809010
0

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 (
lin

es
) 

vs
 T

C
P

 (
do

ts
).

 F
ro

m
 S

S
20

 to
 S

S
U

ltr
a2

Figure ��� From Sparc�� to SparcUltra��



References ��

010203040506070

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 (
lin

es
) 

vs
 T

C
P

 (
do

ts
).

 F
ro

m
 S

S
U

ltr
a2

 to
 S

S
20

.

Figure ��� From SparcUltra� to Sparc���



References ��

010203040506070

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 (
lin

es
) 

vs
 T

C
P

 (
do

ts
).

 F
ro

m
 S

S
U

ltr
a 

to
 S

S
U

ltr
a.

Figure ��� From SparcUltra to SparcUltra�



References �


0102030405060708090

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 (
lin

es
) 

vs
 T

C
P

 (
do

ts
).

 F
ro

m
 S

S
U

ltr
a2

 to
 S

S
U

ltr
a2

.

Figure ��� From SparcUltra� to SparcUltra��



References ��

010203040506070

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 w
ith

 1
00

%
 lo

ad
 (

lin
es

) 
vs

 n
or

m
al

 lo
ad

 (
do

ts
) 

(C
lie

nt
).

 F
ro

m
 S

S
U

ltr
a 

to
 S

S
U

ltr
a.

Figure ��� ZCRP� SparcUltra to SparcUltra with and without load�



References ��

010203040506070

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

Z
C

R
P

 w
ith

 1
00

%
 lo

ad
 (

lin
es

) 
vs

 n
or

m
al

 lo
ad

 (
do

ts
) 

(S
er

ve
r)

. F
ro

m
 S

S
U

ltr
a 

to
 S

S
U

ltr
a.

Figure ��� ZCRP� SparcUltra to SparcUltra with and without load�



References ��

01020304050607080

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

T
C

P
 w

ith
 1

00
%

 lo
ad

 (
lin

es
) 

vs
 n

or
m

al
 lo

ad
 (

do
ts

).
 (

C
lie

nt
) 

F
ro

m
 S

S
U

ltr
a 

to
 S

S
U

ltr
a.

Figure �
� SparcUltra to SparcUltra with and without load�



References ��

01020304050607080

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00
70

00
00

80
00

00
90

00
00

1e
+

06

Transmission speed (MBits/sec)

M
es

sa
ge

 s
iz

e 
(b

yt
es

)

T
C

P
 w

ith
 1

00
%

 lo
ad

 (
lin

es
) 

vs
 n

or
m

al
 lo

ad
 (

do
ts

).
 (

S
er

ve
r)

 F
ro

m
 S

S
U

ltr
a 

to
 S

S
U

ltr
a.

Figure ��� SparcUltra to SparcUltra with and without load�


