Software Engineering

A Practitioner’s Approach

_

European Adaptation

Fifth Edition

Roger S. Pressman

adapted by

Darrel Ince

he importance of software testing and its implications with respect to
software quality cannot be overemphasized. To quote Deutsch [DEU79]:

The development of software systems involves a series of production activities
where opportunities for injection of human fallibilities are enormous. Errors may
begin to occur at the very inception of the process where the objectives...may be
erroneously or imperfectly specified, as well as [in] later design and development
stages...Because of human inability to perform and communicate with perfection,
software development is accompanied by a quality assurance activity.

Software testing is a critical element of software quality assurance and rep-
resents the ultimate review of specification, design, and code generation.

The increasing visibility of software as a system element and the attendant
“costs” associated with a software failure are motivating forces for well planned,
thorough testing. It is not unusual for a software development organization to
expend between 30 and 40 per cent of total project effort on testing. In the
extreme, testing of human-rated software (e.g., flight control, nuclear reactor
monitoring) can cost three to five times as much as all other software engi-
neering steps combined!

What is it? Once source code has
been generated, software must be
tested to uncover (and correct) as
many errors as possible before delivery to your cus-
tomer. Your goal is to design a series of test cases
that have a high likelihood of finding errors—but
how? That's where software testing techniques
enter the picture. These techniques provide sys-
tematic guidance for designing tests that: (1) exer-
cise the internal logic of software components, and
(2) exercise the input and output domains of the pro-
gram to uncover errors in program function, behav-
iour. and performance.
Who does it? During early stages of testing, the a soft-
ware engineer performs all tests. However, as the

testing process progresses, testing specialists may
become involved.

Why is it important? Reviews and other SQA activities
can and do uncover errors, but they are not suffi-
cient. Every time the program is executed, the cus-
tomer tests itl Therefore, you have to execute the
program before it gets to the customer with the spe-
cific intent of finding and removing all errors. In
order to find the highest possible number of errors,
tests must be conducted systematically, and test
cases must be designed using disciplined tech-
niques.

What are the steps? Software is tested from two dif-
ferent perspectives: (1) internal program logic is
exercised using "white box" test case design tech-

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 427

QUICK niques. Software requirements are ments is designed and documented; expected
Hele)d exercised using "black box" test results are defined, and actual results are recorded.
case design techniques. In both ~ How dolensure that I've done it right? When you begin
cases, the intent is to find the maximum number of {esting, change your point of view. Try hard to
errors with the minimum amount of effort and time. “break” the software! Design test cases in a disci-
What is the work product? A set of test cases, designed plined fashion and review the tests cases you do
to exercise both internal logic and external require- create for thoroughness.
In this chapter, we discuss software testing fundamentals and techniques for soft-
ware test case design.
17.1 SOFTWARE TESTING FUNDAMENTALS -

mee:

“A working program
remains an elusive
thing of beauty."

Robert Dunn

Testing presents an interesting anomaly for the software engineer. During earlier def-
inition and development phases, the engineer attempts to build software from an
abstract concept to a tangible product. Now comes testing. The engineer creates a
series of test cases that are intended to “demolish” the software that has been built.
In fact, testing is the one step in the software process that could be viewed (psycho-
logically, at least) as destructive rather than constructive.

Software engineers are by their nature constructive people. Testing requires that
the developer discard preconceived notions of the “correctness” of software just devel-
oped and overcome a conflict of interest that occurs when errors are uncovered.
Beizer [BEI90] describes this situation effectively when he states:

There's a myth that if we were really good at programming, there would be no bugs to catch.
If only we could really concentrate, if only everyone used structured programming, top-
down design, decision tables, if programs were written in SQUISH, if we had the right sil-
ver bullets, then there would be no bugs. So goes the myth. There are bugs, the myth says,
because we are bad at what we do; and if we are bad at it, we should feel guilty about it.
Therefore, testing and test case design is an admission of failure, which instils a goodly
dose of guilt. And the tedium of testing is just punishment for our errors. Punishment for
what? For being human? Guilt for what? For failing to achieve inhuman perfection? For not
distinguishing between what another programmer thinks and what he says? For failing to
be telepathic? For not solving human communications problems that have been kicked
around...for forty centuries?

Should testing instil guilt? Is testing really destructive? The answer to these questions
is “No!” However, the objectives of testing are somewhat different than we might
expect.

What is our

primary
objective when
we fest
software?

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

17.1.1 Testing Objectives

In an excellent book on software testing, Glen Myers [MYE79] states a number of
rules that can serve well as testing objectives:

1. Testing is a process of executing a program with the intent of finding an
€ITOor.

2. Agood test case is one that has a high probability of finding an as-yet undis-
covered error.

3. A successful test is one that uncovers an as-yet undiscovered error.

The above objectives imply a dramatic change in viewpoint. They move counter to
the commonly held view that a successful test is one in which no errors are found.
If testing is conducted successfully (according to the objectives stated above), it
will uncover errors in the software. As a secondary benefit, testing demonstrates that
software functions appear to be working according to specification, that behavioural
and performance requirements appear to have been met. In addition, data collected
as testing is conducted provides a good indication of software reliability and some
indication of software quality as a whole. But testing cannot show the absence of
errors and defects, it can only show that software error and defects are present.

17.1.2 Testing Principles

Before applying methods to design effective test cases, a software engineer must
understand the basic principles that guide software testing. Davis [DAV95] suggests
a set! of testing principles which have been adapted for use in this book:

* All tests should be traceable to customer requirements. As we have seen, the
objective of software testing is to uncover errors. It follows that the most
severe defects (from the customer’s point of view) are those that cause the
program to fail to meet its requirements.

. Tests should be planned long before testing begins. Test planning (Chapter 18)
can begin as soon as the requirements model is complete. Detailed definition
of test cases can begin as soon as the design model has been solidified.
Therefore, all tests can be planned and designed before any code has been
generated.

. The Pareto principle applies to software testing. Stated simply, the Pareto prin-
ciple implies that 80 percent of all errors uncovered during testing will likely
be traceable to 20 percent of all program components. The problem, of
course, is to isolate these suspect components and to thoroughly test them.

. Testing should begin “in the small” and progress toward testing “in the large.” The
first tests planned and executed generally focus on individual components. As

' Only a small subset of Davis’ testing principles are noted here. For more information, see
[DAVIS5].

WebRef

A useful paper enfitled
“Improving Software
Testability” can be found
af
www.stlabs.com/
newsletters/testnet
/docs /testability.
him

2 i R e
2 The paragraphs Lhal follow are copvright 1994 by james Bach 2

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 429

testing progresses, it shifts focus in an attempt to find errors in integrated
clusters of components and ultimately in the entire system (Chapter 18).

. Exhaustive testing is not possible. The number of path permutations for even a
moderately sized program is exceptionally large (see Section 17.2 for further
discussion). For this reason, it is impossible to execute every combination of
paths during testing. It is possible, however, to adequately cover program
logic and to ensure that all conditions in the component-level design have
been exercised.

. To be most effective, testing should be conducted by an independent third party.
By “most effective,” we mean testing that has the highest probability of find-
ing errors (the primary objective of testing). For reasons that have been intro-
duced earlier in this chapter and are considered in more detail in Chapter 18,
the software engineer who created the system is not the best person to con-
duct all tests for the software.

17.1.3 Testability

In ideal circumstances, a software engineer designs a computer program, a system,
or a product with “testability” in mind. This enables the individuals charged with test-
ing to design effective test cases more easily. But what is “testability.” James Bach?
describes testability in the following manner:

Software testability is simply how easily [a computer program] can be tested. Since
testing is so profoundly difficult, it pays to know what can be done to streamline it.
Sometimes programmers are willing to do things that will help the testing process
and a checklist of possible design points, features, etc., can be useful in negotiating
with them.

There are certainly metrics that could be used to measure testability in most of its
aspects. Sometimes, testability is used to mean how adequately a particular set of
tests will cover the product. It's also used by the military to mean how easily a tool
can be checked and repaired in the field. Those two meanings are not the same as
“software testability.” The checklist that follows provides a set of characteristics that
lead to testable software.

Operability. “The better it works, the more efficiently it can be tested.”

* The system has few bugs (bugs add analysis and reporting overhead to the

test process).

¢ No bugs block the execution of tests.

The product evolves in functional stages (allows simultaneous develop-
ment and testing).

Internet posting that first appeared in the newsgroup comp.soft

430

T

SN
POINT
“Testability” occurs s
a resulf of good
design. Data design,
orchitecture, interfaces,
ond componentdevel
detail can either
focilitate testing or
moke it difficult.

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

Observability. “What you see is what you test.”

 Distinct output is generated for each input.

* System states and variables are visible or queriable during execution.

* Past system states and variables are visible or queriable (e.g., transaction
logs).

¢ All factors affecting the output are visible.

* Incorrect output is easily identified.

e Internal errors are automatically detected through self-testing mecha-
nisms.

¢ Internal errors are automatically reported.

* Source code is accessible.

Controllability. “The better we can control the software, the more the test-

ing can be automated and optimized.”

* Allpossible outputs can be generated through some combination of input.

* All code is executable through some combination of input.

* Software and hardware states and variables can be controlled directly by
the test engineer.

¢ Input and output formats are consistent and structured.

* Tests can be conveniently specified, automated, and reproduced.

Decomposability. “By controlling the scope of testing, we can more quickly
isolate problems and perform smarter retesting.”

¢ The software system is built from independent modules.

* Software modules can be tested independently.

Simplicity. “The less there is to test, the more quickly we can test it.”

* Functional simplicity (e.g., the feature set is the minimum necessary to

meet requirements).

* Structural simplicity (e.g., architecture is modularized to limit the propa-
gation of faults).

* Code simplicity (e.g., a coding standard is adopted for ease of inspection
and maintenance).

Stability. “The fewer the changes, the fewer the disruptions to testing.”
* Changes to the software are infrequent.

¢ Changes to the software are controlled.

* Changes to the software do not invalidate existing tests.

* The software recovers well from failures.

Understandability. “The more information we have, the smarter we will test.”

* The design is well understood.

* Dependencies between internal, external, and shared components are
well understood.

What are
[
attributes of a
“good” test?

17.2

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 431

e Changes to the design are communicated.

« Technical documentation is instantly accessible.
» Technical documentation is well organized.

e Technical documentation is specific and detailed.
s Technical documentation is accurate.

The attributes suggested by Bach can be used by a software engineer to develop a soft-
ware configuration (i.e., programs, data, and documents) that is amenable to testing.

And what about the tests themselves? Kaner, Falk and Nguyen [KAN93] suggest
the following attributes of a “good” test:

1. A good test has a high probability of finding an error. To achieve this goal, the
tester must understand the software and attempt to develop a mental picture
of how the software might fail.

2. A good test is not redundant. Testing time and resources are limited. There is
no point in conducting a test that has the same purpose as another test.
Every test should have a different purpose (even if it is subtlety different). For
example, a module of the SafeHome software (discussed in earlier chapters)
is designed to recognize a user password to activate and deactivate the sys-
tem. In an effort to uncover an error in password input, the tester designs a
series of tests that input a sequence of passwords. Valid and invalid pass-
words (4 numeral sequences) are input as separate tests. However, each
valid/invalid password should probe a different mode of failure. For example,
the invalid password 1234 should not be accepted by a system programmed
to recognize 8080 as the valid password. If it is accepted, an error is present.
Another test input, say 1235, would have the same purpose as 1234 and is
therefore redundant. However, the invalid input 8081 or 8180 has a subtle
difference, attempting to demonstrate that an error exists for passwords
“close to” but not identical with the valid password.

3. Agood test should be “best of breed.” [KAN93] In a group of tests that have a
similar intent, time and resource limitations may mitigate toward the execu-
tion of only a subset of these tests. In such cases, the test that has the highest
likelihood of uncovering a whole class of errors should be used.

4. A good test should be neither too simple, nor too complex. Although it is
sometimes possible to combine a series of tests into one test case, the possi-
ble side effects associated with this approach may mask errors. In general,
each test should be executed separately.

TEST CASE DESIGN

The design of tests for software and other engineered products can be as challeng-
ing as the initial design of the product itself. Yet for reasons that we have already dis-

WebRef

The Testing Techniques
Newsletfer is on excellent
source of information on
testing methods:
www.testworks.
com/News/TTN-
Online/

7/
L

%

POINT

White-box tests con be
designed only after o
componentfevel design
(or source code)

exists. The logicol
details of the progrom
must be available.

[/5]

L

POINT
Itis not possible to
exhaustively test every
progrom path because
the number of paths is
simply too lorge.

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

cussed, software engineers often treat testing as an afterthought, developing test
cases that may “feel right” but have little assurance of being complete. Recalling the
objectives of testing, we must design tests that have the highest likelihood of finding
the most errors with a minimum amount of time and effort.

Any engineered product (and most other things) can be tested in one of two ways:
(1) knowing the specified function that a product has been designed to perform, tests
can be conducted that demonstrate each function is fully operational while at the
same time searching for errors in each function; (2) knowing the internal workings
of product, tests can be conducted to ensure that “all gears mesh", that is, internal
operations are performed according to specification and all internal components have
been adequately exercised. The first test approach is called black-box testing and the
second, white-box testing. _

When computer software is considered, black-box testing alludes to tests that are
conducted at the software interface. Although they are designed to uncover errors,
black-box tests are used to demonstrate that software functions are operational; that
input is properly accepted, and output is correctly produced; that the integrity of exter-
nal information (e.g., a data base) is maintained. A black-box test examines some
fundamental aspect of a system with little regard for the internal logical structure of
the software.

White-box testing of software is predicated on close examination of procedural
detail. Logical paths through the software are tested by providing test cases that exer-
cise specific sets of conditions and/or loops. The “status of the program” may be
examined at various points to determine if the expected or asserted status corre-
sponds to the actual status.

At first glance it would seem that very thorough white-box testing would lead to
“100 percent correct programs.” All we need do is define all logical paths, develop
test cases to exercise them, and evaluate results, that is, generate test cases to exer-
cise program logic exhaustively. Unfortunately, exhaustive testing presents certain
logistical problems. For even small programs, the number of possible logical paths
can be very large. For example, consider the 100 line program in the language C. After
some basic data declaration, the program contains two nested loops that execute
from 1 to 20 times each, depending on conditions specified at input. Inside the inte-
rior loop, four if-then-else constructs are required. There are approximately 1014 pos-
sible paths that may be executed in this program!

To put this number in perspective, we assume that a magic test processor (“magic”
because no such processor exists) has been developed for exhaustive testing. The
processor can develop a test case, execute it, and evaluate the results in one mil-
lisecond. Working 24 hours a days, 365 days a year, the processor would work for
3170 years to test the program. This would, undeniably, cause havoc in most devel-
opment schedules. Exhaustive testing is impossible for large software systems.

White-box testing should not, however, be dismissed as impractical. A limited

17.3

Q.lore:

“Bugs lurk in corners
ond congregate af
houndories.”

Boris Beizer

17.4

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 433

number of important logical paths can be selected and exercised. Important data
structures can be probed for validity. The attributes of both black and white-box test-
ing can be combined to provide an approach that validates the software interface and
selectively ensures that the internal workings of the software are correct.

WHITE-BOX TESTING

White-box testing, sometimes called glass box testing, is a test case design method
that uses the control structure of the procedural design to derive test cases. Using
white-box testing methods, the software engineer can derive test cases that (1) guar-
antee that all independent paths within a module have been exercised at least once;
(2) exercise all logical decisions on their true and false sides; (3) execute all loops at
their boundaries and within their operational bounds, and (4) exercise internal data
structures to assure their validity.

A reasonable question might be posed at this juncture: “Why spend time and energy
worrying about (and testing) logical minutiae when we might better expend effort
ensuring that program requirements have been met?” Stated another way, why don’t
we spend all of our energies on black-box tests? The answer lies in the nature of soft-
ware defects (e.g., JON81]):

. Logic errors and incorrect assumptions are inversely proportional to the proba-
bility that a program path will be executed. Errors tend to creep into our work
when we design and implement function, conditions, or control that are out
of the main stream. Everyday processing tends to be well understood (and
well scrutinized) while “special case” processing tends to fall into the cracks.

. We often believe that a logical path is not likely to be executed when, in fact, it
may be executed on a regular basis. The logical flow of a program is some-
times counter-intuitive, meaning that our unconscious assumptions about
flow of control and data may lead us to make design errors that are uncov-
ered only once path testing commences.

. Typographical errors are random. When a program is translated into program-
ming language source code, it is likely that some typing errors will occur.
Many will be uncovered by syntax and type checking mechanisms, but others
may go undetected until testing begins. It is as likely that a typo will exist on
an obscure logical path as on a main stream path.

BASIS PATH TESTING

Basis path testing i

TR T e

434

FIGURE 17.1
Flow graph
notation

Sequence

0-0 (":o -0 ©@ 6-0-@

when the logical
control structure of o
module is complex,
The flow graph
enables you fo trace
program paths more
readiy.

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

The structured constructs in flow graph form:
Case

While Until

where each circle represents one or more
nenbranching PDL or source code statements

ing a basis set of execution paths. Test cases derived to exercise the basis set are
guaranteed to execute every statement in the program at least one time during test-
ing.

17.4.1 Flow Graph Notation

Before the basis path method can be introduced, a simple notation for the represen-
tation of control flow, called a flow graph (or program graph) must be introduced.3
The flow graph depicts logical control flow using the notation illustrated in Figure
17.1. Each structured construct (Chapter 16) has a corresponding flow graph symbol.

To illustrate the use of a flow graph, we consider the procedural design represen-
tation in Figure 17.2a. Here, a flow chart is used to depict program control structure.
Figure 17.2b maps the flow chart into a corresponding flow graph (assuming that no
compound conditions are contained in the decision diamonds of the flow chart). Refer-
ring to Figure 17.2b, each circle, called a flow graph node, represents one or more
procedural statements. A sequence of process boxes and a decision diamond can
map into a single node. The arrows on the flow graph, called edges or links, repre-
sent flow of control and are analogous to flow chart arrows. An edge must terminate
at a node, even if the node does not represent any procedural statements (e.g., see
the symbol for the if-then-else construct). Areas bounded by edges and nodes are
called regions. When counting regions we include the area outside the graph and
count it as a region4.

When compound conditions are encountered in a procedural design, the genera-
tion of a flow graph becomes slightly more complicated. A compound condition occurs
when one or more Boolean operators (logical OR, AND, NAND, NOR) are present in
a conditional statement. Referring to Figure 17.3, the PDL segment translates into the
flow graph shown. Note that a separate node is created for each of the conditions a
and b in the statement IF @ OR b. Each node that contains a condition is called a pred-
Icate node, and is characterized by two or more edges emanating from it.

3 In actuality, the basis path method can be conducted without the use of flow graphs. However,

they serve as a useful tool for understanding control flow and illustrating the approach.
A more detailed discussion of graphs and their use in testing is contained in Section 17.6.1.

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 435

FIGURE 17.2

(a) Flow chart,
(b) Flow graph

G

(a)

Edge

436

FIGURE 17.3
Compound
logic

CovaP
Cydomatic complexity
is a useful metric for
predicting those
modules that are likely
fo be error-pron. It
can be used for fest
plonning as well as

test case design.

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

Predicate

node \

IFaOR b
then procedure x
else procedure vy
ENDIF

1742 Cyclomatic Complexity

Cyclomatic complexity is a software metric that provides a quantitative measure of the
logical complexity of a program. When used in the context of the basis path testing
method, the value computed for cyclomatic complexity defines the number of inde-
pendent paths in the basis set of a program and provides us with an upper bound for
the number of tests that must be conducted to ensure that all statements have been
executed at least once.

An independent path is any path through the program that introduces at least one
new set of processing statements or a new condition. When stated in terms of a flow
graph, an independent path must move along at least one edge that has not been tra-
versed before the path is defined. For example, a set of independent paths for the flow
graph illustrated in Figure 17.2b is:

path 1: 1-11
path2: 1-2-3-4-5-10-1-11
path 3: 1-2-3-6-8-9-10-1-11
path 4: 1-2-3-6-7-9-10-1-11
Note that each new path introduces a new edge. The path
1-2-3-4-5-10-1-2-3-6-8-9-10-1-11
is not considered to be an independent path because it is simply a combination of
already specified paths and does not traverse any new edges.
Paths 1, 2, 3 and 4 defined above comprise a basis set for the flow graph in Figure
17.2b. That is, if tests can be designed to force execution of these paths (a basis set),

every statement in the program will have been guaranteed to be executed at least
one time and.every condition will have been executed on its true and false side. It

How is
® cyclomatic
complexity
computed?

[/5]

&,
POI
Cyclomatic wqplermy
provides the upper
bound on the number
of test cases that must
be executed fo
guarantee that every
stafement in
component has been
executed of leost once.

Q.mte:

“To en is humon, to
find o bug, divine."
Robert Dunn

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 437

should be noted that the basis set is not unique. In fact, a number of different basis
sets can be derived for a given procedural design.

How do we know how many paths to look for? The computation of cyclomatic
complexity provides the answer.

Cyclomatic complexity has a foundation in graph theory and provides us with an
extremely useful software metric. Complexity is computed in one of three ways:

1. the number of regions of the flow graph correspond to the cyclomatic com-
plexity;
2. cyclomatic complexity, V(G), for a flow graph G is defined as:
VIG)=E-N+2

where E is the number of flow graph edges, N is the number of flow graph nodes;

3. cyclomatic complexity, V(G), for a flow graph G is also defined as:
ViG)=P+1
where P is the number of predicate nodes contained in the flow graph G.

Referring once more to the flow graph in Figure 17.2b, the cyclomatic complexity
can be computed using each of the algorithms noted above:

1. the flow graph has 4 regions
2. V(G)=11edges-9nodes+2=4
3. V(G) = 3 predicate nodes + 1 = 4

Therefore, the cyclomatic complexity of the flow graph in Figure 17.2b is 4.

More importantly, the value for V(G) provides us with an upper bound for the num-
ber of independent paths that comprise the basis set, and by implication, an upper
bound on the number of tests that must be designed and executed to guarantee cov-
erage of all program statements.

17.4.3 Deriving Test Cases

The basis path testing method can be applied to a procedural design or to source
code. In this section, we present basis path testing as a series of steps. The proce-
dure average, depicted in PDL in Figure 17.4, will be used as an example to illustrate
each step in the test case design method. Note that average, although an extremely
simple algorithm, contains compound conditions and loops. The following steps can
be applied to derive the basis set:

I. Using the design or code as a foundation, draw a corresponding flow
graph. A flow graph is created using the symbols and construction rules pre-
sented in Section 16.4.1. Referring to the PDL for average in Figure 17.4, 2

ow graph is created by numbsering those PDL statements that will be

438 PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

FIGURE 17.4 PROCEDURE average;

PDL for test

case design * This procedure computes the average of 100 or fewer

with nodes numbers that lie between bounding values; it also computes the
identified sum and the total number valid.

INTERFACE RETURNS average, total.input, total.valid;
INTERFACE ACCEPTS value, minimum, maximum;

TYPE value[1:100] IS SCALAR ARRAY;
TYPE average, total.input, total.valid;
minimum, maximum, sum IS SCALAR;
TYPE i IS INTEGER;
=i
. total.input = total.valid = 0;
sum =0;
DO WHILE value[i] < > —999 and total.input < 100 Q
“ increment total.input by 1;
IF value[i]> = minimum AND value[i] < = maximum 6
THEN increment total.valid by 1;
{ sum = sum + value[i]
ELSE skip

B { ENDIF
| increment i by 1;
i ® enopo
IF total.valid > 0
i2 9 THEN average = sum / total.valid;
ELSE average = -999;
ENDIF
END average

mapped into corresponding flow graph nodes. The corresponding flow graph
in Figure 17.5.

2. Determine the cyclomatic complexity of the resultant flow graph. The
cyclomatic complexity, V(G), is determined by applying the algorithms
described in Section 17.5.2. It should be noted that V(G) can be determined
without developing a flow graph by counting all conditional statements in the
PDL (for the procedure average, compound conditions count as 2) and
adding 1.

Referring to Figure 17.5,

V(G) = 6 regions
V(G) =17 edges - 13 nodes +2 =6
V(G) = 5 predicates nodes + 1 =6
3. Determine a basis set of linearly independent paths. The value of V(G)
provides with the number of linearly independent paths through the program

control structure. In the case of procedure average, we expect to specify six
paths:

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 439

FIGURE 17.5

Flow graph for
the procedure
average

path 1: 1-2-10-11-13

path 2: 1-2-10-12-13

path 3: 1-2-3-10-11-13

path 4: 1-2-3-4-5-8-9-2-...

path5: 1-2-3-4-5-6-8-9-2-...

path 6é: 1-2-3-4-5-6-7-8-9-2-...

The ellipsis (...) following paths 4, 5 and 6 indicates that any path through the
remainder of the control structure is acceptable. It is often worthwhile to iden-
tify predicate nodes as an aid in the derivation of test cases. In this case, nodes
2,3, 5,6, and 10 are predicate nodes.

4. Prepare test cases that will force execution of each path in the basis
set. Data should be chosen so that conditions at the predicate nodes are
appropriately set as each path is tested. Test cases that satisfy the basis set
described above are:

Path 1 test case:
value(k) = valid input, where k < i defined below

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

Expected results: correct average based on k values and proper totals
Note: Path 1 cannot be tested stand-alone but must be tested as part of path 4, 5, and
6 tests.

Path 2 test case:

value(1) = -999

Expected results: average =-999; other totals at initial values
Path 3 test case:

attempt to process 101 or more values

first 100 values should be valid

Expected results: same as test case 1

Path 4 test case:

value(i) = valid input where i < 100

value(k) < minimum where k < i

Expected results: correct average based on k values and proper totals

Path 5 test case:

value(i) = valid input where i < 100

value(k) > maximum where k <= i

Expected results: correct average based on n values and proper totals
Path 6 test case:

value(i) = valid input where i < 100

Expected results: correct average based on n values and proper totals

Each test case is executed and compared to expected results. Once all test cases have
been completed, the tester can be sure that all statements in the program have been
executed at least once.

It is important to note that some independent paths (e.g., Path 1 in our example)
cannot be tested in stand alone fashion. That is, the combination of data required to
traverse the path cannot be achieved in the normal flow of the program. In such cases,
these paths are tested as part of another path test.

17.44 Graph Matrices

The procedure for deriving the flow graph and even determining a set of basis paths
is amenable to mechanization. To develop a software tool that assists in basis path
testing, a data structure, called a graph matrix, can be quite useful.

A graph matrix is a square matrix whose size (i.e., number of row and columns) is
equal to the number of nodes on the flow graph. Each row and column corresponds
to an identified node, and matrix entries correspond to connections (an edge) between
nodes. A simple example of a flow graph and its corresponding graph matrix [BEI90]
is shown in Figure 17.6.

Referring to the figure, each node on the flow graph is identified by numbers, while
each edge is identified by letters. A letter entry is made in the matrix to correspond to

What is a
? graph
matrix and how
do we extend it
for use in testing?

FIGURE 17.6

Graph matrix

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 441

a connection between two nodes. For example, node 3 is connected to node 4 by
edge b.

To this point, the graph matrix is nothing more that a tabular representation of a
flow graph. However, by adding a link weight to each matrix entry, the graph matrix
can become a powerful tool for evaluating program control structure during testing.
The link weight provides additional information about control flow. In its simplest
form, the link weight is 1 (a connection exists) or 0 (a connection does not exist). But
link weights can be assigned other, more interesting properties:

e the probability that a link (edge) will be executed
. the processing time expended during traversal of a link;
. the memory required during traversal of a link;

. the resources required during traversal of a link.

To illustrate, we use the simplest weighting to indicate connections (0 or 1). The graph
matrix in Figure 17.6 is redrawn as shown in Figure 17.7. Each letter has been replaced
with a 1, indicating that a connection exists (zeros have been excluded for clarity).
Represented in this form, the graph matrix is called a connection matrix.

Referring to Figure 17.7, each row with two or more entries represents a predicate
node. Therefore, performing the arithmetic shown to the right of the connection matrix
provides us with still another method for determining cyclomatic complexity (Sec-
tion 17.4.2).

Beizer [BEI90] provides a thorough treatment of additional mathematical algo-
rithms that can be applied to graph matrices. Using these techniques, the analysis
required to design test cases can be partially or fully automated.

Connected to
node
Node 1 2 3 4 5
1 a
2
3 d b
4 c f
5 g [

Flow graph Graph matrix

442

FIGURE 17.7

Connection
matrix

7w

o
POINT
Errors are much more
common in the
neighbourhood of
logical conditions than

sequential processing
statements.

they are in the locus of

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

Connections
1-1=0

2=-1=1

2-1=1

2 -1=1
o Cyclomatic
3+1=4.~—mmem

The basis path testing technique described in Section 17.4 is one of a number of tech-
niques for control structure testing. Although basis path testing is simple and highly
effective, it is not sufficient in itself. In this section, other variations on control struc-
ture testing are discussed. These broaden testing coverage and improve quality of
white-box testing.

17.5.1 Condition Testing’

Condition testing is a test case design method that exercises the logical conditions
contained in a program module. A simple condition is a boolean variable or a rela-
tional expression, possibly preceded with one NOT (*-") operator. A relational expres-
sion takes the form

E, <relational-operator> E,

where E; and E; are arithmetic expressions and <relational-operator> is one of the
following: “<", “<", “=*, “#" (non-equality), “>", or “=". A compound condition is com-
posed of two or more simple conditions, boolean operators, and parentheses. We
assume that boolean operators allowed in a compound condition include OR ('I"),
AND ("&") and NOT ("-"). A condition without relational expressions is referred to
as a Boolean expression.

Therefore, the possible types of elements in a condition include: a Boolean oper-
ator; a Boolean variable; a pair of Boolean parentheses (surrounding a simple or com-
pound condition); a relational operator; or an arithmetic expression.

5 Sections 17.5:1 and 17.5.2 have been adapted from [TAI89] with permission of Professor K.C. Tai.

Coa

Even if you decide
agoinst condition
festing, you should
spend fime evaluating
each condition in on
affort fo uncover
errors. This is 0
primary hiding place
for bugs!

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 443

If a condition is incorrect, then at least one component of the condition is incor-
rect. Thus, types of errors in a condition include the following:

. Boolean operator error (incorrect/missing/extra boolean operators)
. Boolean variable error

. Boolean parenthesis error

e relational operator error

. arithmetic expression error

The condition testing method focuses on testing each condition in the program. Con-
dition testing strategies (discussed later in this section) generally have two advan-
tages. First, measurement of test coverage of a condition is simple. Second, the test
coverage of conditions in a program provides guidance for the generation of addi-
tional tests for the program.

The purpose of condition testing is to detect not only errors in the conditions of a
program but also other errors in the program. If a test set for a program P is effective
for detecting errors in the conditions contained in P it is likely that this test set is also
effective for detecting other errors in P. In addition, if a testing strategy is effective
for detecting errors in a condition, then it is likely that this strategy will also be effec-
tive for detecting errors in a program.

A number of condition testing strategies have been proposed. Branch lesting is
probably the simplest condition testing strategy. For a compound condition C, the
true and false branches of C and every simple condition in C need to be executed at
least once [MYE79].

Domain testing [WHI80] requires three or four tests to be derived for a rational
expression. For a rational expression of the form

E; <relational-operator> E;

three tests are required to make the value of E; greater than, equal to, or less than that
of E, respectively [HOWS82]. If <relational-operator> is incorrect and E; and E; are cor-
rect, then these three tests guarantee the detection of the relational operator error. To
detect errors in E; and E, a test that makes the value of E; greater or less than that
of E; should make the difference between these two values as small as possible.

For a Boolean expression with n variables, all of 2n possible tests are required
(n>0). This strategy can detect boolean operator, variable, and parenthesis errors, but
it is practical only if n is small.

Error-sensitive tests for Boolean expressions can also be derived [FOS84, TAI87].
For a singular Boolean expression (a Boolean expression in which each Boolean vari-
able occurs only once) with 11 Boolean variables (n>0), we can easily generate a test

t h that thi ees the detection of multiple

et with less than 2n ¢

1]

Lara

L

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

Tai [TAI89] suggests a condition testing strategy that builds on the techniques out-
lined above. Called BRO (branch and relational operator) testing, the technique guar-
antees the detection of branch and relational operator errors in a condition provided
that all Boolean variables and relational operators in the condition occur only once
and have no common variables.

The BRO strategy uses condition constraints for a condition C. A condition con-
straint for C with n simple conditions is defined as (D;, D, ..., Dp), where D; (0O<i<n)
is a symbol specifying a constraint on the outcome of the ith simple condition in con-
dition C. A condition constraint D for condition C is said to be covered by an execu-
tion of C if during this execution of C the outcome of each simple condition in C satisfies
the corresponding constraint in D.

For a Boolean variable, B, we specify a constraint on the outcome of B that states
that B must be either true (t) or false (f). Similarly, for a relational expression, the sym-
bols >, =, < are used to specify constraints on the outcome of the expression.

As an example, consider the condition

C‘i: B; &32

where B; and B, are Boolean variables. The condition constraint for C; is of the form
(D}, Dy), where each of D; and D, is “t” or “f.” The value (t,f) is a condition constraint
for C; and is covered by the test that makes the value of B; to be true and the value
of B to be false. The BRO testing strategy requires that the constraint set {(t,t), (f;t),
(t,f)) be covered by the executions of C;. If C, is incorrect due to one or more Boolean
operator errors, at least one the constraint set will force C; to fail.

As a second example, a condition of the form

Cy B, & (E3=Ey)

where B, is a Boolean expression and E3 and E; are arithmetic expressions. A con-
dition constraint for C; is of the form (D;, D), where each of D; is “t” or “f” and Dyis
>, =, <. Since C; is the same as C; except that the second simple condition in C, is a
relational expression, we can construct a constraint set for C, by modifying the con-
straint set {(t,t), (), (t,f)} defined for C;. Note that “t” for (E3 = E,) implies “=" and that
“f” for (E3 = E4) implies either “<” or “>.” By replacing (t,t) and (ft) with (t,=) and (f,=)
respectively and by replacing (t,f) with (t,<) and (t,>), the resulting constraint set for
Cyis {(t,=), (f=), (t,<), (t,>)}. Coverage of the above constraint set will guarantee detec-
tion of Boolean and relational operator errors in C,.
As a third example, we consider a condition of the form:

C3: (E;>Ep) & (E3=Ey)

where E;, Ej, E3 and E4 are arithmetic expressions. A condition constraint for Csis
of the form (Dy, D), where each of D; and Dy is >, =, <. Since Cj is the same as C>

Gnvm:’

It is unrealisfic to
assume that data flow
testing will be used
extensively when
testing a lorge system.
However, if can be
used in a fargeted
fashion for areas of
the software that are
suspect.

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 445

except that the first simple condition in C3 is a relational expression, we can con-
struct a constraint set for C3 by modifying the constraint set for C, obtaining:

(=), (=2), (<=), 32), (3.9)]

Coverage of the above constraint set will guarantee detection of relational operator
errors in Cs.

17.5.2 Data Flow Testing

The data flow testing method selects test paths of a program according to the loca-
tions of definitions and uses of variables in the program. A number of data flow test-
ing strategies have been studied and compared (e.g., [FRA88], [NTA88], [FRA93]).
To illustrate the data flow testing approach, assume that each statement in a pro-
gram is assigned a unique statement number and that each function does not mod-
ify its parameters or global variables. For a statement with S as its statement number,

DEF(S) = {X | statement S contains a definition of X}
USE(S) = {X | statement S contains a use of X}

If statement S is an if or loop statement, its DEF set is empty and its USE set is based
on the condition of statement S. The definition of variable X at statement S is said to
be live at statement S' if there exists a path from statement S to statement S' which
does not contain any other definition of X.

A definition-use chain (or DU chain) of variable X is of the form [X, S, S, where S
and S' are statement numbers, X is in DEF(S) and USE(S'), and the definition of X in
statement S is live at statement S'.

One simple data flow testing strategy is to require that every DU chain be covered
at least once. We refer to this strategy as the DU testing strategy. It has been shown
that DU testing does not guarantee the coverage of all branches of a program. How-
ever, a branch is not guaranteed to be covered by DU testing only in rare situations
such as if-then-else constructs in which the then part has no definition of any vari-
able and the else part does not exist. In this situation, the else branch of the above if
statement is not necessarily covered by DU testing.

Data flow testing strategies are useful for selecting test paths of a program con-
taining nested if and loop statements. To illustrate this, consider the application of
DU testing to select test paths for the PDL that follows:

proc x
B1;
do while C1
if C2
then
if C4

then B4:
eise BS:

446 PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

endif;
else
if C3
then B2;
else B3;
endif;
endif;
enddo;
B6;
end proc;

To apply the DU testing strategy to select test paths of the control flow diagram, we
need to know the definitions and uses of variables in each condition or blocks in the
PDL. Assume that variable X is defined in the last statement of block B1, B2, B3, B4,
and B5, and is used in the first statement of blocks B2, B3, B4, B5, and Bé. The DU
testing strategy requires an execution of the shortest path from each of B;, 0<i<5, to
each of B; 1<j<6. (Such testing also covers any use of variable X in conditions 1
C2, C3, and C4.) Although there are twenty-five DU chains of variable X, we only need
five paths to cover these DU chains. The reason is that five paths are needed to cover
the DU chain of X from B;, 0<i<5, to B6 and other DU chains can be covered by mak-
ing these five paths containing iterations of the loop.

Since the statements in a program are related to each other according to the def-
initions and uses of variables, the data flow testing approach is effective for error
detection. However, the problems of measuring test coverage and selecting test paths
for data flow testing are more difficult than the corresponding problems for condition

- testing.

17.5.3 Loop Testing

e ’ Loops are the cornerstone for the vast majority of all algorithms implemented in soft-
ware. And yet, we often pay them little heed while conducting software tests.

Complex k:’fsm - Loop testing is a white-box testing technique that focuses exclusively on the valid-
hiding place for bugs. ity of loop constructs. Four different classes of loops [BEI90] can be defined: simple
It's well worth loops, concatenated loops, nested loops and unstructured loops (Figure 17.8).
M--‘ m et Simple Loops. The following set of tests can be applied to simple loops, where n
fully exercise loop is the maximum number of allowable passes through the loop.

Stuctures. :

Skip the loop entirely.

Only one pass through the loop.

Two passes through the loop.

m passes through the loop where m <n
n-1, n, n+1 passes through the loop

K) bl

Nested Loops. If we were to extend the test approach for simple loops to nested

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 447

bi

Qe

simple loops nested loops

concatenated
loops

unstructured
FIGURE 17.8 Classes of loops loops

loops, the number of possible tests would grow geometrically as the level of nesting
increases. This would result in an impractical number of tests. Beizer [BEI90] sug-
gests an approach that will help to reduce the number of tests:

1. Start at the innermost loop. Set all other loops to minimum values.

2. Conduct simple loop tests for the innermost loop while holding the outer
loops at their minimum iteration parameter (e.g., loop counter) values. Add
other tests for out-of-range or excluded values.

3. Work outward, conducting tests for the next loop, but keeping all other outer
loops at minimum values and other nested loops to “typical” values.

4, Continue until all loops have been tested.

Concatenated Loops. Concatenated loops can be tested using the approach defined
for simple loops above, if each of the loops is independent of the other. However, if
two loops are concatenated and the loop counter for loop 1 is used as the initial value
e‘m‘ for loop 2, then the loops are not independent. When the loops are not independent,

You can’t test the approach applied to nested loops is recommended.

unstructured loops F ;
effoctively, Redesign ~ Unstructured Loops. Whenever possible, this class of loops should be redesigned

therm. to reflect the use of the structured programming constructs (Chapter 16).

program objects,
enabling us to derive
fest cases that search
for errors associated
with these
relofionships.

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

Black-box testing, also called behavioural testing, focuses on the functional require-
ments of the software. That is, black-box testing enables the software engineer to
derive sets of input conditions that will fully exercise all functional requirements for
a program. Black-box testing is not an alternative to white-box techniques. Rather,
it is a complementary approach that is likely to uncover a different class of errors
than white-box methods.

Black-box testing attempts to find errors in the following categories: (1) incorrect
or missing functions; (2) interface errors; (3) errors in data structures or external data
base access; (4) behaviour or performance errors, and (5) initialization and termina-
tion errors.

Unlike white-box testing which is performed early in the testing process, black-
box testing tends to be applied during later stages of testing (see Chapter 18). Because
black-box testing purposely disregards control structure, attention is focused on the
information domain. Tests are designed to answer the following questions:

. How is functional validity tested?

. How is system behaviour and performance tested?

. What classes of input will make good test cases?

. Is the system particularly sensitive to certain input values?

. How are the boundaries of a data class isolated?

. What data rates and data volume can the system tolerate?

. What effect will specific combinations of data have on system operation?

By applying black-box techniques, we derive a set of test cases that satisfy the fol-
lowing criteria [MYE79]: (1) test cases that reduce, by a count that is greater than one,
the number of additional test cases that must be designed to achieve reasonable test-
ing, and (2) test cases that tell us something about the presence or absence of classes
of errors, rather than an error associated only with the specific test at hand.

17.6.1 Graph-Based Testing Methods

The first step in black-box testing is to understand the objectsé that are modelled in
software and the relationships that connect these objects. Once this has been accom-
plished, the next step is to define a series of tests that verify “all objects have the
expected relationship to one another.” [BEI95] Stated in another way, software test-
ing begins by creating a graph of important objects and their relationships and then
devising a series of tests that will cover the graph so that each object and relation-
ship is exercised and errors are uncovered.

6 In this contex:c. the term object encompasses the data objects that we discussed in Chapters 11
and 12 as well as program objects such as modules or collections of programming language state-

mante

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 449

FIGURE 17.9

{a) Graph nota- ' . '
tion; (b) a sim- object Directed link object
ple example #1 (link weight) #2

: . Node weight
Undirected link (value)
Parallel links
object
#3
(a)
new menu select generates document
file (generation time < 1.0 sec) window

allows editing of
Attributes:
. start dimension: default setting
contains or preferences
background colour: white

is represented as

docrzﬂenf text colour: default colour
or preferences
(b)

To accomplish these steps, the software engineer begins by creating a graph—a
collection of nodes that represent objects; links that represent the relationships between
objects; node weights that describe the properties of a node (e.g., a specific data value
or state behaviour), and link weights that describe some characteristic of a link.”

The symbolic representation of a graph is shown in Figure 17.9a. Nodes are rep-
resented as circles connected by links that take a number of different forms. A directed
link (represented by an arrow) indicates that a relationship moves in only one direc-
tion. A bi-directional link, also called a symmetric link, implies that the relationship
applies in both directions. Parallel links are used when a number of different rela-
tionships are established between graph nodes.

As a simple example, consider a portion of a graph for a word processing appli-
cation (Figure 17.9b) where:

7 If the above concepts seem vaguely familiar, recall that graphs were also used in Section 17.4.1
to create a program graph for the basis path testing method. The nodes of the program graph con-
tained instructions (program objects) characterized as either procedural design representations or
source code), and the directed links indicated the control flow between these program objects. Here

the use of graphs is extended Lo encompass black box lesling as well,

450

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

object #1 = new file menu select
object #2 = document window
object #3 = document text

Referring to the figure, a menu select on new file generates a document window.
The node weight of document window provides a list of the window attributes that
are to be expected when the window is generated. The link weight indicates that the
window must be generated in less than 1.0 second. An undirected link establishes
a symmetric relationship between the new file menu select and document text,
and parallel links indicate relationships between document window and docu-
ment text. In reality, a far more detailed graph would have to be generated as a pre-
cursor to test case design. The software engineer then derives test cases by traversing
the graph and covering each of the relationships shown. These test cases are designed
in an attempt to find errors in any of the relationships.

Beizer [BEI95] describes a number of behavioural testing methods that can make
use of graphs:

Transaction flow modelling. The nodes represent steps in some transaction
(e.g., the steps required to make an airline reservation using an on-line ser-
vice), and the links represent the logical connection between steps (e.g.,
flight.information.input is followed by validation/availability. processing).
The data flow diagram (Chapter 12) can be used to assist in creating graphs
of this type.

Finite state modelling. The nodes represent different user observable states of
the software (e.g., each of the “screens” that appear as an order entry clerk
takes a phone order), and the links represent the transitions that occur to
move from state to state (e.g., order-information is verified during inven-
tory-availability-look-up and is followed by customer-billing-information-
input). The state transition diagram (Chapter 12) can be used to assist in
creating graphs of this type.

Data flow modelling. The nodes are data objects and the links are the trans-
formations that occur to translate one data object into another. For example,
the node FICA.tax.withheld (FTW) is computed from gross.wages (GW)
using the relationship, FTW = 0.62 x GW.

Timing modelling. The nodes are program objects and the links are the
sequential connections between those objects. Link weights are used to
specify the required execution times as the program executes.

A detailed discussion of each of these graph-based testing methods is beyond the
scope of this book. The interested reader should see [BEI95] for a comprehensive dis-
cussion. It is worthwhile, however, to provide a generic outline of the graph-based
testing approach.

9 What are

¢ the generic
activities required
during graph-
based testing?

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 451

Graph-based testing begins with the definition of all nodes and node weights. That
is, objects and attributes are identified. The data model (Chapter 12) can be used as
a starting point, but it is important to note that many nodes may be program objects
(not explicitly represented in the data model). To provide an indication of the start
and stop points for the graph, it is useful to define entry and exit nodes.

Once nodes have been identified, links and link weights should be established. In
general, links should be named, although links that represent control flow between
program objects need not be named.

In many cases, the graph model may have loops (i.e., a path through the graph in
which one or more nodes is encountered more than one time). Loop testing (Section
17.5.3) can also be applied at the behavioural (black-box) level. The graph will assist
in identifying those loops that need to be tested.

Each relationship is studied separately so that test cases can be derived. The tran-
sitivity of sequential relationships is studied to determine how the impact of rela-
tionships propagates across objects defined in a graph. Transitivity can be illustrated
by considering three objects, X, Y and Z. Consider the following relationships:

X is required to compute Y
Y is required to compute Z

Therefore, a transitive relationship has been established between X and Z:

X is required to compute Z

Based on this transitive relationship, tests to find errors in the calculation of Z must
consider a variety of values for both X and Y.

The symmetry of a relationship (graph link) is also an important guide to the design
of test cases. If a link is indeed bi-direction (symmetric), it is important to test this
feature. The UNDO feature [BEI95] in many personal computer applications imple-
ments limited symmetry. That is, UNDO allows an action to be negated after it has
been completed. This should be thoroughly tested and all exceptions (i.e., places
where UNDO cannot be used) should be noted. Finally, every node in the graph should
have a relationship that leads back to itself; in essence, a “no action” or “null action”
loop. These reflexive relationships should also be tested.

As test case design begins, the first objective is to achieve node coverage. By this
we mean that tests should be designed to demonstrate that no nodes have been inad-
vertently omitted and that node weights (object attributes) are correct.

Next, link coverage is addressed. Each relationship is tested based on its proper-
ties. For example, a symmetric relationship is tested to demonstrate that it is, in fact,
bi-directional. A transitive relationship is tested to demonstrate that transitivity is
present. A reflexive relationship is tested to ensure that a null loop is present. When
link weights have been specified, tests are devised to demonstrate that these weights

are valid. Finally, loop testing is invoked (Section 17.5.3).

452

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

17.6.2 Equivalence Partitioning

Equivalence partitioning is a black-box testing method that divides the input domain
of a program into classes of data from which test cases can be derived. An ideal test
case single-handedly uncovers a class of errors (e.g., incorrect processing of all char-
acter data) that might otherwise require many cases to be executed before the gen-
eral error is observed. Equivalence partitioning strives to define a test case that
uncovers classes of errors, thereby reducing the total number of test cases that must
be developed.

Test case design for equivalence partitioning is based on an evaluation of equiv-
alence classes for an input condition. Using concepts introduced in the preceding
section, if a set of objects can be linked by relationships that are symmetric, transi-
tive and reflexive, an equivalence class is present. [BEI95] An equivalence class rep-
resents a set of valid or invalid states for input conditions. Typically, an input condition
is either a specific numeric value, a range of values, a set of related values or a Boolean
condition. Equivalence classes may be defined according to the following guidelines:

1. Ifan input condition specifies a range, one valid and two invalid equivalence
classes are defined.

2. Ifaninput condition requires a specific value, one valid and two invalid
equivalence classes are defined.

3. Ifaninput condition specifies a member of a set, one valid and one invalid
equivalence classes are defined.

4. Ifan input condition is Boolean, one valid and one invalid class are defined.

As an example, consider data maintained as part of an automated banking appli-
cation. The user can access the bank using his personal computer, provide a six-digit
password, and follow with a series of typed commands that trigger various banking
functions. During the log-on sequence, the software supplied for the banking appli-
cation accepts data in the form:

area code—blank or three digit number
prefix—three digit number not beginning with 0 or 1
suffix—four digit number

password—six digit alphanumeric string
commands—“check,” “deposit,” “bill pay,” etc.

The input conditions associated with each data element for the banking applica-
tion can be specified as:

area code: input condition, Boolean—the area code may or may not be
present;
input condition, range—values defined between 200 and 999, with
specific exceptions

[/5

o
POINT
BVA extends
equivlence
partitioning by focusing
on dota of the “edges”
of on equivolence
dloss.

How do |
® create BVA
test cases?

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 453

prefix: input condition, range—specified value > 200 with no 0 digits;
input condition, value—4 digit length

password: input condition, Boolean—a password may or may not be present;
input condition, value—six character string;

command: input condition, set—containing commands noted above.

Applying the guidelines for the derivation of equivalence classes, test cases for
each input domain data item could be developed and executed. Test cases are
selected so that the largest number of attributes of an equivalence class are exercised
at once.

17.6.3 Boundary Value Analysis

For reasons that are not completely clear, a greater number of errors tends to occur
at the boundaries of the input domain than in the “centre.” It is for this reason that
boundary value analysis (BVA) has been developed as a testing technique. Boundary
value analysis leads to a selection of test cases that exercise bounding values.

Boundary value analysis is a test case design technique that complements equiv-
alence partitioning. Rather than selecting any element of an equivalence class, BVA
leads to the selection of test cases at the “edges” of the class. Rather than focusing
solely on input conditions, BVA derives test cases from the output domain as well
[MYE79].

Guidelines for BVA are similar in many respects to those provided for equivalence
partitioning:

1. Ifan input condition specifies a range bounded by values a and b, test cases
should be designed with values a and b, just above and just below a and b,
respectively.

2. Ifan input condition specifies a number of values, test cases should be devel-
oped that exercise the minimum and maximum numbers. Values just above
and below minimum and maximum are also tested.

3. Apply guidelines 1 and 2 to output conditions. For example, assume that a
temperature vs. pressure table is required as output from an engineering
analysis program. Test cases should be designed to create an output report
that produces the maximum (and minimum) allowable number of table
entries.

4. Ifinternal program data structures have prescribed boundaries (e.g., an array
has a defined limit of 100 entries), be certain to design a test case to exercise
the data structure at its boundary.

Most software engineers intuitively perform BVA to some degree. By applying the
guidelines noted above, boundary testing will be more complete, thereby having a
higher likelihood for error detection.

454

[/5]

o
POINT
Orthogonal array
testing enobles you o
design fest cases that
provide maximum fest
coverage with o
reasonable number of
test cases.

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

17.6.4 Comparison Testing

There are some situations (e.g., aircraft avionics, nuclear power plant control) in
which the reliability of software is absolutely critical. In such applications redundant
hardware and software are often used to minimize the possibility of error. When
redundant software is developed, separate software engineering teams develop inde-
pendent versions of an application using the same specification. In such situations,
each version can be tested with the same test data to ensure that all provide identi-
cal output. Then all versions are executed in parallel with real-time comparison of
results to ensure consistency.

Using lessons learned from redundant systems, researchers (e.g., [BRI87]) have
suggested that independent versions of software be developed for critical applica-
tions, even when only a single version will be used in the delivered computer-based
system. These independent versions form the basis of a black-box testing technique
called comparison testing or back-to-back testing [KNI89].

When multiple implementations of the same specification have been produced,
test cases designed using other black-box techniques (e.g., equivalence partitioning)
are provided as input to each version of the software. If the output from each version
is the same, it is assumed that all implementations are correct. If the output is dif-
ferent, each of the applications is investigated to determine if a defect in one or more
versions is responsible for the difference. In most cases, the comparison of outputs
can be performed by an automated tool.

17.6.5 Orthogonal Array Testing

There are many applications in which the input domain is relatively limited. That is,
the number of input parameters is small and the values that each of the parameters
may take are clearly bounded. When these numbers are very small (e.g., 3 input para-
meters taking on 3 discrete values each), it is possible to consider every input per-
mutation and exhaustively test processing of the input domain. However, as the
number of input values grows and the number of discrete values for each data item
increases, exhaustive testing become impractical or impossible.

Orthogonal array testing can be applied to problems in which the input domain is
relatively small but too large to accommodate exhaustive testing. The orthogonal
array testing method is particularly useful in finding errors associated with region

Jaults—an error category associated with faulty logic within a software component.

To illustrate the difference between orthogonal array testing and more conven-
tional “one input item at a time” approaches, consider a system that had three input
items, X, Y, and Z. Each of these input items has three discrete values associated with
it. There are 33 = 27 possible test cases. Phadke [PHA97] suggests a geometric view
of the possible test cases associated with X, Y, and Z illustrated in Figure 17.10. Refer-
ring to the figure, one input item at a time may be varied in sequence along each input

FIGURE 17.10

A geometric
view of test
cases [PHA97]

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 455

X—»

One input item at a time L9 orthogonal array

axis. This results in relatively limited coverage of the input domain (represented by
the left-hand cube in the figure).

When orthogonal array testing occurs, an L9 orthogonal array of test cases is cre-
ated. The L9 orthogonal array has a “balancing property.” [PHA97] That s, test cases
(represented by black dots in the figure) are “dispersed uniformly throughout the test
domain,” as illustrated in the right-hand cube in Figure 17.10. Test coverage across
the input domain is more complete.

To illustrate the use of the L9 orthogonal array, consider the send function for a
fax application. Four parameters, P1, P2, P3 and P4 are passed to the send function.
Each takes on three discrete values. For example, P1 take on values:

Pl =1, send it now
P1 = 2, send it one hour later
P1 = 3, send it after midnight

P2, P3, and P4 would also take on values of 1, 2 and 3, signifying other send func-
tions.

If a “one input item at a time” testing strategy were chosen, the following sequence
of tests (P1, P2, P3, P4) would be specified: (1,1,1,1), (2,1,1,1), (3,1,1,1), (1,:2:1:1);
(1,3,1,1), (1,1,2,1), (1,1,3,1), (1,1,1,2), and (1,1,1,3). Phadke [PHA97] assesses these
test cases in the following manner:

Such test cases are useful only when one is certain that these test parameters do not inter-
act. They can detect logic faults where a single parameter value makes the software mal-
function. These faults are called single mode faults. This method cannot detect logic faults
that cause malfunction when two or more parameters simultaneously take certain values;
that is, it cannot detect any interactions. Thus its ability to detect faults is limited.

Given the relatively small number of input parameters and discrete values,
exhaustive testing is possible. The number of tests required is 34 = 81—large but

FIGURE 17.11

An L9 orthogo-
nal array

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

P1 P2 P3 P4
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

manageable. All faults associated with data item permutation would be found, but
the effort required is relatively high.

The orthogonal array testing approach enables us to provide good test coverage
with far fewer test cases than the exhaustive strategy. An L9 orthogonal array for the
fax send function is illustrated in Figure 17.11.

Phadke [PHA97] assesses the result of tests using the L9 orthogonal array in the
following manner:

Detect and isolate all single mode faults. A single mode fault is a consistent prob-
lem with any level of any single parameter. For example, if all test cases of factor P1 = 1
cause an error condition, it is a single mode failure. In this example tests 1, 2 and 3 [Fig-
ure 17.11] will show errors. By analysing the information about which tests show errors,
one can identify which parameter values cause the fault. In this example, by noting that
tests 1, 2, and 3 cause an error, one can isolate [logical processing associated with “send
it now” (P1 = 1)] as the source of the error. Such an isolation of fault is important to fix the
fault.
Detect all double mode faults. If the exists a consistent problem when specific levels
of two parameters occur together, it is called a double mode fault. Indeed, a double mode
fault is an indication of pairwise incompatibility or harmful interactions between two test
parameters.

- Multimode faults. Orthogonal arrays [of the type shown] can assure the detection of
only single and double mode faults. However, many multi-mode faults are also detected
by these tests.

A detailed discussion of orthogonal array testing can be found in [PHA89].

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 457

17.7 TESTING FOR SPECIALIZED ENVIRONMENTS,
o ARCHITECTURES. AND APPLICATIONS

Guidefines for the
dasign of GUIs ore
presented in Chapter
15.

-

S
Testing GUls

Client /server software
engingering is
presented in Chopter
18.

As computer software has become more complex, the need for specialized testing
approaches has also grown. The white-box and black-box testing methods discussed
in Sections 17.5 and 17.6 are applicable across all environments, architectures, and
applications, but unique guidelines and approaches to testing are sometimes war-
ranted. In this section we consider testing guidelines for specialized environments,
architectures and applications that are commonly encountered by software engi-
neers.

17.7.1 Testing GUIs

Graphical user interfaces (GUIs) present interesting challenges for software engineers.
Because of reusable components provided as part of GUI development environments,
the creation of the user interface has become less time consuming and more precise.
But at the same time, the complexity of GUIs has grown, leading to more difficulty in
the design and execution of test cases.

Because many modern GUIs have the same look and feel, a series of standard tests
can be derived. Finite state modelling graphs (Section 16.6.1) may be used to derive
a series of tests that address specific data and program objects that are relevant to
the GUI.

Due to the large number of permutations associated with GUI operations, testing
should be approached using automated tools. A wide array of GUI testing tools has
appeared on the market over the past few years. For further discussion, see Chapter
al.

17.7.2 Testing of Client/Server Architectures

Client-server (C/S) architectures represent a significant challenge for software testers.
The distributed nature of client/server environments, the performance issues asso-
ciated with transaction processing, the potential presence of a number of different
hardware platforms, the complexities of network communication, the need to ser-
vice multiple clients from a centralized (or in some cases, distributed) database, and
the coordination requirements imposed on the server all combine to make testing of
C/S architectures and the software that reside within them considerably more diffi-
cult than standalone applications. In fact, recent industry studies indicate a signifi-
cant increase in testing time and cost when C/S environments are developed.

17.7.3 Testing Documentation and Help Facilities

The term “software testing” conjures images of large numbers of test cases prepared
to exercise computer programs and the data that they manipulate. Recalling the def-
inition of software presented in the first chapter of this book, it is important to note

Reakime systems

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

that testing must also extend to the third element of the software configuration—doc-
umentation.

Errors in documentation can be as devastating to the acceptance of the program
as errors in data or source code. Nothing is more frustrating than following a user
guide or on-line help facility exactly and getting results or behaviours that do not
coincide with those predicted by the documentation. It is for this reason that that doc-
umentation testing should be a meaningful part of every software test plan.

Documentation testing can be approached in two phases. The first phase, review
and inspection (Chapter 8), examines the document for editorial clarity. The second
phase, live test, uses the documentation in conjunction with the use of the actual pro-
gram.

Surprisingly, live test for documentation can be approached using techniques that
are analogous to many of the black-box testing methods discussed in Section 17.6.
Graph-based testing can be used to describe the use of the program; equivalence par-
titioning and boundary value analysis can be used to define various classes of input
and associated interactions.

17.74 Testing for Real-Time Systems

The time dependent, asynchronous nature of many real-time applications adds a new
and potentially difficult element to the testing mix—time. Not only does the test case
designer have to consider white and black-box test cases, but also event handling
(i.e., interrupt processing), the timing of the data, and the parallelism of the tasks
(processes) that handle the data. In many situations, test data provided when a real-
time system is in one state will result in proper processing, while the same data pro-
vided when the system is in a different state may lead to error.

For example, the real-time software that controls a new photocopier accepts oper-
ator interrupts (i.e., the machine operator hits control keys such as “reset” or “darken”)
with no error when the machine is making copies (in the “copying” state). These same
operator interrupts, if input when the machine is in the “jammed” state, cause a diag-
nostic code indicating the location of the jam to be lost (an error).

In addition, the intimate relationship that exists between real-time software and
its hardware environment can also cause testing problems. Software tests must con-
sider the impact of hardware faults on software processing. Such faults can be
extremely difficult to simulate realistically.

Comprehensive test case design methods for real-time systems have yet to evolve.
However, an overall four-step strategy can be proposed:

Task testing. The first step in the testing of real-time software is to test each
task independently. That is, white-box and black-box tests are designed and
executed for each task. Each task is executed independently during these
tests. Task testing uncovers errors in logic and function, but will not uncover
timing or behavioural errors. '

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 459

Behavioural testing. Using system models created with CASE tools, it is
possible to simulate the behaviour of a real-time system and examine its
behaviour as a consequence of external events. These analysis activities can
serve as the basis for the design of test cases that are conducted when the
real-time software has been built. Using a technique that is similar to equiva-
lence partitioning (Section 17.6.1), events (€.g., interrupts, control signals)
are categorized for testing. For example, events for the photocopier might be:

WebRef. user interrupts (e.g., reset counter), mechanical interrupts (€.g., paper
mm J jammed), system interrupts (e.g., toner low) and failure modes (e.g., roller
topics of inferest fo overheated). Each of these events is tested individually and the behaviour of
tesing professionols: the executable system is examined to detect errors that occur as a conse-
WM“ / quence of processing associated with these events. The behaviour of the sys-
get.cgi/forums / tem model (developed during the analysis activity) and the executable

sti.html

software can be compared for conformance. Once each class of events has
been tested, events are presented to the system in random order and with
random frequency. The behaviour of the software is examined to detect
behaviour errors.

Intertask testing. Once errors in individual tasks and in system behaviour
have been isolated, testing shifts to time-related errors. Asynchronous tasks
that are known to communicate with one another are tested with different
data rates and processing load to determine if intertask synchronization errors
will occur. In addition, tasks that communicate via a message queue or data
store are tested to uncover errors in the sizing of these data storage areas.

System testing. Software and hardware are integrated and a full range of
system tests (Chapter 18) are conducted in an attempt to uncover errors at
the software/hardware interface.

Most real-time systems process interrupts. Therefore, testing the handling
of these Boolean events is essential. Using the state transition diagram and
the control specification (Chapter 12), the tester develops a list of all possible
interrupts and the processing that occurs as a consequence of the interrupt.
Tests are then designed to assess the following system characteristics:

« Are interrupt priorities properly assigned and properly handled?

+ s processing for each interrupt handled correctly?

e« Does the performance (e.g., processing time) of each interrupt handling
procedure conform to requirements?

« Does a high volume of interrupts arriving are critical times create prob-
lems in function or performance?

In addition, global data areas that are used to transfer information as part of inter-
rupt processing should be tested to assess the potential for the generation of side
effects.

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

The primary objective for test case design is to derive a set of tests that have the high-
est likelihood for uncovering errors in the software. To accomplish this objective, two
different categories of test case design techniques are used: white-box testing and
black-box testing.

White-box tests focus on the program control structure. Test cases are derived to
ensure that all statements in the program have been executed at least once during test-
ing and that all logical conditions have been exercised. Basis path testing, a white-box
technique, makes use of program graphs (or graph matrices) to derive the set of lin-
early independent tests that will ensure coverage. Condition and data flow testing fur-
ther exercise program logic, and loop testing complements other white-box techniques
by providing a procedure for exercising loops of varying degrees of complexity.

Hetzel [HET84] describes white-box testing as “testing in the small.” His implica-
tion is that the white-box tests that we have considered in this chapter are typically
applied to small program components (e.g., modules or small groups of modules).
black-box testing, on the other hand, broadens our focus and might be called “test-
ing in the large.”

Black-box tests are designed to validate functional requirements without regard
to the internal workings of a program. Black-box testing techniques focus on the
information domain of the software, deriving test cases by partitioning the input and
output domain of a program in a manner that provides thorough test coverage. Equiv-
alence partitioning divides the input domain into classes of data that are likely to
exercise specific software function. Boundary value analysis probes the program’s
ability to handle data at the limits of acceptability. Orthogonal array testing provides
an efficient, systematic method for testing systems will small numbers of input para-
meters.

Specialized testing methods encompass a broad array of software capabilities and
application areas. Testing for graphical user interfaces, client server architectures,
documentation and help facilities, and real-time systems each require specialized
guidelines and techniques for software testing.

Experienced software developers often say, “Testing never ends, it just gets trans-
ferred from you [the software engineer] to your customer. Every time your customer
uses the program, a test is being conducted.” By applying test case design, the soft-
ware engineer can achieve more complete testing and thereby uncover and correct
the highest number of errors before the “customer’s tests” begin.

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 461

REFERENCES . . . e ————

[BEI90] Beizer, B., Software Testing Techniques, 2nd edn, Van Nostrand-Reinhold,
1990.

[BEI95] Beizer, B., Black-Box Testing, Wiley, 1995.

[BRI87] Brilliant, S.S.,J.C. Knight, and N.G. Levenson, “The Consistent Comparison
Problem in N-Version Software,” ACM Software Engineering Notes, vol. 12, no. 1, Jan-
uary 1987, pp. 29-34.

[DAV95] Davis, A., 201 Principles of Software Development, McGraw-Hill, 1995.
[DEU79] Deutsch, M., “Verification and validation,” in Software Engineering (R. Jensen
and C. Tonies, eds), Prentice-Hall, 1979, pp. 329-408.

[FOS84] Foster, K.A., “Sensitive Test Data for Boolean Expressions,” ACM Software
Engineering Notes, vol. 9, no. 2, April 1984, pp. 120-125.

[FRA88] Frankl, P.G.and EJ. Weyuker, “An Applicable Family of Data Flow Testing
Criteria,” IEEE Trans. Software Engineering, Vol. 14, no. 10, October 1988, pp. 1483-
1498.

[FRA93] Frankl, P.G. and S. Weiss, “An Experimental Comparison of the Effective-
ness of Branch Testing and Data Flow,” IEEE Trans. Software Engineering, vol. 19,
no. 8, August 1993, pp. 770-787.

[HET84] Hetzel, W., The Complete Guide to Software Testing, QED Information Sci-
ences, Inc., Wellesley, MA, 1984.

[HOW82] Howden, W.E., "Weak Mutation Testing and the Completeness of Test Cases,”
IEEE Trans. Software Engineering, vol. SE-8, no. 4, July 1982, pp. 371-379.

JON81] Jones, T.C., Programming Productivity: Issues for the 80s, IEEE Computer Soci-
ety Press, 1981.

[KAN93] Kaner, C.,J. Falk, and H.Q. Nguyen, Testing Computer Software, 2nd edn, Van
Nostrand Reinhold, 1993.

[KNI89] Knight, J. and P. Ammann, “Testing Software Using Multiple Versions,” Soft-
ware Productivity Consortium, Report No. 89029N, Reston, VA, June 1989.

[MCC76] McCabe, T., “A Software Complexity Measure,” IEEE Trans. Software Engi-
neering, vol. 2, December 1976, pp. 308-320.

[MYE79] Myers, G., The Art of Software Testing, Wwiley, 1979.

[NTA88] Ntafos, S.C., “A Comparison of Some Structural Testing Strategies,” IEEE
Trans. Software Engineering, vol. 14, no. 6, June 1988, pp. 868-874.

[PHA89] Phadke, M.S., Quality Engineering Using Robust Design, Prentice Hall, 1989.
[PHA97] Phadke, M.S., “Planning Efficient Software Tests,” Crosstalk, vol. 10, no. 10,
October 1997, pp. 11-15.

[TAI87] Tai, K.C. and H.K. Su, “Test Generation for Boolean Expressions,” Proc.
COMPSAC 87, October 1987, pp. 278-283.

[TAI&9] Tai, K.C., “What to Do Beyond Branch Testing.” ACM Software Engineering

Notes, vol, 14 no. 2, April 1989, pp. 58-61.

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

[WHI80] White, LJ. and E.I. Cohen, “A Domain Strategy for Program Testing," IEEE
Trans. Software Engineering, vol. SE-6, no. 5, May 1980, pp. 247-257.

17.1. Myers [MYE79] uses the following program as a self assessment for your
ability to specify adequate testing: A program reads three integer values. The three
values are interpreted as representing the lengths of the sides of a triangle. The pro-
gram prints a message that states whether the triangle is scalene, isosceles or equi-
lateral. Develop a set of test cases that you feel will adequately test this program.
17.2. Design and implement the program (with error-handling where appropriate)
specified in Problem 1. Derive a flow graph for the program and apply basis path test-
ing to develop test cases that will guarantee that all statements in the program have
been tested. Execute the cases and show your results.

17.3. Can you think of any additional testing objectives that are not discussed in
Section 17.1.1?

17.4. Apply the basis path testing technique to any one of the programs that you
have implemented in Problems 16.4 through 16.11.

17.5. Specify, design and implement a software tool that will compute the cyclo-
matic complexity for the programming language of your choice. Use the graph matrix
as the operative data structure in your design.

17.6. Read Beizer [BEI95] and determine how the program you have developed in
Problem 17.5 can be extended to accommodate various link weights. Extend your
tool to process execution probabilities or link processing times.

17.7. Use the condition testing approach described in Section 17.5.1 to design a

- set of test cases for the program you created in Problem 17.2.

17.8. Using the data flow testing approach described in Section 17.5.2, make a list
of definition-use chains for the program you created in Problem 17.2.

17.9. Design an automated tool that will recognize loops and categorize them as
indicated in Section 17.5.3.

17.10. Extend the tool described in Problem 17.9 to generate test cases for each
loop category, once encountered. It will be necessary to perform this function inter-
actively with the tester,

17.11. Give at least three examples in which black-box testing might give the impres-
sion that “everything’s O.K.,” while white-box tests might uncover an error. Give at
least three examples in which white-box testing might give the impression that “every-
thing’s O.K.,” while black-box tests might uncover an error.

17.12. Will exhaustive testing (even if it is possible for very small programs) guar-
antee that the program is 100 percent correct?

17.13. Using the equivalence partitioning method, derive a set of test cases for Safe-
Home system described earlier in this book.

i o T LI

CHAPTER 17 SOFTWARE TESTING TECHNIQUES 463

17.14. Using boundary value analysis, derive a set of test cases for the PHTRS sys-
tem described in Problem 12.13.

17.15. Do a bit of outside research and write a brief paper that discusses the mechan-
ics for generating orthogonal arrays for test data.

17.16. Select a specific GUI for a program with which you are familiar and design
a series of tests to exercise the GUL

17.17. Do some research on a client/server system with which you are familiar.
Develop a set of user scenarios and then create an operational profile for the system.
17.18. Test a user manual (or help facility) for an application that you use frequently.
Find at least one error in the documentation.

FURTHER READINGS AND INFORMATION SOURCES_

Software engineering presents both technical and management challenges. Books
by Black (Managing the Testing Process, Microsoft Press, 1999), Dustin, Rashka and
Paul (Test Process Improvement: Step-By-Step Guide to Structured Testing, Addison-
Wesley, 1999), Perry (Surviving the Top Ten Challenges of Software Testing: A People-
Oriented Approach, Dorset House, 1997), and Kit and Finzi (Software Testing in the Real
World: Improving the Process, Addison-Wesley, 1995) address management and process
issues.

A number of excellent books are now available for those readers who desire addi-
tional information on software testing technology. Kaner, Nguyen and Falk (Testing
Computer Software, Wiley, 1999), Hutcheson (Software Testing Methods and Metrics:
The Most Important Tests, McGraw-Hill, 1997), Marick (The Craft of Software Testing:
Subsystem Testing Including Object-Based and Object-Oriented Testing, Prentice Hall,
1995), Jorgensen (Software Testing : A Craftsman’s Approach, CRC Press, 1995) present
treatments of the subject that consider testing methods and strategies.

Myers' [MYE79] remains a classic text, covering black-box techniques in consid-
erable detail. Beizer [BEI9O] provides comprehensive coverage of white-box tech-
niques, introducing a level of mathematical rigour that has often been missing in
other treatments of testing. His later book [BEI95] presents a concise treatment of
important methods. Perry (Effective Methods for Software Testing, Wiley-QED, 1995)
and Friedman and Voas (Software Assessment: Reliability, Safety, Testability, Wiley, 1995)
present good introductions to testing strategies and tactics. Mosley (The Handbook
of MIS Application Software Testing, Prentice-Hall, 1993) discusses testing issues for
large information systems, and Marks (Testing Very Big Systems, McGraw-Hill, 1992)
discusses the special issues that must be considered when testing major program-
ming systems.

Software testing is a resource intensive activity. It is for this reason that many orga-
nizations automate parts of the testing process. Books by Dustin, Rashka and Pos-
ton (Automated Software Testing: Introduction. Management, and Performance,

PART THREE CONVENTIONAL METHODS FOR SOFTWARE ENGINEERING

Addison-Wesley, 1999) and Poston (Automating Specification-Based Software Testing,
IEEE Computer Society, 1996) discuss tools, strategies, and methods for automated
testing. An excellent source of information on automated tools for software testing
is the Testing Tools Reference Guide (Software Quality Engineering, Inc., Jacksonville,
FL, updated yearly). This directory contains descriptions of hundreds of testing tools,
categorized by testing activity, hardware platform and software support.

A number of books consider testing methods and strategies in specialized appli-
cation areas. Gardiner (Testing Safety-Related Software: A Practical Handbook, Springer
Verlag, 1999) has edited a book that addresses testing of safety-critical systems.
Mosley (Client/Server Software Testing on the Desk Top and the Web, Prentice Hall,
1999) discusses the test process for clients, servers, and network components. Rubin
(Handbook of Usability Testing, Wiley, 1994) has written a useful guide for those who
must exercise human interfaces.

A wide variety of information sources on software testing and related subjects
are available on the internet. An up-to-date list of world wide web references that
are relevant to testing concepts, methods and strategies can be found at
http://www.pressman5.com

