
Introduction to
Automated Unit Testing

(xUnit)

Brian Nielsen
Arne Skou
{bnielsen | ask}@cs.aau.dk



Conventional Test 
Execution

Ad hoc manner
Manual stimulation & observation
E.g. adding a function to a module, which 
runs tests on the module’s functions
Uncomenting or deleting test code / drivers 
/ printf /#ifdefs
Assert and debug builds
Home-brewed test-code and test runners



Automated Testing
“Code that isn’t tested doesn’t work”
“Code that isn’t regression tested suffers 
from code rot (breaks eventually)”
“If it is not automated it is not done!”

Boring
Repetitive
Necessary
Error-prone (for 
humans)
Better done by you 
than your users



What is a testing 
framework?

A test framework is a software tool for 
writing and running unit-tests
provides reusable test functionality 
which:

Enables automatic execution for regression 
tests
Is standardized 
Easy to use
GUI-test case browser/runner 
Test report generation



What is a testing 
framework

Programmer Friendly
Test cases written in same language as 
implementation
Well integrated in IDE’s



What is xUnit?
A set of “Frameworks” for programming 
and automated execution of test-cases
X stands for programming language

Most Famous is J-UNIT for Java
But exists for almost all programming 
languages
C-unit, Cpp-Unit, DUnit, JUnit NUnit, …

A framework is a collection of classes, 
procedures, and macros 



Basic Use of FrameWork
cunit.lib

myUnitTests.c

myUnit.c

C-
compiler

myUnitTests.exe

Test-report.xml



Concepts
Assertions

Boolean expression that compares expected and actual 
results
The basic and smallest building-block
General: ASSERT (expected, actual)

Test Case 
A class that extends “TestCase”s
A composition of concrete test procedures
May contain several assertions and test for several test 
objectives
E.g all test of a particular function

Test Suite 
Collection of related test cases
Can be executed automatically in a single command



xUnit
Object

YourClass

TestCase

TestYourClass

SomeMethod1

SomeMethod2

Test
SomeMethod1

Test
SomeMethod2

Test
SomeMethod1

and SomeMethod2

setUp
tearDown



Java Example
class ClassifyTriangle {

public enum TriangleKind { invalidTriangle, equilateralTriangle, 
isoscelesTriangle, scaleneTriangle};     

public TriangleKind classifyTriangle(int a, int b, int c) {
…
return kind;

}

public String checkTriangle(String[] args) {
…

}
}



Java Example
import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

public class ClassifyTriangleTest extends TestCase {
protected void setUp() { }
protected void setUp() { }

public void testEquilateral() {
ClassifyTriangle c=new ClassifyTriangle();
assertEquals(equilateralTriangle, c.classifyTriangle(5,5,5));
//add more tests here

}
public void testCommandLine() {

ClassifyTriangle c=new ClassifyTriangle();
assertEquals("Error Code 40!\n",

c.checkTriangle({"-1", "Hello World", "-1"});
}
public static void main (String[] args) {

junit.textui.TestRunner.run(ClassifyTriangleTest.class);
}

}



Test Reports
C:\NovoUnitTest\TriangleDemo\cppunitDemo>Debug\cppunitDemo.exe
.F...

c:\novounittest\triangledemo\testtriangle\testtriangle.cpp(30):Assertion
Test name: TriangleTests::validClassification
equality assertion failed
- Expected: 1
- Actual  : 4

Failures !!!
Run: 4   Failure total: 1   Failures: 1   Errors: 0



Test Runner XML file



Advice: xUnit style
Test cases exhibits isolation 

Independent of other tests
Execution order irrelevant

Set up an independent environment 
setUp / tearDown methods scenario 

Each test case performs a distinct logical 
check

⇒ one or few asserts per test method
BUT consider amount of test code declarations to be 
written (when a assert fails the test method is stopped 
and no further asserts are checked).

Test expected errors and exceptions



Advice: xUnit style
Make them fast;

If slow, developers won’t run them.
Smoke test suites
Complete test suites

All developers must know about them;
Everyone who touches the code must run the 
tests.
Add to common code-repository 

Make test-code as nice and readable as 
implementation code

Documentation, Maintainability



Advice: Daily Builds
Regression testing “must” be automated

This requires they report pass/fail results in a 
standardized way

Daily (Nightly) builds and testing
Clean & check out latest build tree
Run tests
Put results on a web page & send mail (if tests fail)



Advice: Version Control
Keep test code in a separate directory
Keep both tests-sources and 
implemenation-source in version control
Don’t checkin unless version passes all 
tests



Advice: Application
Design and program for testability
Directly applicable to 

Pure function libraries
API

(With some footwork also user interfaces, 
network-, web-, and database 
applications)



Advice: xUNIT principles
Write test suite for each unit in the program.
All test can be executed (automatically) at any 
time.
For each program modification all tests must be 
passed before the modification is regarded as 
complete - regression testing
Test First – implement later!
Originally based on “eXtreme Programming”
principles:

Lightweight software development methodology 
– by programmers for programmers

TDD (Test Driven Development) cycle
1. Write test case, and check it fails
2. Write the new code
3. Check that the test passes (and maybe refactor, re-test)



Conclusions
Code that isn’t tested doesn’t work”
“Code that isn’t regression tested suffers 
from code rot (breaks eventually)”
A unit testing framework enables efficient 
and effective unit & regression testing
Use xUNIT to store and maintain all the 
small tests that you write anyway
Write tests instead of playing with 
debugger and printf – tests can be 
automatically repeated



END


