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Outline 
� UPPAAL

− Modelling Formalism
− Specification Formalism

� UPPAAL Verification Engine

� Verification Options 
& Modelling Patterns

� Real-Time Planning & Scheduling
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Train Crossing

River

Crossing

Gate

Stopable
Area

[10,20]

[7,15]

Queue

[3,5]appr,
stop

leave

go

empty
nonempty
hd, add,rem

elel

Communication via channels and
shared variable.
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Logical Specifications
� Validation Properties

− Possibly: E<> P

� Safety Properties
− Invariant: A[] P
− Pos. Inv.: E[] P

� Liveness Properties
− Eventually: A<> P
− Leadsto: P Æ Q

� Bounded Liveness
− Leads to within: P Æ· t Q

The expressions  P  and 
Q  must be type safe, 
side effect free, and 
evaluate to a boolean.

Only references to 
integer variables, 
constants, clocks, and 
locations are allowed 
(and arrays of these).
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Logical Specifications
� Validation Properties

− Possibly: E<> P

� Safety Properties
− Invariant: A[] P
− Pos. Inv.: E[] P

� Liveness Properties
− Eventually: A<> P
− Leadsto: P Æ Q

� Bounded Liveness
− Leads to within: P Æ· t Q

· t

· t
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River

Crossing

Gate

Stopable
Area

[10,20]

[7,15]

Queue

[3,5]appr,
stop

leave

go

empty
nonempty
hd, add,rem

elel

Communication via channels and
shared variable.
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Gear Controller
with MECEL AB Lindahl, Pettersson, Yi 1998

Vo
lv

o
Sa

a b

Network 
Canbus

GearBox Engine

Interface

ClutchGearControl

Flowgraph
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Gear Controller
with MECEL AB

Requirements

V o
lv

o
S a

a b

GearBox Engine

Interface

ClutchGearControl
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Case-Studies: Controllers
� Gearbox Controller [TACAS’98]
� Bang & Olufsen Power Controller 

[RTPS’99,FTRTFT’2k]
� SIDMAR Steel Production Plant [RTCSA’99, 

DSVV’2k]
� Real-Time RCX Control-Programs [ECRTS’2k]
� Experimental Batch Plant (2000)
� RCX Production Cell (2000)
� Terma, Verification of Memory Management for 

Radar (2001)
� Scheduling Lacquer Production (2005)
� Memory Arbiter Synthesis and Verification for a 

Radar Memory Interface Card [NJC’05]
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Case Studies: Protocols
� Philips Audio Protocol [HS’95, CAV’95, RTSS’95, 

CAV’96]
� Collision-Avoidance Protocol [SPIN’95]
� Bounded Retransmission Protocol [TACAS’97]
� Bang & Olufsen Audio/Video Protocol [RTSS’97]
� TDMA Protocol [PRFTS’97]
� Lip-Synchronization Protocol [FMICS’97]
� Multimedia Streams [DSVIS’98]
� ATM ABR Protocol [CAV’99]
� ABB Fieldbus Protocol [ECRTS’2k]
� IEEE 1394 Firewire Root Contention (2000)
� Distributed Agreement Protocol [Formats05]
� Leader Election for Mobile Ad Hoc Networks 

[Charme05] 



The UPPAAL
Verification Engine
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Overview

� Zones and DBMs
� Minimal Constraint Form
� Clock Difference Diagrams

� Distributed UPPAAL           [CAV2000, STTT2004]

� Unification & Sharing [FTRTFT2002, SPIN2003]

� Acceleration                            [FORMATS2002]

� Static Guard Analysis     [TACAS2003,TACAS2004]

� Storage-Strategies                         [CAV2003]
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Zones
From infinite to finite

State
(n, x=3.2, y=2.5 )

x

y

x

y

Symbolic state (set)

Zone:
conjunction of
x-y<=n, x<=>n

(n, 1·x·4, 1·y· 3)
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Symbolic Transitions

n

m

x>3

y:=0

delays to

conjuncts to

projects to

x

y
1<=x<=4
1<=y<=3

x

y
1<=x, 1<=y
-2<=x-y<=3

x

y 3<x, 1<=y
-2<=x-y<=3

3<x, y=0

x

y

Thus  (n,1<=x<=4,1<=y<=3)  =a => (m,3<x, y=0)Thus  (n,1<=x<=4,1<=y<=3)  =a => (m,3<x, y=0)

a
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Symbolic Exploration

Reachable?

x

y
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Reachable?
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Symbolic Exploration

Reachable?

x

y

Down
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Forward Rechability

Passed

Waiting
Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else (explore) add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

Init -> Final ?
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Forward Rechability

Passed

Waiting Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else (explore) add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

Init -> Final ?
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Forward Rechability

Passed

Waiting Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

Init -> Final ?
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Forward Rechability

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

n,Z

Init -> Final ?
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Bellman 1958, Dill 1989

x<=1
y-x<=2
z-y<=2
z<=9

x<=1
y-x<=2
z-y<=2
z<=9

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

D1

D2

Inclusion

0

x

y

z

1 2

29

0

x

y

z

2 3

37

3

? ?   

Graph

Graph

⊆

Zones
Difference Bounded Matrices
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x<=1
y-x<=2
z-y<=2
z<=9

x<=1
y-x<=2
z-y<=2
z<=9

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

D1

D2

Inclusion

0

x

y

z

1 2

29

Shortest
Path

Closure

Shortest
Path

Closure

0

x

y

z

1 2

25

0

x

y

z

2 3

37

0

x

y

z

2 3

36

3

3 3

Graph

Graph

? ?   ⊆

4

6

Zones
Difference Bounded Matrices
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x<=1
y>=5
y-x<=3

x<=1
y>=5
y-x<=3

D

Emptiness

0
y

x
1

3

-5

Negative Cycle
iff
empty solution set

Graph

Compact

Zones
Difference Bounded Matrices
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1<= x <=4
1<= y <=3

1<= x <=4
1<= y <=3

D

Future

x

y

x

y

Future D

0

y

x4

-1

3

-1

Shortest
Path 

Closure

Remove
upper

bounds
on clocks

1<=x, 1<=y
-2<=x-y<=3

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

y

x

-1

-1

3

2

0

4

3

Zones
Difference Bounded Matrices
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x

y

D
1<=x, 1<=y
-2<=x-y<=3

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

Remove all
bounds 

involving y
and set y to 0

x

y

{y}D

y=0, 1<=xy=0, 1<=x

Reset

y

x

-1

0

0
0

Zones
Difference Bounded Matrices



In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

x1-x2<=4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1-x2<=4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1 x2

x3x0

-4

10

2
2

5

3

x1 x2

x3x0

-4

4

2
2

5

3 3 -2 -2

1

Shortest
Path

Closure
O(n^3)

Zones
Difference Bounded Matrices
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x1-x2<=4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1-x2<=4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1 x2

x3x0

-4

10

2
2

5

3

x1 x2

x3x0

-4

4

2
2

5

3

x1 x2

x3x0

-4

2
2

3

3 -2 -2

1

Shortest
Path

Closure
O(n^3)

Shortest
Path

Reduction
O(n^3) 3

Space worst O(n^2)
practice O(n)

RTSS 1997

Zones
Minimal Constraint Form
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SPACE PERFORMANCE
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TIME PERFORMANCE

0

0,5

1

1,5

2

2,5

Aud
io

Aud
io 

w C
ol

B&O
Box

 S
ort

er
M. P

lan
t

Fisc
he

r 2
Fisc

he
r 3

Fisc
he

r 4
Fisc

he
r 5

Train C
ros

sin
g

Pe
rc

en
t Minimal Constraint

Global Reduction
Combination



In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Earlier Termination

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

n,Z

Init -> Final ?
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Earlier Termination

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

n,Z

Init -> Final ?

ZZ'⊇
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INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some 
(n,Z’) in Passed then STOP

- else /explore/ add
{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

Earlier Termination

Passed

Waiting Final

Init

⊇

n,Zk

m,U

n,Z

Init -> Final ?

n,Z1

n,Z2 ZZi
i
⊇U

ZZ'⊇
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Clock Difference  Diagrams
= Binary Decision Diagrams + Difference Bounded Matrices

CDD-representationsCDD-representations

CAV99

� Nodes labeled with 
differences

� Maximal sharing of 
substructures (also across 
different CDDs)

� Maximal intervals
� Linear-time algorithms for 

set-theoretic operations.

� NDD’s Maler et. al

� DDD’s Møller, Lichtenberg
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TIME PERFORMANCE
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Verification Options
Search Order

Depth First
Breadth First

State Space Reduction
None
Conservative
Aggressive

State Space Representation
DBM
Compact Form
Under Approximation
Over Approximation

Diagnostic Trace
Some
Shortest
Fastest

Extrapolation
Hash Table size
Reuse
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No Cycles:  Passed list not needed for termination

However,
Passed list useful for
efficiency

State Space Reduction
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Cycles:
Only symbolic states
involving loop-entry points 
need to be saved on Passed list

State Space Reduction
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To Store or Not To Store

Audio Protocol

117 statestotal
→

81 statesentrypoint
→

9 states

Behrmann, Larsen, 
Pelanek 2003

Time OH
less than 10%
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To Store or Not to Store
Behrmann, Larsen, 

Pelanek 2003
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Over-approximation
Convex Hull

x

y

Convex Hull

1 3 5

1

3

5

TACAS04: An EXACT method performing
as well as Convex Hull has been 
developed based on abstractions 
taking max constants into account

distinguishing between clocks, locations and · & ≥



In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

Under-approximation
Bitstate Hashing

Passed

Waiting Final

Init

n,Z’

m,U

n,Z
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Passed

Waiting Final

Init

n,Z’

m,U

n,Z

Passed=
Bitarray

1

0

1

0

0

1

UPPAAL
8 Mbits

Hashfunction
F

Under-approximation
Bitstate Hashing



Modelling
Patterns
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Variable Reduction
� Reduce size of state 

space by explicitely
resetting variables 
when they are not 
used!

� Automatically 
performed for clock 
variables (active clock 
reduction)
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x is only active in location S1

x>3x<5

x:=0

x:=0

S x is inactive at S if on all path from
S, x is always reset before being
tested. 

Definition
x<7

Variable Reduction
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Synchronous Value Passing
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Atomicity
� To allow encoding of 

control structure (for-
or while-loops, 
conditionals, etc.) 
without erroneous 
interleaving

� To allow encoding of 
multicasting.

� Heavy use of 
committed locations.
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Bounded Liveness

� Intent: Check for properties that are 
guaranteed to hold eventually within some 
upper (time) bound.
− Provide additional information (with a valid 

bound).
− More efficient verification.
− φ leadsto≤t ψ reduced to A□(b⇒z ≤ t)

with bool b set to true and clock z reset when 
φ starts to hold. When ψ starts to hold, set b
to false.
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Bounded Liveness
� The truth value of b indicates whether or 

not ψ should hold in the future.

φ

ψ

¬ψ

¬φ

b=true
z=0

b=false

b true, check z ≤ t

b=false

A[] (b imply z≤t)
b --> not b (for non zenoness)
E<> b (for meaningful check)
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Zenoness
� Problem: UPPAAL does not check for zenoness

directly.
− A model has “zeno” behavior if it can take an infinite 

amount of actions in finite time.
− That is usually not a desirable behavior in practice.
− Zeno models may wrongly conclude that some 

properties hold though they logically should not.
− Rarely taken into account.

� Solution: Add an observer automata and check 
for non-zenoness, i.e., that time will always 
pass.
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Zenoness

x≤1 x≤1
x=0

ZenoOK 
Detect by
•adding the
observer:

Constant (10) can be anything
(>0), but choose it well w.r.t.
your model for efficiency.
Clocks ‘x’ are local.

•and check the property
ZenoCheck.A --> ZenoCheck.B

x ≥ 1x==1



Optimal Real Time 
Planning & Scheduling

with Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, 
Thomas Hune, Paul Pettersson, Judi Romijn, 
Frits Vaandrager, Patricia Bouyer, Franck Cassez,  
Emmanuel Fleury, Arne Skou, Jacob Rasmussen,
K. Subramani

PRELIMINARY

more to come later
in lectures by

Jacob Illum Rasmussen
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Real Time Scheduling

5

10

20

25

UNSAFE

SAFE

• Only 1 “BroBizz”
• Cheat is possible

(drive close to car with “Bizz”)

• Only 1 “BroBizz”
• Cheat is possible

(drive close to car with “Bizz”)

The Car & Bridge ProblemCAN THEY  MAKE IT TO SAFE
WITHIN 70 MINUTES ???

Crossing

Tim
es
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Real Time Scheduling

SAFE

5

10

20

25

UNSAFE

Solve 
Scheduling Problem

using UPPAAL

Solve 
Scheduling Problem

using UPPAAL
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Rush Hour

OBJECTIVE:
Get your
CAR out

OBJECTIVE:
Get your
CAR out

Your CAR

EXIT
EEF Summerschool on

Concurrency,
Kapellerput



In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

END
☺☺☺


