UPPAAL

Verification Engine, Options & Patterns

Alexandre David

1.2.05
({‘ == BRICS c S s
! - = == Basic Research
Cenmnt’ in Computer Science [——

Outline

m UPPAAL
- Modelling Language
- Specification Language
m UPPAAL Verification Engine
- Symbolic exploration algorithm
- Zones & DBMs

m Verification Options
m Modelling Patterns

Modelling Language

Modeling Language

m Network of TA = instances of templates
- argument const type expression
- argument type& name
m Types
- built-in types: int, intfmin,max], bool, arrays
- typedef struct { ... } name
- typedef built-in-type name
m Functions
- C-style syntax, no pointer but references OK.
m Select
- name : type

CiS§
Un-timed Example: Jugs
Jugs Actions: Jug(const id_t id)
ofill
E eempty emply(id)
epour
2 5 ki=id
[Goal: obtain 1 unit. | pour(id k) fill{ic)

m Scalable, compact, & readable model.
- const int N = 2; typedef int[0,N-1] id_t;
- Jugs have their own id.
- Actions = functions.
- Pour: from id to another k different from id.

Jugs cont.

= Jug levels & capacities:
int level[N];
const int capa[N] = {2,5};

=m void empty(id_t i) { level[i]=0; }
= void fill(id_t i) { levelli] = capali]; }

= void pour(id_t i, id_t j)

int max = capa[J]\ level[j];
int poured = leve [1 <? max;
IeveIH = poured

level[j] += poured

= Auto-instantiation: system Jug;

Stopable
Area

[10,20]

Stopable
Area

[10,20]

stop[id]? go[id]?

Train-Gate Modeling

ﬂ Train(const id_t id) w _

N trains... DAl TR ﬁ
- 3 Gate

Communication via channels. controller
chan appr[N], stop[N], leave[N];
urgent chan go[N]; list ~ enqueue()

dequeue()
front()

m Scale the model:

- const int N = 6; typedef int[0,N-1] id_t;
m Trains have their local clocks.
m The gate has its local list & functions.

Specification Language

Logical Specifications

= Validation Properties

CS§
Logical Specifications
= Validation Properties
~ Possibly: E<> P The expressions P and

m Safety Properties
- Invariant: Al P
- Pos. Inv.: E[]P

m Liveness Properties
- Eventually: A<>P
- Leadsto: P>Q

= Bounded Liveness
- Leads to within: P >_ Q

Q must be type safe,
side effect free, and
evaluate to a boolean.

Only references to
integer variables,
constants, clocks, and
locations are allowed
(and arrays of these).

- Possibly: E<>P

C55
Logical Specifications
» Safety Properties Alle -
- Invariant: AllP
- Pos. Inv.: E[1P
Cisy

Logical Specifications

= Bounded Liveness
- Leads to within: P> _Q

Train-Gate Crossing

m Safety: One train crossing.
- A[] forall (i : id_t) forall (j : id_t)
Train(i).Cross && Train(j).Cross imply i ==j
m Liveness: Approaching trains eventually
Cross.
- Train(0).Appr --> Train(0).Cross
- Train(1).Appr --> Train(1).Cross

= No deadlock.
- A[] not deadlock

Logical Specifications

= Liveness Properties
- Eventually: A<>P P==>y
- Leadsto: P>Q

Jug Example
m Safety: Never overflow.
- A[] forall(i:id_t) level[i] <= capali]

= Validation/Reachability: How to get 1 unit.
- E<> exists(i:id_t) level[i] == 1

UPPAAL Verification Engine

Overview

Zones and DBMs

Reachability algorithm revisited
Minimal Constraint Form

Clock Difference Diagrams

Acceleration

Storage-Strategies

Distributed UPPAAL [CAV2000, STTT2004]
Unification & Sharing [FTRTFT2002, SPIN2003]
[FORMATS2002]
Static Guard Analysis [TACAS2003,TACAS2004]
[CAV2003]

Symbolic Transitions

1<=x<=4

/ 1<=y<=3
/ y
delays to
(|
\l
C conjuncts to

- projects to

y

N

Thus (n,1<=x<=4,1<=y<=3) —& (m,3<x, y=0)

Symbolic Exploration

Reachable?

Zones
From infinite to finite

State Symbolic state (set)
(n, x=38.2,y=2.5) (n, 14, 1y- 3)
Zone:
conjunction of
y I y I X-y<=n,
X<=n,
X>=n
X X
CiSy
Symbolic Exploration
Reachable?
CiSS

Symbolic Exploration

Reachable?

Symbolic Exploration

Reachable?

Symbolic Exploration

Left

Reachable?

Symbolic Exploration

Reachable?

Symbolic Exploration

Reachable?
C'55
Symbolic Exploration
Left

Reachable?

Symbolic Exploration

Reachable?

Down

C'Sy

Forward Reachability Algorithm

Init -> Final ?

/ PW O\ INITIAL Passed :=@;

Waiting := {(ny,Zo)}

REPEAT

UNTIL Waiting =@
return false

C'Sy§

Forward Reachability Algorithm

Init -> Final ?

INITIAL Passed :=@;
Waiting := {(ny,Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true

UNTIL Waiting = @
return false

C'Sy

Forward Reachability Algorithm

Init -> Final ?

INITIAL Passed :=@;
Waiting := {(n,,Z)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,2)—(n",2'):
if for some (n",Z") Z'c Z”” continue
else add (n’,2’) to Waiting

UNTIL Waiting =@
return false

C'Sy

Forward Reachability Algorithm

Init -> Final ?

INITIAL Passed := @;
Waiting := {(n,,Zy)}

REPEAT
pick (n,Z) in Waiting

UNTIL Waiting =@
return false

C'Sy§

Forward Reachability Algorithm

Init -> Final ?

INITIAL Passed :=@;
Waiting := {(ny,Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,2)>(n",2):
if for some (n’,2") Z’c Z"” continue

UNTIL Waiting =@
return false

C'Sy

Forward Reachability Algorithm

Init -> Final ?

INITIAL Passed := @;
Waiting := {(n,,Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,2)—(n",2'):
if for some (n’,Z") Z'c Z” continue
else add (n",2') to Waiting
move (n,Z) to Passed

UNTIL Waiting =@
return false

C'Sy

Forward Reachability Algorithm

Init -> Final ?

INITIAL Passed :=@;
Waiting := {(n,,Z)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,2)—(n",2):
if for some (n",Z") Z'c Z”” continue
else add (n’,2’) to Waiting
move (n,Z) to Passed

UNTIL Waiting =@
return false

Difference Bound Matrices

X Xg<=0 | Xp=X;<=-2 | X;=X,<=-1

X1=%Xo<=6 |X;-%x;<=0 [X;-X,<=3 Xi‘xj<:Cij

Xy~ Xo<=5 |Xp=X;<=3 |x,-x,<=0
A

X, L XrXi<=57?

Canonical representation:
X=X <=4 ?

All constraints as tight as possible.
Needed for inclusion checking.
— Unique DBM to represent a zone.

How to Make DBMs Canonical?

How to check for inclusion?

X
X
x<=1 l/' \2 Shortest 1/' N
D1 Y’X<:§ Graph g y Path o 3 y
zy<= Closure
i N2 B
2C 2
D2 = X
o AN AN
§<:3 Graph 3 y IPath 0 43‘6_ y
" Closure
z-y<=3
Z<y:7 7\‘ Z‘/3 k. z‘/3

Difference Bound Matrices

Xo-Xo<=0 |Xg=X;<=-2 | Xg-X,<=-1

X1 %X0<=6 |x;-%;<=0 [X;-X,<=3 Xi'Xj<:Cij

Xo-Xo<=5 |Xy=X;<=1 |Xx,-x,<=0

Xz

'— Zone

How to Make DBMs Canonical?
Bellman 1958, Dill 1989

How to check for inclusion?

X
o= 2N
D1 |Y*<=2| Graph 0

s N7

2 2
D2 |x<=2 X
y-x<=3 2/' \\3
y<=3 . Graph 0 3 y
z-y<=
7<=7 7\‘ Z'/?»

Empty Zones/DBMs?

"

After the “closure”
algorithm: one <0
in the diagonal.

<O

<Q

<O

Negative Cycle
iff
Compact empty solution set

Canonical Datastructures for Zones S_§§'
Difference Bounded Matrices

Future y '
i Future D

D

-
o|0
l<=y <=3 » o)

4/~ x 4 X x
-1 Shortest /14 Remove y
0 Path 0 3 upper 0 3
Closure bounds
\ K on clocks K 2
1 y 1

Canonical Datastructures for Zones §_§§l
Difference Bounded Matrices

-4

x1-x2<=4 @Q@ Shortest
x2-x1<=10 Path
x3-x1<=2 Closure
x2-x3<=2 3 P omn~3) 3
x0-x1<=3

X3-X0<=5 (0) (%)

Space n"2

Earlier Termination

Init -> Final ?

INITIAL Passed :=@;
Waiting := {(n,,Z)}

REPEAT

pick (n,Z) in Waiting
if (n,Z) = Final return true

for all (n.2)—>(n".Z):
if (n’,Z2")gPW continue
else a n’,7) to Waiting

move (n,Z) to|Passed

UNTIL WaitingfF @

return false
Consider U;(n’,Z;")

Canonical Datastructures for Zones S_§§'
Difference Bounded Matrices

Reset

{y}D

Remove all
j 3 bounds -1
0 involving y 0
\\ and sety to 0 \

Canonical Datastructures for Zones §_§§l
Minimal Constraint Form

RTSS 1997

- -4

x1-x2<=4

x2-x1<=10) @ @ Shortest

x3-x1<=2 Path

X2-x3<=2 Closure

X0-x1<=3 3 P o(n"3)

x3-x0<=5

Space worst O(n2)

Shortest @ @ practice O(n)

Path
Reduction
0o(n"3) 3

Large gain in space. @ @
Small price in time.

Clock Difference bDiagrams ===
= Binary Decision Diagrams + Difference Bounded Matrices CAV99

= Nodes labeled with
CDD-representations differences
m Maximal sharing of
substructures (also across
different CDDs)
= Maximal intervals
m Linear-time algorithms for
[C] set-theoretic operations.

m NDD’s Maler et. al

i m DDD'’s Mgller, Lichtenberg
1

TR EER _ m Past experiments showed
(@ (- gains in time & space.

Verification Options

Verification Options

Search Order
4 anud e btngs, ol Desktop, KIM UPPAAL P Depth First
Fie [k Yew Took |Gptions teb Breadth First
Dam R W State Space Reduction

Etor | Smudatar Verte None)
Conservative
Aggressive
B} i1 bedenh = State Space Representation
DBM

£ mot deadlock Compact Form

Under Approximation

Over Approximation
Diagnostic Trace

Some

Shortest

Fastest

State Space Reduction

However,
Passed list useful for
50 50 efficiency

No Cycles: Passed list not needed for termination

State Space Reduction

Cycles:
Only symbolic states
involving loop-entry points
need to be saved on Passed list

Behrmann, Larsen,
Pelanek 2003

117 states,y,
!

81 states,,ypoint
]

9 states

Time OH
less than 10%

Audio Protocol

Over-approximation

Convex Hull TACASO04: An EXACT method performing
as well as Convex Hull has been
developed based on abstractions

taking max constants into account.

Under-approximation
Bitstate Hashing

Modelling Patterns

Cisy
Clock Reduction (Automatic)
x is only active in location S1
Definition
S X is /nactive at S if on all path

from S, x is always reset before
being tested.

Under-approximation
Bitstate Hashing

Hash function

Variable Reduction

m Reduce size of state
space by explicitly
resetting variables
when they are not
used!

» Automatically
performed for clock
variables (active clock
reduction)

/ PW O\ 1 1 bit per
iti Final / 5 passed state
1
Under-approx.
0 Several states
may collide on
the same bit.
Inclusion check
—_ only with
\ —~_ 0 waiting states.
T~ “Equality” with
/ 1 passed.
Bit Array

7/ Remove the front slesmsnt of the queaus
0id dequeue ()
{
int i = 0;
len —= 1;
while (i < len}
{
list[i] = list[i + 1];
T

C55

Synchronous Value Passing
Uneconditional Conditional
o o o

O O O condiin}
e |9 Q

H @ @ condlivar} || @ condiin)
a dr &
O o) O

10

Atomicity

= Loops & complex

control structures: @_.”_‘
C-functions.
m To allow encoding of enqueve(e) | 0

multicasting.

= Committed locations._|

Bounded Liveness

m The truth value of b indicates whether or
not w should hold in the future.

b=frue | b=

Zenoness

ZemChack

OK
Detect by A B
x==1 +adding the
O) observer: x<=10
x<1 x<1 Constant (10) can be anything

(>0), but choose it well w.r.t.
your model for efficiency.
Clocks 'x" are local.

+and check the property
ZenoCheck.A --> ZenoCheck.B

Bounded Liveness

m Leads to within: ¢ >y

- More efficient than leadsto:
¢ leadsto., w reduced to
Ao(b=z < t) with

- bool b set to true and clock
z reset when @ holds.

- When y holds set b to false.

Zenoness

m Problem: UPPAAL does not check for

zenoness directly.

- A model has “zeno” behavior if it can take an
infinite amount of actions in finite time.

- That is usually not a desirable behavior in
practice.

- Zeno models may wrongly conclude that some
properties hold though they logically should not.

- Rarely taken into account.

m Solution: Add an observer automata and
check for non-zenoness, i.e., that time will
always pass.

11

