

Verification & Modelling

Options & Patterns

Kim G Larsen

Outline

UPPAAL

- Modelling Formalism
- Specification Formalism
- UPPAAL Verification Engine
- Verification Options & Modelling Patterns
- Real-Time Planning & Scheduling

Communication via channels and shared variable.

Specification Language

Validation Properties

- Possibly: E<> P
- Safety Properties

_	Invariant:	A[] <i>P</i>
_	Pos. Inv.:	E[] <i>P</i>

- Liveness Properties
 - Eventually: A<> P
 - Leadsto: $P \rightarrow Q$
- Bounded Liveness
 - Leads to within: $P \rightarrow_{< t} Q$

The expressions *P* and *Q* must be type safe, side effect free, and evaluate to a boolean.

Only references to integer variables, constants, clocks, and locations are allowed (and arrays of these).

- Validation Properties
 - Possibly: E<> P
- Safety Properties
 - Invariant: A[] P
 - Pos. Inv.: E[] *P*
- Liveness Properties
 - Eventually: A<> P
 - Leadsto: $P \rightarrow Q$
- Bounded Liveness
 - Leads to within: $P \rightarrow_{< t} Q$

- Validation Properties
 - Possibly: E<> P
- Safety Properties
 - Invariant: A[] P
 Pos. Inv.: E[] P
- Liveness Properties
 - Eventually: A<> P
 - Leadsto: $P \rightarrow Q$
- Bounded Liveness
 - Leads to within: $P \rightarrow_{< t} Q$

- Validation Properties
 - Possibly: E<> P
- Safety Properties
 - Invariant: A[] *P* Pos. Inv.: E[] *P*
- Liveness Properties
 - Eventually: A<> P
 - Leadsto: $P \rightarrow Q$
- Bounded Liveness
 - Leads to within: $P \rightarrow_{< t} Q$

- Validation Properties
 - Possibly: E<> P
- Safety Properties
 - Invariant: A[] P
 - Pos. Inv.: E[] *P*
- Liveness Properties
 - Eventually: A<> P
 - Leadsto: $P \rightarrow Q$
- Bounded Liveness
 - Leads to within: $P \rightarrow_{< t} Q$

Communication via channels and shared variable.

Gear Controller

with MECEL AB

Requirements

Volvo Saab **GearControl**

Clutch

Interface

Case-Studies: Controllers

- Gearbox Controller [TACAS'98]
- Bang & Olufsen Power Controller [RTPS'99,FTRTFT'2k]
- SIDMAR Steel Production Plant [RTCSA'99, DSVV'2k]
- Real-Time RCX Control-Programs [ECRTS'2k]
- Experimental Batch Plant (2000)
- RCX Production Cell (2000)
- Terma, Verification of Memory Management for Radar (2001)
- Scheduling Lacquer Production (2005)
- Memory Arbiter Synthesis and Verification for a Radar Memory Interface Card [NJC'05]

Case Studies: Protocols

- Philips Audio Protocol [HS'95, CAV'95, RTSS'95, CAV'96]
- Collision-Avoidance Protocol [SPIN'95]
- Bounded Retransmission Protocol [TACAS'97]
- Bang & Olufsen Audio/Video Protocol [RTSS'97]
- TDMA Protocol [PRFTS'97]
- Lip-Synchronization Protocol [FMICS'97]
- Multimedia Streams [DSVIS'98]
- ATM ABR Protocol [CAV'99]

Computer Science

- ABB Fieldbus Protocol [ECRTS'2k]
- IEEE 1394 Firewire Root Contention (2000)
- Distributed Agreement Protocol [Formats05]
- Leader Election for Mobile Ad Hoc Networks [Charme05]

The UPPAAL Verification Engine

Overview

- Zones and DBMs
- Minimal Constraint Form
- Clock Difference Diagrams
- Distributed UPPAAL
- Unification & Sharing
- Acceleration
- Static Guard Analysis
- Storage-Strategies

[CAV2000, STTT2004] [FTRTFT2002, SPIN2003] [FORMATS2002] [TACAS2003,TACAS2004] [CAV2003]

Zones *From infinite to finite*

Symbolic Transitions

Forward Rechability Init -> Final ?

INITIAL Passed := Ø; **Waiting** := {(n0,Z0)}

Forward Rechability

Init -> Final ?

INITIAL Passed := Ø; Waiting := {(n0,Z0)}

REPEAT

- pick (n,Z) in Waiting
- if for some Z' ⊇ Z
 (n,Z') in Passed then STOP

UNTIL Waiting = Ø or Final is in **Waiting**

Forward Rechability

Init -> Final ?

Computer Science

INITIAL Passed := Ø; Waiting := {(n0,Z0)}

REPEAT

- pick (n,Z) in Waiting
- if for some Z' ⊇ Z
 (n,Z') in Passed then STOP
- else /explore/ add
 { (m,U) : (n,Z) => (m,U) }
 to Waiting;

UNTIL Waiting = Ø or Final is in Waiting

Forward Rechability

Init -> Final ?

Computer Science

INITIAL Passed := Ø; Waiting := {(n0,Z0)}

REPEAT

- pick (n,Z) in Waiting
- if for some Z' ⊇ Z
 (n,Z') in Passed then STOP
- else /explore/ add
 { (m,U) : (n,Z) => (m,U) }
 to Waiting;
 Add (n,Z) to Passed

UNTIL Waiting = \emptyset

or Final is in <mark>Waiting</mark>

Difference Bounded Matrices

Bellman 1958, Dill 1989

Inclusion

Difference Bounded Matrices

Inclusion

Difference Bounded Matrices

Emptiness

Negative Cycle iff empty solution set

Difference Bounded Matrices

Difference Bounded Matrices

Difference Bounded Matrices

Minimal Constraint Form

RTSS 1997

SPACE PERFORMANCE

TIME PERFORMANCE

Earlier Termination

Init -> Final ?

Computer Science

INITIAL Passed := \emptyset ; **Waiting** := {(n0,Z0)}

REPEAT

- pick (n,Z) in Waiting
 if for some Z' ⊇ Z
 - (n,Z') in Passed then STOP
- else /explore/ add
 { (m,U) : (n,Z) => (m,U) }
 to Waiting;
 Add (n,Z) to Passed

UNTIL Waiting = \emptyset

or Final is in <mark>Waiting</mark>

Earlier Termination

Init -> Final?

Waiting := {(n0,Z0)} - pick (n,Z) in Waiting - if for som $Z' \supset ZZ$ (n,Z') in **Passed then STOP** - else /explore/ add $\{ (m,U) : (n,Z) => (m,U) \}$ to Waiting; Add (n,Z) to Passed

> or Final is in Waiting

Earlier Termination

n Computer Science

Init -> Final ?

Clock Difference Diagrams

Basic Research in Computer Science

SPACE PERFORMANCE

in Computer Science

TIME PERFORMANCE

Verification Options

Verification Options

د:/Documents and Settings/kgl/Desktop/KIM/UPPAAL/UPPA، المعالية المعالية المعالية المعالية المعالية المعالية ا										
File Edit View Tools	Options	Help								
Editor Simulator Verifier	State State Diagn Extraj	h Order Space Reduction Space Representat ostic Trace polation	tion +	\$						
E[] ((bodenA ==	✓ Reuse 5)	table size (bodenB > 5)		bodenC = denC > 5						

BRICS Basic Research in Computer Science

Search Order Depth First Breadth First State Space Reduction None Conservative Aggressive **State Space Representation** DBM **Compact Form Under Approximation Over Approximation Diagnostic Trace** Some Shortest Fastest **Extrapolation** Hash Table size

Reuse

State Space Reduction

No Cycles: Passed list not needed for *termination*

State Space Reduction

Cycles:

Only symbolic states involving loop-entry points need to be saved on **Passed** list

To Store or Not To Store

To Store or Not to Store

Behrmann, Larsen, Pelanek 2003

	entry	covering	successors	random	distance	combination
	points	set		p = 0.1	k = 10	k = 3
Fischer	27.1%	42.1%	47.9%	53.7%	67.6%	56.9%
3,077	1.00	1.66	1.00	4.51	2.76	6.57
BRP	70.5%	16.5%	19.8%	18.3%	15.8%	7.6%
6,060	1.01	1.20	1.03	1.78	1.34	1.68
Token Ring	33.0%	10.3%	20.7%	17.2%	17.5%	16.8%
15,103	1.16	1.46	1.03	1.63	1.43	7.40
Train-gate	71.1%	27.4%	24.2%	31.8%	24.2%	19.8%
16,666	1.22	1.55	1.68	2.90	2.11	5.08
Dacapo	29.4%	24.3%	24.9%	12.2%	12.7%	7.0%
30,502	1.07	1.08	1.07	1.21	1.16	1.26
CSMA	94.0%	75.9%	81.2%	105.9%	114.9%	120.3%
47,857	1.06	2.62	1.40	7.66	2.83	6.82
BOCDP	25.2%	22.5%	6.5%	10.2%	9.3%	4.5%
203,557	1.00	1.01	1.08	1.02	1.01	1.09
BOPDP	14.7%	13.2%	42.1%	15.2%	11%	4.3%
1,013,072	2.40	1.33	1.02	1.52	1.14	1.74
Buscoupler	53.2%	13.6%	40.5%	31.7%	24.6%	14.3%
3,595,108	1.29	2.48	1.18	3.17	2.13	8.73

Over-approximation Convex Hull

TACASO4: An EXACT method performing as well as Convex Hull has been developed based on abstractions taking max constants into account distinguishing between clocks, locations and ≤ & ≥

Under-approximation Bitstate Hashing

Under-approximation Bitstate Hashing

Modelling Patterns

Variable Reduction

- Reduce size of state space by explicitly resetting variables when they are not used!
- Automatically performed for clock variables (active clock reduction)

Variable Reduction

Synchronous Value Passing

BRICS Basic Research

in Computer Science

Atomicity

- To allow encoding of control structure (foror while-loops, conditionals, etc.) without erroneous interleaving
- To allow encoding of multicasting.
- Heavy use of committed locations.

Bounded Liveness

- Intent: Check for properties that are guaranteed to hold eventually within some upper (time) bound.
 - Provide additional information (with a valid bound).
 - More efficient verification.
 - φ leadsto_{$\leq t$} ψ reduced to A \square (b \Rightarrow z \leq t) with bool b set to *true* and clock z reset when φ starts to hold. When ψ starts to hold, set b to *false*.

Bounded Liveness

The truth value of b indicates whether or not ψ should hold in the future.

A[] (b imply z≤t) b --> not b (for non zenoness) E<> b (for meaningful check)

b true, check $z \leq t$

Zenoness

- Problem: UPPAAL does not check for zenoness directly.
 - A model has "zeno" behavior if it can take an infinite amount of actions in finite time.
 - That is usually not a desirable behavior in practice.
 - Zeno models may wrongly conclude that some properties hold though they logically should not.
 - Rarely taken into account.
- Solution: Add an observer automata and check for non-zenoness, i.e., that time will always pass.

Zenoness

Detect by •adding the observer:

Constant (10) can be anything (>0), but choose it well w.r.t. your model for efficiency. Clocks 'x' are local.

•and check the property
 ZenoCheck.A --> ZenoCheck.B

PRELIMINARY

more to come later in lectures by Jacob I llum Rasmussen

Optimal Real Time Planning & Scheduling

with Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune, Paul Pettersson, Judi Romijn, Frits Vaandrager, Patricia Bouyer, Franck Cassez, Emmanuel Fleury, Arne Skou, Jacob Rasmussen, K. Subramani

Basic Research in Computer Science

Real Time Scheduling

SAFE

CAN THEY MAKE IT TO SAFE WITHIN 70 MINUTES ???

Real Time Scheduling

Rush Hour

EEF Summerschool on Concurrency, Kapellerput

END

