Test case design techniques |I:
Whitebox testing

Overview

What is a test case
Sources for test case derivation
Test case execution

White box testing
* Flowgraphs
* Test criteria/coverage
Statement / branch / decision / condition / path coverage

Looptesting
Data flow testing

Def-use pairs
Efficiency of different criteria

Types of Testing

characteristics

- security

- reliability

- robustness

- performance

- user-friendlyness

- functional behaviour

| |
unit white-box black-box

module
integration

system

fevel of detail

V - Model

acceptance test spec

regquirements

.) system test Spec
specification

architecture
spec

detailed design

- test spec
Implementation -
code

What is a Test?

Test Cases

Test Data / @

Correct
\ Soft\évare
under
/

Development of Test Cases

Complete testing is impossible

U

Testing cannot guarantee the absence of faults

U

How to select subset of test cases from all possible test cases

with a high chance of detecting most faults ?

U

Test Case Design Strategies

Sources for test case design

The requirements to the program (its specification)
* An informal description
* A set of scenarios (use cases)
* A set of sequence diagrams
* A state machine
The program itself
A set of selection criteria
Heuristics
Experience

Test case execution

Single stepping via a debugger
* Very clumsy for large programs
e Hard to rerun
Manual via a set of function calls
e Hard to check when the number of test cases grows
Fully automatic without programmers assistance
* Not possible so far
e Offline/online
Fully automatic with programmers assistance
e Started with Junit
» State of the art
e Growing interest

White-Box Testing

e Testing based on program code
e Extent to which (source) code is executed, i.e. Covered

e Different kinds of coverage :
e statement coverage
path coverage
(multiple-) condition coverage
decision / branch coverage
loop coverage

definition-use coverage

White box testing: flow graphs

Syntactic abstraction of source code
Ressembles classical flow charts
Forms the basis for white box test case generation principles

Purpose of white box test case generation: Coverage of the flow
graph in accordance with one or more test criteria

Flow graph construction

sequence

White-Box . Statement Testing

e Execute every statement of a program
e Relatively weak criterion

* Weakest white-box criterion

Example : Statement Testing

(result = 0+1+...+|value|, if this <= maxint, error otherwise)

PROGRAM maxsum (maxint, value : INT)
INT result:=0; 1:=0;
IF value <0
THEN value := -value;
WHILE (i<value) AND (result <= maxint)
DO | =1+ 1;
result := result +1i;
OD;
IF result <= maxint
THEN OUTPUT (result)
ELSE OUTPUT (“too large”)

1
2
3
4
)
6
7
8
)

PROGRAM maxsum (maxint, value : INT)
INT result:=0; i:=0;
IF value<O

THEN value := -value;
WHILE (i<value) AND (result <= maxint)
DO I =1+1;

result := result +1;

OD;

IF result <= maxint

THEN OUTPUT (result)
ELSE OUTPUT (“too large”)

Flow graph: Cyclomatic complexity

#edges - #nodes + 2

Defines the maximal number of test cases needed to provide
statement coverage

Mostly applicable for Unit testing

Strategy for statement coverage:
Derive flow graph
Find cyclomatic complexity #c

Determine at most #c independent paths through the program
(add one new edge for each test case)

Prepare test cases covering the edges for each path (possibly
fewer than #c cases)

Cyclomatic complexity?

PROGRAM maxsum (maxint, value : INT)

INT result:=0; i1:=0;
IF value<0
THEN value := -value;
WHILE (i<value) AND (result <= maxint)
DO I =1+1;

result := result +1;
OD;
IF result <= maxint
THEN OUTPUT (result)
ELSE OUTPUT (“too large”)

Example : Statement

value:= -value;

I=i+1; _
result:=result+i;

(i<value) and
result<=maxint

Tests for complete
statement coverage:

maxint value
10 -1
0] -1

White-Box : Path Testing

Execute every possible path of a program,

l.e., every possible sequence of statements

Strongest white-box criterion

Usually impossible: infinitely many paths (in case of loops)
So: not a realistic option

But note : enormous reduction w.r.t. all possible test cases

(each sequence of statements executed for only one value)

Example : Path

value:= -value;

=R _
result:=result+i;

(i<value) and
result<=maxint

esting

Path:

start

I:=i+1;
result:=result+i;
=i+,
result:=result+i;

I=i+1;
result:=result+i;
output(result);
exit

White-Box : Branch Testing

Branch testing == decision testing

Execute every branch of a program :

each possible outcome of each decision occurs at least once

Example:

* IF b THEN sl ELSE s2
* IF b THEN s1;s2
 CASE x OF

Example : Branch Testing

Tests for complete

value <0 value:= -value; statement coverage:
maxint value

10 -1

i=i+1; 0] -1
result:=result+i;

IS not sufficient for

(i<value) and branch coverage;
result<=maxint

Take:

maxint value
10 3

0 -1

for complete
branch coverage

Example : Branch

value:= -value;

I=i+1; _
result:=result+i;

(i<value) and
result<=maxint

output(result); output(“too large™);

esting

maxint value

But:
No green path !

Needed :
Combination of decisions

10 -3

Example : Branch

value:= -value;

I=i+1; _
result:=result+i;

(i<value) and
result<=maxint

result<=maxin

output(result); output(“too large™);

esting

Sometimes there are
Infeasible paths

(infeasible combinations
of conditions)

White-Box : Condition Testing

e Design test cases such that each possible outcome

of each condition in each decision occurs at least once

e Example:

decision (i<value) AND (result <= maxint)

consists of two conditions : (i <value) AND (result <= maxint)
test cases should be designed such that each gets value

true and false at least once

Example : Condition Testing

?

value:= -value;

I=i+1; _
result:=result+i;

(i<value) and
result<=maxint

(I=result=0):
maxint value i<value result<=maxint
-1 1 true false

1 0 false true

gives condition coverage
for all conditions

But it does not preserve
decision coverage

J

always take care that
condition coverage
preserves decision coverage :

decision / condition coverage

CISS

White-Box : Multiple Condition Testing

Design test cases for each combination of conditions

Example:

e (i<value) (result <= maxint)
false false
false true
true false
true true

Implies decision-, condition-, decision/condition coverage
But . exponential blow-up

Again : some combinations may be infeasible

White-box: loop testing

Statement and branch coverage are not sufficient

Single loop strategy:
Zero iterations
One iteration
Two iterations
Typical number of iterations

n-1, n, and n+1 iterations (n maximum number of allowable
iterations)

Nested loop strategy:

* Single loop strategy often intractable

* Select minimum values for outer loop(s)

* Treat inner loop as a single loop

* Work ‘outwards’ and choose typical values for inner loops
Concatenated loops:

* Treat as single, if independent

* Treat as nested, if dependent

Example : Loop testing

Tests for complete
loop coverage:

value:= -value;
maxint value

15
I=i+1; 15
result:=result+i; 15

(i<value) and 15
result<=maxint 5

15

White-box testing: Data Flow criteria

Basic idea: For each variable definition (assignment), find a
path (and a corresponding test case), to its use(s). A pair
(definition,use) is often called a DU pair.

Three dominant strategies:

* All-defs (AD) strategy: follow at least one path from each definition
to some use of it

* All-uses (AU) strategy: follow at least one path for each DU pair
* All-du-uses strategy (ADUP): follow all paths between a DU pair

Complements the testing power of decision coverage

Example: All-uses coverage

PROGRAM maxsum (maxint, value : INT)

INT result:=0; 1:=0;
IF value <0
THEN value := -value;
WHILE (i<value) AND (result <= maxint)
DO I =0i+1;

result := result +i;
OD;
IF result <= maxint
THEN OUTPUT (result)
ELSE OUTPUT (“too large”)

Def-use pairs: Tests for complete all-uses coverage:
1-3,1-5,1-9,1-4 maxint value

2-5,2-9,2-6 0 0

4-5 0 -1

6-5,6-9,6-11 10 1

6-5-6

10 2

White-Box : Overview

statement
coverage

condition ?bergr%%r;
coverage (branch)

decision/
condition
coverage

multiple-
condition
coverage

path
coverage

White-Box : Overview

statement
coverage

decision

all defs
coverage ég{/%?gg)e

all uses
coverage

all du paths
coverage

path
coverage

Additional techniques: mutation and
random testing

* Mutation testing:
Intended for evaluating the test cases

Create at set of slightly modified mutants of the original
program containing errors

Run the test cases against the mutants
Criteria

All mutants must fail (strong)

All mutants will eventually fail (weak)

* Random testing:
* Basic idea: run the program with arbitrary inputs

* Inherent problems: How to define the oracle for arbitrary
inputs and how to decide to stop?

* Advantage: The program structure can be ignored

Efficiency of white-box techniques:
two studies

Strategy |#test cases |(%bugs found
Random 35 903.7
Branch 3.8 91.6
All-uses 11.3 96.3

Random
Branch
All-uses

