
CISS

Test case design techniques I:
Whitebox testing

CISS

• What is a test case
• Sources for test case derivation
• Test case execution
• White box testing

• Flowgraphs
• Test criteria/coverage

• Statement / branch / decision / condition / path coverage
• Looptesting

• Data flow testing
• Def-use pairs
• Efficiency of different criteria

Overview

CISS

Types of Testing

CISS
implementation

code

detailed design

requirements

specification

acceptance
test

system
test

module
test

unit-test

V - Model

integration
test

architecture
spec

acceptance test spec

system test spec

integration test spec

module test spec

unit
test spec

What is a Test?

Software
under
Test

Test Data Output

Test Cases

Correct
result?

Oracle

CISS

Complete testing is impossible

⇓
Testing cannot guarantee the absence of faults

⇓
How to select subset of test cases from all possible test cases

with a high chance of detecting most faults ?

⇓
Test Case Design Strategies

Development of Test Cases

CISS

Sources for test case design

• The requirements to the program (its specification)
• An informal description
• A set of scenarios (use cases)
• A set of sequence diagrams
• A state machine

• The program itself
• A set of selection criteria
• Heuristics
• Experience

CISS

Test case execution

• Single stepping via a debugger
• Very clumsy for large programs
• Hard to rerun

• Manual via a set of function calls
• Hard to check when the number of test cases grows

• Fully automatic without programmers assistance
• Not possible so far
• Offline/online

• Fully automatic with programmers assistance
• Started with Junit
• State of the art
• Growing interest

CISS

• Testing based on program code

• Extent to which (source) code is executed, i.e. Covered

• Different kinds of coverage :

• statement coverage

• path coverage

• (multiple-) condition coverage

• decision / branch coverage

• loop coverage

• definition-use coverage

• …..

White-Box Testing

CISS

White box testing: flow graphs

• Syntactic abstraction of source code

• Ressembles classical flow charts

• Forms the basis for white box test case generation principles

• Purpose of white box test case generation: Coverage of the flow
graph in accordance with one or more test criteria

CISS

Flow graph construction

sequence

if

while

until

case

CISS

• Execute every statement of a program

• Relatively weak criterion

• Weakest white-box criterion

White-Box : Statement Testing

CISS

1 PROGRAM maxsum (maxint, value : INT)
2 INT result := 0 ; i := 0 ;
3 IF value < 0
4 THEN value := - value ;
5 WHILE (i < value) AND (result <= maxint)
6 DO i := i + 1 ;
7 result := result + i ;
8 OD;
9 IF result <= maxint
10 THEN OUTPUT (result)
11 ELSE OUTPUT (“too large”)
12 END.

Example : Statement Testing
(result = 0+1+…+|value|, if this <= maxint, error otherwise)

CISS

1 PROGRAM maxsum (maxint, value : INT)
2 INT result := 0 ; i := 0 ;
3 IF value < 0
4 THEN value := - value ;
5 WHILE (i < value) AND (result <= maxint)
6 DO i := i + 1 ;
7 result := result + i ;
8 OD;
9 IF result <= maxint
10 THEN OUTPUT (result)
11 ELSE OUTPUT (“too large”)
12 END.

1

2

3 4

5 6-7

9

1011

12

CISS

Flow graph: Cyclomatic complexity

• #edges - #nodes + 2
• Defines the maximal number of test cases needed to provide

statement coverage
• Mostly applicable for Unit testing
• Strategy for statement coverage:

1. Derive flow graph
2. Find cyclomatic complexity #c
3. Determine at most #c independent paths through the program

(add one new edge for each test case)
4. Prepare test cases covering the edges for each path (possibly

fewer than #c cases)

CISS

Cyclomatic complexity?

1 PROGRAM maxsum (maxint, value : INT)
2 INT result := 0 ; i := 0 ;
3 IF value < 0
4 THEN value := - value ;
5 WHILE (i < value) AND (result <= maxint)
6 DO i := i + 1 ;
7 result := result + i ;
8 OD;
9 IF result <= maxint
10 THEN OUTPUT (result)
11 ELSE OUTPUT (“too large”)
12 END.

1

2

3 4

5 6-7

9

1011

12

CISS

Example : Statement Testing

Tests for complete
statement coverage:

maxint value

10 -1

0 -1

i:=i+1;
result:=result+i;

value:= -value;

(i<value) and
(result<=maxint)

result<=maxint

value < 0

output(result); output(“too large”);

exit

start

yes

no

no

yes

yes no

CISS

• Execute every possible path of a program,

i.e., every possible sequence of statements

• Strongest white-box criterion

• Usually impossible: infinitely many paths (in case of loops)

• So: not a realistic option

• But note : enormous reduction w.r.t. all possible test cases

(each sequence of statements executed for only one value)

White-Box : Path Testing

CISS

Example : Path Testing

(i<value) and
(result<=maxint)

i:=i+1;
result:=result+i;

result<=maxint

value < 0 value:= -value;

output(result); output(“too large”);

exit

start

Path:

start

i:=i+1;
result:=result+i;
i:=i+1;
result:=result+i;
….
….
….
i:=i+1;
result:=result+i;
output(result);
exit

yes

no

no

yes

yes no

CISS

• Branch testing == decision testing

• Execute every branch of a program :

each possible outcome of each decision occurs at least once

• Example:

• IF b THEN s1 ELSE s2

• IF b THEN s1; s2

• CASE x OF
1 : ….
2 : ….
3 : ….

White-Box : Branch Testing

CISS

Example : Branch Testing

Tests for complete
statement coverage:
maxint value

10 -1

0 -1

is not sufficient for
branch coverage;(i<value) and

(result<=maxint)

i:=i+1;
result:=result+i;

result<=maxint

value < 0 value:= -value;

output(result); output(“too large”);

exit

start

yes

no

no

yes

yes no

value < 0

Take:

maxint value

10 3

0 -1

for complete
branch coverage

CISS

Example : Branch Testing

i:=i+1;
result:=result+i;

value:= -value;

(i<value) and
(result<=maxint)

result<=maxint

value < 0

output(result); output(“too large”);

exit

start

yes

no

no

yes

yes no

maxint value

-1 -1

Needed :
Combination of decisions

10 -3

10 3

-1 -1

But:
No green path !

10 3

-1 -1

CISS

Example : Branch Testing

i:=i+1;
result:=result+i;

value:= -value;

(i<value) and
(result<=maxint)

result<=maxint

value < 0

output(result); output(“too large”);

exit

start

yes

no

no

yes

yes no

Sometimes there are
infeasible paths
(infeasible combinations
of conditions)i:=i+1;

result:=result+i;

value:= -value;

(i<value) and
(result<=maxint)

result<=maxint

value < 0

output(result); output(“too large”);

exit

start

yes

no

no

yes

yes no

CISS

• Design test cases such that each possible outcome

of each condition in each decision occurs at least once

• Example:

• decision (i < value) AND (result <= maxint)
consists of two conditions : (i < value) AND (result <= maxint)
test cases should be designed such that each gets value
true and false at least once

White-Box : Condition Testing

CISS

Example : Condition Testing

(i = result = 0) :

maxint value i<value result<=maxint

-1 1 true false

1 0 false true
gives condition coverage
for all conditions

i:=i+1;
result:=result+i;

value:= -value;

(i<value) and
(result<=maxint)

result<=maxint

value < 0

output(result); output(“too large”);

exit

start

yes

no

no

yes

yes no

But it does not preserve
decision coverage

⇓
always take care that
condition coverage
preserves decision coverage :
decision / condition coverage

CISS

• Design test cases for each combination of conditions

• Example:
• (i < value) (result <= maxint)

false false
false true
true false
true true

• Implies decision-, condition-, decision/condition coverage

• But : exponential blow-up

• Again : some combinations may be infeasible

White-Box : Multiple Condition Testing

CISS

White-box: loop testing

• Statement and branch coverage are not sufficient
• Single loop strategy:

• Zero iterations
• One iteration
• Two iterations
• Typical number of iterations
• n-1, n, and n+1 iterations (n maximum number of allowable

iterations)
• Nested loop strategy:

• Single loop strategy often intractable
• Select minimum values for outer loop(s)
• Treat inner loop as a single loop
• Work ‘outwards’ and choose typical values for inner loops

• Concatenated loops:
• Treat as single, if independent
• Treat as nested, if dependent

CISS

Example : Loop testing

(i<value) and
(result<=maxint)

i:=i+1;
result:=result+i;

result<=maxint

value < 0 value:= -value;

output(result); output(“too large”);

exit

start

yes

no

no

yes

yes no

Tests for complete
loop coverage:

maxint value

15 0

15 1

15 2

15 3

6 4

15 5

CISS

White-box testing: Data Flow criteria

• Basic idea: For each variable definition (assignment), find a
path (and a corresponding test case), to its use(s). A pair
(definition,use) is often called a DU pair.

• Three dominant strategies:
• All-defs (AD) strategy: follow at least one path from each definition

to some use of it
• All-uses (AU) strategy: follow at least one path for each DU pair
• All-du-uses strategy (ADUP): follow all paths between a DU pair

• Complements the testing power of decision coverage

CISS

Example: All-uses coverage
1 PROGRAM maxsum (maxint, value : INT)
2 INT result := 0 ; i := 0 ;
3 IF value < 0
4 THEN value := - value ;
5 WHILE (i < value) AND (result <= maxint)
6 DO i := i + 1 ;
7 result := result + i ;
8 OD;
9 IF result <= maxint
10 THEN OUTPUT (result)
11 ELSE OUTPUT (“too large”)
12 END.

1

2

3 4

5 6-7

9

1011

12

Dm,v

Dr,i

Uv
Uv;Dv

Ui,v,r,m

Ur,i;Dr,i

Ur,m

Ur

Def-use pairs:
1-3,1-5,1-9,1-4
2-5,2-9,2-6
4-5
6-5,6-9,6-11
6-5-6

Tests for complete all-uses coverage:
maxint value

0 0
0 -1
10 1

10 2

CISS

White-Box : Overview

statement
coverage

condition
coverage

decision
(branch)
coverage

decision/
condition
coverage

path
coverage

multiple-
condition
coverage

CISS

White-Box : Overview

statement
coverage

all defs
coverage

decision
(branch)
coverage

all uses
coverage

path
coverage

all du paths
coverage

CISS

Additional techniques: mutation and
random testing

• Mutation testing:
• Intended for evaluating the test cases
• Create at set of slightly modified mutants of the original

program containing errors
• Run the test cases against the mutants
• Criteria

• All mutants must fail (strong)
• All mutants will eventually fail (weak)

• Random testing:
• Basic idea: run the program with arbitrary inputs
• Inherent problems: How to define the oracle for arbitrary

inputs and how to decide to stop?
• Advantage: The program structure can be ignored

CISS

Efficiency of white-box techniques:
two studies

Strategy #test cases %bugs found
Random 35 93.7
Branch 3.8 91.6
All-uses 11.3 96.3

Random 100 79.5
Branch 34 85.5
All-uses 84 90.0

