Timed Games
q UPPAAL-TIGA

Alexandre David
1.2.05

i Overview

= Timed Games.
= Algorithm (CONCUR'05).
= Strategies.
= Code generation.
= Architecture of UPPAAL-TIGA.
= Interactive game.
= Timed Games with Partial Observability.
= Algorithm (ATVA'07).

13-03-20

i Why Timed Games?

T o B

= Real-time systems:

= Systems where correctness
depends on the logical order

Plant
Continuous ||
1

of events and on their sensors. 9
timings!

= ... in addition to correct
computation.

= Real Time Model-checking:

= Model the environment + the
tasks.

Discrete

]
| IE

= Model E@? Automated proof. cController Program

3

i Why Timed Games?

. [S=]
= Controller synthesis: I[=
= Model the environment + ot e
what a controller can do. g
sensors -—:IT’ I3
= Generate the controller so (|l

that controller £ !
Generate the right code
automatically.

= 2-player timed game:
environment moves vs.
controller moves.
= Timed Game Automata.

Controller Program
Discrete 4

i Controller Synthesis/TGA

= Given
= System moves S,
= Controller moves C,
= and a property o,
= find
= a strategy S, s.t. S.||S Eo,
= or prove there is no such strategy.

Alexandre David, TOV'08

i Timed Game Automata

= Introduced by Maler, Pnueli, Sifakis
[Maler & al. 95].
= The controller continuously observes the
system (all delays & moves are observabled).
= The controller can
= wait (delay action),
= take a controllable move, or
= prevent delay by taking a controllable move.

03-2008 Alexandre David, TOV'08 6

= Timed automata with
controllable and
uncontrollable
transitions.

= Reachability & safety
games. g \
= control: A<> TGA.goal /
= control: A[] not TGA.L4 2 / *

= Memoryless strategy:
= state — action.

3-03-2008 Alexandre David, TOV'08

1

i TGA — Let’s Play!

= control: A<> TGA.goal

x<1 A
X== €
x<2 A
x22 ©

Strategy [xs1 :c

x<1 T A
x==1 :c

Note: This is one strategy. L3
There are other solutions.

-03-2(Alexandre David, TOV'08 8

i Results

= [Maler & al. ‘95, De Alfaro & al. '01]
There is a symbolic iterative algorithm to
compute the set W* of winning states for
timed games.

= [Henziger & Kopke "99]
Safety and reachability control are EXPTIME-
complete.

= [Cassez & al. '05]
Efficient on-the-fly algorithm for safety &
reachability games.

13-03-2008 Alexandre David, TOV'08

i Algorithm

= On-the-fly forward algorithm with a backward
fix-point computation of the winning/losing
sets.
= Use all the features of UPPAAL in forward.
= Possible to mix forward & backward exploration.
= Solved by Liu & Smolka 1998 for untimed
games.

= Extended symbolic version at CONCUR'05.

3-03-2008 Alexandre David, TOV'08 10

13-03-2008

Initialization:
Passed — {50} where So = {({o.0)}"
Waiting — {(Sa.r, 8')| S’ = Posta(So)”"}
Win[So] — So N ({Goal} x BE,);

Depend|Sa] — &

Main:
while ((IVaiting # 0) 2 (=0 € Win[5,])) do
e =N aN e pap{Waiting);
if 5" & Passed then
Pz Pazsed i {8}
Sl [(Sa8))
18] = 8" ({Goal} x BE,)
Waitinig — Waiting U (8.0, 87187 = Post (S})
i Wins'] 2 0 then Wating — Waiting U {e}:
else (* reevaluate *)"
Win® — Pred (Win[SJU |J_. Pred, (Win{T]),
Uz, Predu(Z\ Win[I))n s
i (WinS] C Win'} then
Waiting — Waiting U Depend]S]; Win[s] — Win';
Depend(5'] — Depend| S U {e}:
endif
endwhile

i Backward Propagation

L0,
x==2 , 4
Lo 0
L1 '\ x>=2
st N\ Back-
YO \ propagate
L2 K o \ when
goal is
/__ reached.
L2 =i
13 /
0 1 2
Note: This is not a strategy, L3
it’s only the set of winning
13032008 States. Alexandre David, TOV'08 1

i Backward Propagation

&

Predecessors of G avoiding B?

i pred, — From Federation to Zone
-
pred,(JG,,UB,) =[N pred,(G,. B))
i j i

pred, (G, B) = (G \B")(((G(B*)\B)*

13-03-2008 Alexandre David, TOV'08 14

i Query Language (1)

- . B
= Reachability properties: si"‘propag
ates& ate Wipp:
= control: AlpUq] BFs, ngn’"g
= control: A<> q < control: Al true U q]
= Safety properties: Back.propa
= control: ALpWq] States o Bi‘;fe losin,,

= control: A[] p < control: A p W false]

= Tuning:
= change search ordering,

BFS

= add back-propagation of winning+losing states.

i Query Language (2)

= Time-optimality
= control_t*(u,g): AlpUq]
= U is an upper-bound to prune the search, act like an

invariant but on the path = expression on the current
state.

= g is the time to the goal from the current state (a
lower-bound in fact), also used to prune the search.
States with t+g > u are pruned.

= Cooperative strategies.
= E<> control: @

= Property satisfied iff ¢ is reachable but the
., obtained strategy is maximal.

i Cooperative Strategies

= State-space is
partitioned between
states from which there
is a strategy and those
from which there is no
strategy.

suggests moves from
the opponent that
would “help” the
controller.

= Being used in testing.

Alexandre David, TOV'08

. Maximal
= Cooperative strategy partition with

winning
strategies.

i Strategies?

= The algorithm computes sets of winning and
losing states, not strategies.
= Strategies are computed on top:

= Take actions that lead to winning states
(reachability).

= Take actions to avoid losing states (safety).

» Partition states with actions to guarantee
progress.

= This is done on-the-fly and the obtained strategy
depends on the exploration order.

13-03-2008 Alexandre David, TOV'08

Also possible

i Winning States — Strategy

LO w=0 /
wait wait L1—-goal 4
L1 %
L2513 A\

L1 past goal

L2 AW
wait L3-L1

L3

0 1 2
Winning states

Strategy

i Code Generation

= Mapping state — action.
= # entries = # states.
= Decision graph state — action.
= # tests = # variables.
= More compact.
= Based on a hybrid BDD/CDD with multi-terminals.

i Strategies as Partitions

= Built on-the-fly.

= Guarantee progress in the strategy.
= No loop.

= Deterministic strategy.

= Different problem than computing the set of
winning states.

» Different ordering searches can give different
strategies ... with possibly the same set of
winning states.

i Graph Reduction

= Testing consecutive bits:
= Replace by one testing with a mask.
= Can span on several variables.

:‘ Decision Graph CxD
= BDD: boolean variables. ("_Qé (-C'---
= CDD: constraints on clocks. .
= Multi-terminals: actions. l_iLI
= It works because we have a partition.
¥ -
‘J.|~ 13 4,61
BN Y
L True
123456X
1 0 dre [22
i Decision Graph
(oo u;l_.-_u-:'_“)
S ___X._______
loch) & y ('_'_1_;1-_&_» O, vard & e 0.

13-03-2008 Alexandre David, TOV'08 24

Pipeline Architecture

Pipeline Components

i

Source

Sink
Data

Buffer State

Successor
Filter

Ll

Interactive Game

|

= How to play a (timed) strategy against the
user?
= Concrete simulator.
= Actions depend on the point in time.
= Allowed delays depend on the actions.

= The GUI has limited feedback for showing
counter-actions.

i Pipeline Architecture

‘Transition H Successor H Delay H Extrapolation*

Source
s,F
forward.

Destination
s'.B
backward.

13-03-2008 Alexandre David, TOV'08 26

:‘ Interactive Game

= Goal: Play the game inside UPPAAL GUI.

= Problem: The GUI is not as talkative as a
command line simulator !

Main Main
. I ®, [
w yeal 5 : '. u
] \ —_ * . ®
D) :)
’_J'(S g
It @-
1 2008 Alexandre David, TOV'08 28

Valid interval for taking
action.

How long to wait before
taking action.

wait

13-03-2008 Alexandre David, TOV'08

i From Symbolic to Concrete

= Strategy = mapping from
sets of states to actions
(incl. wait).

= Simulation with a given clock
valuation.

wait 1.7

Alexandre David, TOV'08

30

i Interactive Game — GUI

= Avoid “your action has been countered”: Restrict
selection w.r.t. the strategy.

= What is a “selectable action” for the user ?
= His own transition — if can take it before TIGA
= The choice of TIGA

= the other actions are not selectable
4

I
:l == Tiga s transition

Timed Games
i with Partial Observability

= Previous: Perfect information.
= Not always suitable for controllers.
= Partial observation.
= States or events, here states.
= Distinguish states w.r.t. observations.
= Strategy keeps track of states w.r.t. observations.
= Observations = predicates over states.

13-03-2008 Alexandre David, TOV'08 32

i Results

= Discrete event systems
= [Kupferman & Vardi ‘99, Reif ‘84, Arnold & al.
‘03]. Game given as modal logic formula: Full-
observation as hard as partial observation.
= [Chatterjee & al. ‘06, De Wulf & al. '06]. Game
given as explicit graph: Full-observation PTIME,
partial observation EXPTIME.
= Timed systems, game given as a TA

= [Cassez & al. '07] Efficient on-the-fly algorithm,
EXPTIME.

13-03-2008 Alexandre David, TOV'08 33

13-03-2008

Franck Cassez ATVAO7]
i State Based Full Observation

C1

= 2-player reachability game, controllable +
uncontrollable actions.

= Full observation: in /,do ¢, in /;do ¢,

0 Alexandre David, TOV'08 34

Franck Cassez ATVAO7]
i State Based Partial Observation

C1

Cy C2

= Partition the state-space /,=/,.
= Can't win here.

13-03-2008

Alexandre David, TOV'08 35

Franck Cassez ATVAO7)
i State Based Partial Observation
1

Winning Strategy:

after: play ¢,
after: @ play ¢
after: [N] play ¢z

The controller can observe each state's change J

03-2008 Alexandre David, TOV'08 36

Franck Cassez ATVA07)
"L Observation For Timed Systems

In Continuous Timed Systems, "next state” is reached by:
» either a discrete step
» or a continuous time-step

@_/v.

x=1g
» Possible Observations:
each 1/2 t.u.:
each 1/4 t.u.: o..
as it wishes: ®..

2000 times within 1 T

» the controller cannot observe each state's change

Issue: When does the controller observe the system ? J

13-03-2008 Alexandre David, TOV'08 37

Franck Cassez ATVA07)

‘L Rules of the Game

Requirements

» Observations have special shapes:
must become true at some first instant / partition the state space
eg 20sy«24orlex<2

» The control objective & is stuttering closed

Observation-Based Stuttering Invariant Strategies
f is a OBSI strategy if:

Observation(p) =+ Observation(p’) implies f(p) = f(p") J

Control under Partial Observation Problem
Input: a TGA automaton &
a finite set of observations O,
a control objective C O¥.
Problem: Is there an OBSI winning strategy for (6,3) ?

13-03-2008 Alexandre David, TOV'08 39

i Algorithm

Partition the state-space w.r.t. observations.
Observations 1 2 3.
Winning/losing is observable.

13-03-2008 Alexandre David, TOV'08 41

—_—

FI’BHC/(Cassez ATVAO7]

¢ Stuttering-Free Invariant Observations

x 3 8 Sensor Sensed . Paint ,,g Piston

On
;':'_' S @ :::_';;:'_' O 'fOE?
x5

x5 10 x40 x4 10 xg 10
kick?

Off
0n,0)-% (Sensor,0)— (Sensed,0)-> (Paint, 0) 2% (Piston, 0) ““. Off

- 0 - o > 0o L o “eo

Assumption: the controller can only see changes
of observations

Stuttering-free observation:. @@ O @

Must play based on stuttering-free observations J

13-03-2008 Alexandre David, TOV'08 38

On-the-Fly Algorithm

it lzntio;

"= Nestad oo} o W7 2 0

v ¥ & Xy, Sinkeiagh # 8 T 1 OF

1 Bt Bt ds . deithock Stan 4§

Wit & L M s N
i thun L

it Wating +

NewFrans:

Win[iW'™]

Vo S
sterg U BB] Wanl] = 3
sy Vypo =g Lomimg (1]

W EoutmglW] = 1
) thon Depenadl - Degmndl7[10 e}

13-03-2008 sqpdw biile =t

i Algorithm

Initial state in some partition.
Compute successors { set of states } w.r.t. a controllable action.
Successors distinguished by observations.

13-03-2008 Alexandre David, TOV'08 42

i Algorithm

Construct the graph of sets of symbolic states.
Back-propagate winning/losing states.

i Algorithm

= Back-propagation.
= If all successors? are winning,
declare current state winning,
strategy: take action a.
= If one successor? is losing,
avoid action a.
If no action is winning the current state is losing.

13-03-2008 Alexandre David, TOV'08 44

13-03-2008 Alexandre David, TOV'08 43
Eject? .
P -, <0 r <10 ™
yd ' @ ez ‘.J
f =) ezl
/=0, A e o2
. L
VT SPENC E .-
Nrer=0 x> 6
\ E N
. N €2 -1
~. =0 . S
Ej‘!‘t‘l" -
Observations: L, H, E, B, y in [0,1[
13-03-2008 Alexandre David, TOV'08 45

i Example
VIOV 0ODOO @

BOHP9OEEDDS O
BHOHHOGOS S

Partition: Actions:

o@@@ delay >
P y=0 >

‘Oﬁ? ejectt —

13-03-2008 Alexandre David, TOV'08 46

