
Test and Verification

Brian Nielsen

bnielsen@cs.aau.dk

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Preliminary Plan

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Preliminary Plan

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Plan

� Background
� Research Group and Projects

� Why (and what) test and verification
� Model-based approach

� Finite State Machines (review)
� Interacting State Machines

� Verification=Model Checking (1st glance)

Who are we?

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Lecturers

Arne SkouBrian Nielsen

Alexandre David

… and guests

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Research Profile
Distributed Systems & Semantics Unit

In
fo

rm
a
ti

o
n
st

ek
n
o
lo

g
i

Research Evaluation, Sæby, January 12, 2006 5

Concurrency Theory
Foundation for system behavior

Verification and Validation
Tools for model checking

Networks and Operating Systems
Implementation and construction
of platforms

Embedded Systems Methodology
Methods for specification, design, analysis, testing …

Industrial applications

10

Center for Indlejrede Software Systemer

Why CISS ?

� 80% of all software is
embedded

� Demands for
increased functionality

with
minimal resources

� Requires multitude of
skills
� Software construction
� Hardware platforms
� Control theory
� Comm. technology

� Goal:
Give a qualitative lift to
current industrial practice

!!!!!

CISS Structure

Institut for
Datalogi

Institut for
Datalogi

Institut for
Elektroniske Systemer

Institut for
Elektroniske Systemer

BRICS@Aalborg
Modelling and Validation;
Programming Languages;

Software Engineering

BRICS@Aalborg
Modelling and Validation;
Programming Languages;

Software Engineering

Embedded Systems
Communication;

HW/SW
Power Management

Embedded Systems
Communication;

HW/SW
Power Management

Distributed
Real Time Systems

Control Theory;
Real Time Systems;

Networking.

Distributed
Real Time Systems

Control Theory;
Real Time Systems;

Networking.

IKT VirksomhederIKT Virksomheder

Eksterne kontakter:
EE&CS Berkeley
ES Oldenborg
ES Holland
ARTIST

Eksterne kontakter:
EE&CS Berkeley
ES Oldenborg
ES Holland
ARTIST

MVTU
25.5 MDKK

MVTU
25.5 MDKK

Nordjyllands Amt
Aalborg Kommune
12 MDKK

Nordjyllands Amt
Aalborg Kommune
12 MDKK

AAU
12.75 MDKK

AAU
12.75 MDKK

Virksomheder
12.75 MDKK

Virksomheder
12.75 MDKK

Partners

� S-Card

� RTX Telecom

� Analog Devices

� Aeromark

� Simrad

� Danfoss

� Grundfos

� IAR Systems

� GateHouse

� Ericsson Telebit

� MAN B&W

� Aalborg Industries

� Motorola

� Skov� Blip Systems

� Novo Nordisk

� FOSS

� Exhausto

� ETI

� TK Systemtest

� SpaceCom

� Panasonic

� TDC Totalløsninger

Focus Areas

Applications

Tech
nology

Tools

Modeling

MethodsProtokoller

Design- og
Prog.sprog

Operativ
system

HW
 platform

GPSOpen source

Home automation
Mobile robotter

Intelligente sensorer
Ad hoc netværk

Mobiltlf
Audio/Video

Konsum elektr
Kontrolsystemer

Automobile
X-by wire

Al
go

rit
m

ik

SW
-u

dv
ikl

ing
Re

so
uc

e
(P

ow
er

) M
an

ge
m

en
t

Re
lia

bil
ity

Te
st

&
Va

lid
er

ing
Hy

br
ide

sy
ste

m
er

Ko
m

m
un

ika
tio

ns
te

or
i

Focus Areas

Applications

Tech
nology

Tools

Modeling

MethodsProtokoller

Design- og
Prog.sprog

Operativ
system

HW
 platform

GPSOpen source

Home automation
Mobile robotter

Intelligente sensorer
Ad hoc netværk

Mobiltlf
Audio/Video

Konsum elektr
Kontrolsystemer

Automobile
X-by wire

Al
go

rit
m

ik

SW
-u

dv
ikl

ing
Re

so
uc

e
(P

ow
er

) M
an

ge
m

en
t

Re
lia

bil
ity

Te
st

&
Va

lid
er

ing
Hy

br
ide

sy
ste

m
er

Ko
m

m
un

ika
tio

ns
te

or
i

Model based development

Intellingent sensor network
IT in automation

Embedded and RT OS

RT

RT Java Lab

Resource Optimal Scheduling

Testing and Verification

HW/SW Co-design / Design Space Exploration

Embedded Security

Local Æ Regional Æ National

HW&K

Kontrol

SW

Mekatr.

HW&K

SW

Mekatr.Kontrol

IIS

1)

2)

3)

DaNES
� Danish Network for

Intelligent Embedded
Systems

� PARTNERS
CISS, IMM, MCI,
PAJ Systemteknik
GateHouse A/S
ICE Power
Skov A/S
Terma A/S
Novo Nordisk A/S
IO Technologies

� Funded by
Højteknologifonden

� Budget
63 MDKK / 4 years

Local Æ Regional Æ National

DaNES

Quasimodo

Page 21

Computation resources

Power consumption

Memory usage

Communication bandwidth

Costs

Environment assumptions
•Timing constraints
•Hybrid behavior
•Arrival rates

Service requirements
•QoS
•Availability
•Fault tolerance

Quantitative System Properties in
Model-Driven-Design of Embedded Systems

Complex Systems

A very complex system

Klaus Havelund, NASA

Spectacular software bugs
Ariane 5

� The first Ariane 5 rocket was
launched in June, 1996. It used
software developed for the
successful Ariane 4. The rocket
carried two computers, providing
a backup in case one computer
failed during launch. Forty
seconds into its maiden flight, the
rocket veered off course and
exploded. The rocket, along with
$500 million worth of satellites,
was destroyed.

� Ariane 5 was a much more
powerful rocket and generated
forces that were larger than the
computer could handle. Shortly
after launch, it received an input
value that was too large. The
main and backup computers shut
down, causing the rocket to veer
off course.

Rotterdam Storm Surge Barrier

Spectacular software bugs
U.S.S. Yorktown, U.S. Navy

� When the sailor entered the
mistaken number, the computer
tried to divide by zero, which isn't
possible. The software didn't
check to see if the inputs were
valid before computing and
generated an invalid answer that
was used by another computer.
The error cascaded several
computers and eventually shut
down the ship's engines.

� In 1998, the USS Yorktown
became the first ship to test the
US Navy's Smart Ship program.
The Navy planned to use off-the-
shelf computers and software
instead of expensive U.S.S.
Yorktown, courtesy of U.S. Navy
custom-made machines. A sailor
mistakenly entered a zero for a
data value on a computer. Within
minutes, Yorktown was dead in
the water. It was several hours
before the ship could move
again.

Spectacular software bugs
Moon or Missiles

� The United States established the Ballistic
Missile Early Warning System (BMEWS)
during the Cold War to detect a Soviet
missile attack. On October 5, 1960 the
BMEWS radar at Thule, Greenland detected
something. Its computer control system
decided the signal was made by hundreds of
missiles coming toward the US.

� The radar had actually detected
the Moon rising over the horizon.
Unfortunately, the BMEWS
computer had not been
programmed to understand what
the moon looked like as it rose in
the eastern sky, so it interpreted
the huge signal as Soviet
missiles. Luckily for all of us, the
mistake was realized in time.

Spectacular software bugs
Therac 25

� The Therac-25 was withdrawn
from use after it was determined
that it could deliver fatal
overdoses under certain
conditions. The software would
shut down the machine before
delivering an overdose, but the
error messages it displayed were
so unhelpful that operators
couldn't tell what the error was,
or how serious it was. In some
cases, operators ignored the
message completely.

� The Therac-25 radiation therapy
machine was a medical device
that used beams of electrons or
photons to kill cancer cells.
Between 1985-1987, at least six
people got very sick after Therac-
25 treatments. Four of them
died. The manufacturer was
confident that their software
made it impossible for the
machine to harm patients.

“Malfunction 54”

““Malfunction 54

Malfunction 54””
“H-tilt”““HH--tilttilt””

IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18-41IEEE ComputerIEEE Computer, Vol. 26, No. 7, July 1993, pp. 18, Vol. 26, No. 7, July 1993, pp. 18--4141

Spectacular Software Bugs
…. continued

� INTEL Pentium II floating-point division
470 Mill US $

� Baggage handling system, Denver
1.1 Mill US $/day for 9 months

� Mars Pathfinder
� …….

Why T&V?
� Errors in (Embedded)

software are extremely
expensive

Michael Williams
Research Director, Ericsson,

SE

Why T&V?

� Errors in (Embedded)
software are
extremely expensive

� 30-40% of
development time
spent on (often ad-
hoc) testing.

� There is a enormous
potential for
improved methods
and tools.

� “Time-to-market” can
be reduced through
earli verification and
performance analysis

Michael Williams
Research Director, Ericsson,

SE

Testing vs. Verification

System

Verification and Test

/* Wait for events */
void OS_Wait(void);

/* Operating system visualSTATE process. Mimics a OS process for a
* visualSTATE system. In this implementation this is the mainloop
* interfacing to the visualSTATE basic API. */
void OS_VS_Process(void);

/* Define completion code variable. */
unsigned char cc;

void HandleError(unsigned char ccArg)
{
printf("Error code %c detected, exiting application.\n", ccArg);
exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a
* system. It purpose is to generate events. How this is done is up to
* you.
*/
void OS_Wait(void)
{
/* Ignore the parameters; just retrieve events from the keyboard

and
* put them into the queue. When EVENT_UNDEFINED is read from the
* keyboard, return to the calling process. */
SEM_EVENT_TYPE event;
int num;

/* Wait for events */
void OS_Wait(void);

/* Operating system visualSTATE process. Mimics a OS process for a
* visualSTATE system. In this implementation this is the mainloop
* interfacing to the visualSTATE basic API. */
void OS_VS_Process(void);

/* Define completion code variable. */
unsigned char cc;

void HandleError(unsigned char ccArg)
{
printf("Error code %c detected, exiting application.\n", ccArg);
exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a
* system. It purpose is to generate events. How this is done is up to
* you.
*/
void OS_Wait(void)
{
/* Ignore the parameters; just retrieve events from the keyboard

and
* put them into the queue. When EVENT_UNDEFINED is read from the
* keyboard, return to the calling process. */
SEM_EVENT_TYPE event;
int num;

Kode

Spec

ΦΦΦΦ

• Verifikation
Kode/Model mht Spec

• Test
System mht Model/Spec

• Verifikation
Kode/Model mht Spec

• Test
System mht Model/Spec

Model

Test versus Verification

Airbus Control Panel

T1 T3 T5 T1 … T4 T3

E F E E G H … H A

A

A

A A

A

A A

B

B B

B BBB

2n sequences of length n

TEST VERIFIKATION

Deadlock identified by
VERIFICATION
after sequence of

2000
msgs / < 1min.

UPPAAL

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

More complex systems

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

A simple program
int x=100;

Process INC
do
:: x<200 --> x:=x+1
od

Process DEC
do
:: x>0 --> x:=x-1
od

Process RESET
do
:: x=200 --> x:=0
od

(INC || DEC || RESET)

int x=100;

Process INC
do
:: x<200 --> x:=x+1
od

Process DEC
do
:: x>0 --> x:=x-1
od

Process RESET
do
:: x=200 --> x:=0
od

(INC || DEC || RESET)

Which values may
x take ?

Questions/Properties:
E<>(x>100)
E<>(x>200)
A[](x<=200)
E<>(x<0)
A[](x>=0)Possibly

Always

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Another simple program

int x=0;

Process P
do

x:=x+1
10 times

(P || P)

int x=0;

Process P
do

x:=x+1
10 times

(P || P)

What are the possible final values of x ?

int x=0;

Process P
int r

do
r:=x; r++; x:=r

10 times

(P || P)

int x=0;

Process P
int r

do
r:=x; r++; x:=r

10 times

(P || P)
Atomic stm.

Model-based
Approach

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Suggested Solution?

Model based
validation, verfication and testing

of software and hardware

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Traditional Software
Development

The Waterfall Model

Analyse

Design

Coding

Testing♦Costly in time-to-market and money
♦ Errors are detected late or never
♦ Application of models as early as possible

Problem
Area

Ru
nn

ing

Sy
ste

m

REV
IE

W
S

REV
IE

W
S

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Introducing, Detecting
and Repairing Errors
Liggesmeyer 98

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Introducing, Detecting
and Repairing Errors
Liggesmeyer 98

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Model-Driven Development

Design Model Specification
Verification & Refusal

Analysis
Validation

FORMAL M
ETHODS

Implementation
Testing

UML

Monitoring

Automatic
Code generation

Automatic
Test generation

Automatic
Monitoring

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Real-time Systems

sensors

actuators

Plant/Env
Continuous

Controller Program
DiscreteEg.:

•Realtime Protocols
•Pump Control
•Air Bags
•Robots
•Cruise Control
•ABS
•CD Players
•Production Lines

Real Time System
A system where correctness not only
depends on the logical order of events
but also on their timing!!

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Real-time Modeling

sensors

actuators

Plant
Continuous

Controller Program
Discrete

a

cb

1 2

43

a

cb

1 2

43

1 2

43

1 2

43

a

cb

UPPAAL Model

Model of
Environment
(non-deterministic/
User-supplied)

Model of
Tasks
(user supplied
/automatic?)

inputs

outputs

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Real-time Model-checking

sensors

actuators

Plant
Continuous

Controller Program
Discrete

a

cb

1 2

43

a

cb

1 2

43

1 2

43

1 2

43

a

cb

UPPAAL Model

Model of
Environment
(non-deterministic/
User-supplied)

Model of
Tasks
(user supplied
/automatic?)

inputs

outputs SAT φ ??

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Real-time Controller Synthesis

sensors

actuators

Plant
Continuous

Controller Program
Discrete

a

cb

1 2

43

a

cb

1 2

43

1 2

43

1 2

43

a

cb

Partial UPPAAL Model

Model of
Environment
(non-deterministic/
User-supplied)

Synthesis of
Tasks/Scheduler
(automatic)

inputs

outputs SAT φ !!

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Real-time Model-Based Testing

sensors

actuators

Plant
Continuous

Controller Program
Discrete

a

cb

1 2

43

a

cb

1 2

43

1 2

43

1 2

43

a

cb

UPPAAL Model

inputs

outputs

Test generation
(offline or
online) wrt.
Design Model

Conforms-to?

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Real-time Monitoring

sensors

actuators

Plant
Continuous

Controller Program
Discrete

a

cb

1 2

43

a

cb

1 2

43

1 2

43

1 2

43

a

cb

UPPAAL Model

Model of
Environment
(non-deterministic/
User-supplied)

Model of
Tasks
(user supplied
/automatic?)

inputs

outputs

Observed trace σ ∈ M ?

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Models
� A model is a simplified representation of the real world.
� Used gain confidence in the adequacy and validity of a

proposed system
� Models selected aspects
� Removes irrelevant details

Implementation

Model Realization

”implements??”

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Models
� Abstractions of the problem-space, not

solution space
� Domain Specific Modeling Languages

� Simulink/StateFlow
� UML,

� Early exploration of design-alternatives
� Automatic transformation

� Correctness-by-construction vs. Correctness-by-correction

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Model-based vs. MDD
� Model Driven Development:

� Model is the center of focus from analysis to
execution

� Model is gradually refined / transformed into
solution

� Model-based Development:
� (Unrelated) models used to support selected

development activities where appropriate

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

How?
Unified Model = State Machine!

a

b

x

y
a?

b?

x!

y!b?

Control states

Input
ports

Output
ports

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Tamagotchi
A C

Health=0 or Age=2.000

B

Passive Feeding Light

Clean

PlayDisciplineMedicine

Care

Tick

Health:=Health-1; Age:=Age+1

A
A

A

A

AA

A

A

Meal

Snack

B

B

ALIVE

DEAD

Health:=
Health-1

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

SYNCmaster

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Digital Watch

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

The SDL Editor
The SDL EditorThe SDL Editor

Process
level

Process
level

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

SPIN
, G

erald H
olzm

ann A
T&

T

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

visualSTATE

� Hierarchical state
systems

� Flat state systems
� Multiple and inter-

related state
machines

� Supports UML
notation

� Device driver
access

VVS
w Baan Visualstate, DTU (CIT project)

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Rhapsody

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

ESTEREL

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

U
PPA

A
L

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

NModel

FSM(0,
AcceptingStates(), Transitions(
t(0,ShowTitles(),1),
t(1,SortByFirst(),2),
t(2,SortByMostRecent(),3),
t(3,ShowText(),4)),
Vocabulary("ShowTitles","ShowText",
"SelectMessages","SelectTopics",
"SortByFirst","SortByMostRecent")

)

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

‘State Explosion’
problem

a

cb

1 2

43

1,a 4,a

3,a 4,a

1,b 2,b

3,b 4,b

1,c 2,c

3,c 4,c

All combinations = exponential in no. of components

M1 M2

M1 x M2

Provably theoretical

intractable

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Train Simulator
1421 machines
11102 transitions
2981 inputs
2667 outputs
3204 local states
Declare state sp.: 10^476

BUGS ?

VVS
visualSTATE

Our techniuqes has reduced verific
ation

time with several orders of magnitude

(ex 14 days to 6 sec)

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Modelling and Analysis

Software Model A

Requirement F Yes,
Prototypes
Executable Code
Test sequences

No!
Debugging Information

Tools: UPPAAL, visualSTATE,
ESTEREL, SPIN, Statemate, FormalCheck,
VeriSoft, Java Pathfinder,…

TOOLTOOL

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Modelling and Analysis

Software Model A

Requirement F Yes,
Prototypes
Executable Code
Test sequences

No!
Debugging Information

TOOLTOOL

BRICSBRICS

Semantics

Logic

Algorithmics

Tools: UPPAAL, visualSTATE,
ESTEREL, SPIN, Statemate, FormalCheck,
VeriSoft, Java Pathfinder,…

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Finite State Machines

• Language versus behaviour
• Determinism versus non-determinism
• Composition and operations
• Variants of state machines

Moore, Mealy, IO automater, UML ….

Most fundamentae
model in Computer Science:

Kleene og Moore

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

State Machines

Model of Computation
• Set of states
• A start state
• An input-alfabet
• A transition funktion, mapping

input symbols and state to
next state

• One ore more accept states.
• Computation starts from start

state with a given input string
(read from left to right)

inc

inc

inc

dec

dec

dec

Modulo 3 counter

inc inc dec inc inc dec inc

inc inc dec inc dec inc dec inc
input string

☺

/

0, 1, 2, 0, 1, 2, 0, 1,

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

State Machines

Variants

Machines may have
actions/output associated with
state– Moore Machines.

0 1

2
inc

inc

inc

dec

dec

dec

inc inc dec inc inc dec inc

0 1 2 1 2 0 2 1

inputstreng

outputstreng

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

State Machines

Varianter

Machines may have
actions/output associated with
med transitions – Mealy
Machiner.

Transitions unconditional of
input (nul-transitions).

Several transitions for given
for input and state
(non-determinisme).

inc/0

inc/1

inc/2

dec/1

dec/0

dec/2

inc inc dec inc inc dec inc

1 2 1 2 0 2 1

inputstreng

outputstreng

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

State Machines

Variants

Symbols of alphabet patitioned
in input- and output-actions

(IO-automata)

inc?

inc?

inc?

dec?

dec?

dec?

0! 1!

2!

0! 0! 0! inc? inc? 2! 2! dec? 1!

interaction

Interacting State
Machines

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Home-Banking?

� Are the accounts in balance after the
transactions?

int accountA, accountB; //Shared global variables
//Two concurrent bank costumers

Thread costumer1 () {
int a,b; //local tmp copy

a=accountA;
b=accountB;
a=a-10;b=b+10;
accountA=a;
accountB=b;

}

Thread costumer2 () {
int a,b;

a=accountA;
b=accountB;
a=a-20; b=b+20;
accountA=a;
accountB=b;

}

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Home Banking

A[] (pc1.finished and pc2.finished) imply (accountA+accountB==200)?

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Home Banking
int accountA, accountB; //Shared global variables
Semaphore A,B; //Protected by sem A,B
//Two concurrent bank costumers

Thread costumer1 () {
int a,b; //local tmp copy

wait(A);
wait(B);
a=accountA;
b=accountB;
a=a-10;b=b+10;
accountA=a;
accountB=b;
signal(A);
signal(B);

}

Thread costumer2 () {
int a,b;

wait(B);
wait(A);
a=accountA;
b=accountB;
a=a-20; b=b+20;
accountA=a;
accountB=b;
signal(B);
signal(A);

}

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Semaphore FSM Model
Binary Semaphore Counting Semaphore

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Composition

A

B

X

Y

h! h?

AX

BY

IO Automater (2-vejs synkronisering)

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Composition

A

B

X

Y

h! h?

AX

BY
C

k!

CX

k!

IO Automater (2-vejs synkronisering)

In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

CISS

Semaphore Solution?

1. A[] (mc1.finished and mc2.finished) imply (accountA+accountB==200)
2. E<> mc1.critical_section and mc2.critical_section
3. A[] not (mc1.finished and mc2.finished) imply not deadlock ÷

1. Consistency? (Balance)
2. Race conditions?
3. Deadlock?

