
1

Timed Games
UPPAAL-TIGA

Alexandre David
1.2.05

13-03-2008 Alexandre David, TOV'08 2

Overview
Timed Games.

Algorithm (CONCUR’05).
Strategies.
Code generation.
Architecture of UPPAAL-TIGA.
Interactive game.

Timed Games with Partial Observability.
Algorithm (ATVA’07).

13-03-2008 Alexandre David, TOV'08 3

Why Timed Games?
Real-time systems:

Systems where correctness
depends on the logical order
of events and on their
timings!
… in addition to correct
computation.

Real Time Model-checking:
Model the environment + the
tasks.
Model φ? Automated proof.

Plant
Continuous

Controller Program
Discrete

sensors

actuators

13-03-2008 Alexandre David, TOV'08 4

Why Timed Games?
Controller synthesis:

Model the environment +
what a controller can do.
Generate the controller so
that controller φ!
Generate the right code
automatically.
2-player timed game:
environment moves vs.
controller moves.
⇒ Timed Game Automata.

Plant
Continuous

Controller Program
Discrete

sensors

actuators

?

13-03-2008 Alexandre David, TOV'08 5

Controller Synthesis/TGA
Given

System moves S,
Controller moves C,
and a property φ,

find
a strategy Sc s.t. Sc||S φ,
or prove there is no such strategy.

13-03-2008 Alexandre David, TOV'08 6

Timed Game Automata
Introduced by Maler, Pnueli, Sifakis
[Maler & al. ’95].
The controller continuously observes the
system (all delays & moves are observabled).
The controller can

wait (delay action),
take a controllable move, or
prevent delay by taking a controllable move.

2

13-03-2008 Alexandre David, TOV'08 7

Timed Game Automata
Timed automata with
controllable and
uncontrollable
transitions.
Reachability & safety
games.

control: A<> TGA.goal
control: A[] not TGA.L4

Memoryless strategy:
state → action.

13-03-2008 Alexandre David, TOV'08 8

TGA – Let’s Play!
control: A<> TGA.goal

x<1 : λ
x==1 : c

x<2 : λ
x≥2 : c

Strategy x≤1 : c

x<1 : λ
x==1 : c

Note: This is one strategy.
There are other solutions.

13-03-2008 Alexandre David, TOV'08 9

Results
[Maler & al. ’95, De Alfaro & al. ’01]
There is a symbolic iterative algorithm to
compute the set W* of winning states for
timed games.
[Henziger & Kopke ’99]
Safety and reachability control are EXPTIME-
complete.
[Cassez & al. ’05]
Efficient on-the-fly algorithm for safety &
reachability games.

13-03-2008 Alexandre David, TOV'08 10

Algorithm
On-the-fly forward algorithm with a backward
fix-point computation of the winning/losing
sets.

Use all the features of UPPAAL in forward.
Possible to mix forward & backward exploration.

Solved by Liu & Smolka 1998 for untimed
games.
Extended symbolic version at CONCUR’05.

13-03-2008 Alexandre David, TOV'08 11 13-03-2008 Alexandre David, TOV'08 12

Backward Propagation

0 1 2

L0

L1

L2

L3

Back-
propagate
when
goal is
reached.

Note: This is not a strategy,
it’s only the set of winning
states.

3

13-03-2008 Alexandre David, TOV'08 13

Backward Propagation

G

B

B

Predecessors of G avoiding B?

pr
ed t

13-03-2008 Alexandre David, TOV'08 14

predt – From Federation to Zone

↓↓↓↓=

=

)\)(()\(),(

),(),(

I I

U U UI

BBGBGBGpred

BGpredBGpred

t

i j i j
jitjit

13-03-2008 Alexandre David, TOV'08 15

Query Language (1)
Reachability properties:

control: A[p U q]
control: A<> q ⇔ control: A[true U q]

Safety properties:
control: A[p W q]
control: A[] p ⇔ control: A[p W false]

Tuning:
change search ordering,
add back-propagation of winning+losing states.

Back-propagate winning
states & BFS+DFS.

Back-propagate losing
states & BFS-BFS.

13-03-2008 Alexandre David, TOV'08 16

Query Language (2)
Time-optimality

control_t*(u,g): A[p U q]
u is an upper-bound to prune the search, act like an
invariant but on the path = expression on the current
state.
g is the time to the goal from the current state (a
lower-bound in fact), also used to prune the search.
States with t+g > u are pruned.

Cooperative strategies.
E<> control: φ
Property satisfied iff φ is reachable but the
obtained strategy is maximal.

13-03-2008 Alexandre David, TOV'08 17

Cooperative Strategies
State-space is
partitioned between
states from which there
is a strategy and those
from which there is no
strategy.
Cooperative strategy
suggests moves from
the opponent that
would “help” the
controller.
Being used in testing.

Maximal
partition with

winning
strategies.

13-03-2008 Alexandre David, TOV'08 18

Strategies?
The algorithm computes sets of winning and
losing states, not strategies.
Strategies are computed on top:

Take actions that lead to winning states
(reachability).
Take actions to avoid losing states (safety).
Partition states with actions to guarantee
progress.
This is done on-the-fly and the obtained strategy
depends on the exploration order.

4

13-03-2008 Alexandre David, TOV'08 19

Winning States → Strategy

0 1 2

L0

L1

L2

L3

Winning states

Strategy

L1→goal pastwait

L3→L1

past

wait

L2→L3

L0→L1

past

wait

L0→L1

wait L0→L1
Also possible

13-03-2008 Alexandre David, TOV'08 20

Strategies as Partitions
Built on-the-fly.
Guarantee progress in the strategy.

No loop.

Deterministic strategy.
Different problem than computing the set of
winning states.
Different ordering searches can give different
strategies … with possibly the same set of
winning states.

13-03-2008 Alexandre David, TOV'08 21

Code Generation
Mapping state → action.

entries = # states.

Decision graph state → action.
tests = # variables.
More compact.
Based on a hybrid BDD/CDD with multi-terminals.

13-03-2008 Alexandre David, TOV'08 22

Decision Graph
BDD: boolean variables.
CDD: constraints on clocks.
Multi-terminals: actions.

It works because we have a partition.

13-03-2008 Alexandre David, TOV'08 23

Graph Reduction
Testing consecutive bits:

Replace by one testing with a mask.
Can span on several variables.

13-03-2008 Alexandre David, TOV'08 24

Decision Graph

5

13-03-2008 Alexandre David, TOV'08 25

Pipeline Architecture
Pipeline Components

Source

Sink

Filter

State

Successor

Data
Buffer

13-03-2008 Alexandre David, TOV'08 26

Pipeline Architecture

State-graph

Waiting queue

Transition Successor Delay Extrapolation+

Source
s,F

forward.

Destination
s’,B

backward.
Predecessor predt

win
lose?

s’,F

update?
s,Bupdate?

s*,B

Inclusion
check+add

13-03-2008 Alexandre David, TOV'08 27

Interactive Game
How to play a (timed) strategy against the
user?

Concrete simulator.
Actions depend on the point in time.
Allowed delays depend on the actions.
The GUI has limited feedback for showing
counter-actions.

13-03-2008 Alexandre David, TOV'08 28

Interactive Game
Goal: Play the game inside UPPAAL GUI.
Problem: The GUI is not as talkative as a
command line simulator !

?

13-03-2008 Alexandre David, TOV'08 29

From Symbolic to Concrete

take L0→L1

x

y

wait

How long to wait before
taking action.

Valid interval for taking
action.

0

13-03-2008 Alexandre David, TOV'08 30

From Symbolic to Concrete
Strategy = mapping from
sets of states to actions
(incl. wait).
Simulation with a given clock
valuation.

take L0→L1 wait 2.3

take L1→L2

wait 1.7

take L2→L0

take L0→L3

6

13-03-2008 Alexandre David, TOV'08 31

Interactive Game – GUI
Avoid “your action has been countered”: Restrict
selection w.r.t. the strategy.
What is a “selectable action” for the user ?

His own transition – if can take it before TIGA
The choice of TIGA

the other actions are not selectable

13-03-2008 Alexandre David, TOV'08 32

Timed Games
with Partial Observability

Previous: Perfect information.
Not always suitable for controllers.

Partial observation.
States or events, here states.
Distinguish states w.r.t. observations.
Strategy keeps track of states w.r.t. observations.
Observations = predicates over states.

13-03-2008 Alexandre David, TOV'08 33

Results
Discrete event systems

[Kupferman & Vardi ’99, Reif ’84, Arnold & al.
’03]. Game given as modal logic formula: Full-
observation as hard as partial observation.
[Chatterjee & al. ’06, De Wulf & al. ’06]. Game
given as explicit graph: Full-observation PTIME,
partial observation EXPTIME.

Timed systems, game given as a TA
[Cassez & al. ’07] Efficient on-the-fly algorithm,
EXPTIME.

13-03-2008 Alexandre David, TOV'08 34

State Based Full Observation

2-player reachability game, controllable +
uncontrollable actions.
Full observation: in l2 do c1, in l3 do c2.

Franck Cassez ATVA’07

13-03-2008 Alexandre David, TOV'08 35

State Based Partial Observation

Partition the state-space l2=l3.
Can’t win here.

Franck Cassez ATVA’07

13-03-2008 Alexandre David, TOV'08 36

State Based Partial Observation
Franck Cassez ATVA’07

7

13-03-2008 Alexandre David, TOV'08 37

Observation For Timed Systems
Franck Cassez ATVA’07

13-03-2008 Alexandre David, TOV'08 38

Stuttering-Free Invariant Observations
Franck Cassez ATVA’07

13-03-2008 Alexandre David, TOV'08 39

Rules of the Game
Franck Cassez ATVA’07

13-03-2008 Alexandre David, TOV'08 40

On-the-Fly Algorithm

13-03-2008 Alexandre David, TOV'08 41

Algorithm
Partition the state-space w.r.t. observations.
Observations 1 2 3.
Winning/losing is observable.

123
¬1¬2¬3

12¬3

¬1¬23

1¬23 1¬2¬ 3 ¬12¬3

¬123

13-03-2008 Alexandre David, TOV'08 42

Algorithm
Initial state in some partition.
Compute successors { set of states } w.r.t. a controllable action.
Successors distinguished by observations.

8

13-03-2008 Alexandre David, TOV'08 43

Algorithm
Construct the graph of sets of symbolic states.
Back-propagate winning/losing states.

13-03-2008 Alexandre David, TOV'08 44

Algorithm
Back-propagation.

If all successorsa are winning,
declare current state winning,
strategy: take action a.
If one successora is losing,
avoid action a.
If no action is winning the current state is losing.

13-03-2008 Alexandre David, TOV'08 45

Example

Observations: L, H, E, B, y in [0,1[

13-03-2008 Alexandre David, TOV'08 46

Example

24 26

166 164

30 34

172 176

38 42

180 184

46 50

188 192

54 58

196 200

62

135 27

165 169

31 35

173 177

39 43

181 185

47 51

189 193

55 59

197 201

63 67

205 209

71137 295

162

0

HL E
y EyLy Hy

Partition:
delay
y=0
eject!

Actions:

