Software Engineering

A Practitioner’s Approach

—_—

European Adaptation

Fifth Edition

Roger S. Pressman

adapted by

Darrel Ince

a single goal: to produce high quality software. Yet many readers will be
challenged by the question: “What is software quality?”
Philip Crosby [CRO79], in his landmark book on quality, provides a wry answer
to this question:

The software engineering approach described in this book works toward

The problem of quality management is not what people don’'t know about it. The
problem is what they think they do know...

In this regard, quality has much in common with sex. Everybody is for it. (Under
certain conditions, of course.) Everyone feels they understand it. (Even though they
wouldn't want to explain it.) Everyone thinks execution is only a matter of follow-
ing natural inclinations. (After all, we do get along somehow.) And, of course, mosl
people feel that problems in these areas are caused by other people. (If only they
would take the time to do things right.)

Some software developers continue to believe that software quality is some-
thing you begin to worry about after code has been generated. Nothing could
be further from the truth! Software quality assurance (SQA) is an umbrella activ-
ity (Chapter 2) that is applied throughout the software process.

QUICK
LOOK

What is it? It's not enough to talk
the talk by saying that software
quality is important, you have to
(1) explicitly define what is meant when you say
"software quality’, (2) create a set of activities

all software engineering activities, it reduces the
amount of rework that it must do. That results in
lower costs, and more importantly, improved time-
to-market.

What are the steps? Before software quality assurance

that will help ensure that every software engineer-
ing work product exhibits high quality, (3) perform
quality assurance activities on every software
project, (4) use metrics to develop strategies
for improving your software process, and as a
consequence, improving the quality of the end
product.

Who does it? Everyone involved in the software engi-
neering process is responsible for quality.

Why is it important? You can do it right, or you can do
it over again. If a software team stresses quality in

activities can be initiated, it is important to define
"software quality” at a number of different levels of
abstraction. Once you understand what quality is,
a software team must identify a set of SQA activi-
ﬁeath&twillﬂlterermoutotmkpmductabehre
they are passed on.

What is the work product? A Software Quality Assur-

ance Plan is created to define a software team's SQA
strategy. During analysis, design, and code gener-
ation, the primary SQA work product is the formal
technical review summary report. During testing,

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 193

QUICK Test Plans and Procedures are pro- betore they become defects! That is, work to improve
LOOK duced. Other work products asso- your defect removal efficiency (Chapters 4 and 7),
ciated with process improvement thereby reducing the amount of rework that your

may also be generated. soltware team has to perform.

How do I ensure that I've done it right? Find errors

SQA encompasses: (1) a quality management approach, (2) effective software engi-
neering technology (methods and tools), (3) formal technical reviews that are applied
throughout the software process; (4) a multi-tiered testing strategy, (5) control of soft-
ware documentation and the changes made to it, (6) a procedure to ensure compli-
ance with software development standards (when applicable), and (7) measurement
and reporting mechanisms.

In this chapter, we focus on the management issues and the process-specific activ-
ities that enable a software organization to ensure that it does “the right things at the
right time in the right way.”

81 QUALITY CONCEPIS' . . e

@om:

“Peaple forget how
fost you did o job -
but they olways
remember how well
you did it.”
Howard Newton

It has been said that no two snowflakes are alike. Certainly when we watch snow
falling it is hard to imagine that snowflakes differ at all, let alone that each flake pos-
sesses a unique structure. In order to observe differences between snowflakes, we
must examine the specimens closely, perhaps using a magnifying glass. In fact, the
closer we look, the more differences we are able to observe.

This phenomenon, variation between samples, applies to all products of human as
well as natural creation. For example, if two “identical” circuit boards are examined
closely enough, we may observe that the copper pathways on the boards differ slightly
in geometry, placement, and thickness. In addition, the location and diameter of the
holes drilled in the boards varies as well.

Variation control is the heart of quality control. A manufacturer wants to minimize
the variation among the products that are produced, even when doing something rel-
atively simple like duplicating diskettes. Surely, this cannot be a problem—duplicat-
ing diskettes is a trivial manufacturing operation, and we can guarantee that exact
duplicates of the software are always created.

Or can we? We need to ensure the tracks are placed on the diskettes within a
specified tolerance so that the overwhelming majority of disk drives can read the
diskettes. In addition, we need to ensure the magnetic flux for distinguishing a zero
from a one is sufficient for read/write heads to detect. The disk duplication machines

I This section, written by Michael Stovsky, has been adapted from “Fundamentals of ISO 9000," a
workbook developed for Essential Software Engineering, a video curriculum developed by R.S.
Pressman & Associates, Inc. Reprinted with permission

194

[/5]

o
POINT
Controlling variation is
the key to o high
quality product, In the
software context, we
strive fo control the
variation in the process
we apply, the
resources we expend,
and the quality
aftributes of the end

product.

PART TWO MANAGING SOFTWARE PROJECTS

can, and do, wear and go out of tolerance. So even a “simple” process such as disk
duplication may encounter problems due to variation between samples.

But how does this apply to software work? How might a software development
organization need to control variation? From one project to another, we want to min-
imize the difference between the predicted resources needed to complete a project
and the actual resources used, including staffing, equipment, and calendar time. In
general, we would like to make sure our testing program covers a known percent-
age of the software, from one release to another. Not only do we want to minimize
the number of defects that are released to the field, but we'd like to ensure that the
variance in the number of bugs is also minimized from one release to another. (Our
customers will likely be upset if the third release of a product has ten times as many
defects as the previous release.) We would like to minimize the differences in speed
and accuracy of our hotline support responses to customer problems. The list goes
on and on.

8.1.1 Quality

The American Heritage Dictionary defines quality as “a characteristic or attribute of
something.” As an attribute of an item, quality refers to measurable characteristics—
things we are able to compare to known standards such as length, colour, electrical
properties, malleability, etc. However, software, largely an intellectual entity, is more
challenging to characterize than physical objects.

Nevertheless, measures of a program's characteristics do exist. These properties
include cyclomatic complexity, cohesion, number of function points, lines of code,
and many others discussed in Chapters 19 and 24. When we examine an item based
on its measurable characteristics, two kinds of quality may be encountered: quality
of design and quality of conformance.

Quality of design refers to the characteristics the designers specify for an item. The
grade of materials, tolerances, and performance specifications all contribute to the
quality of design. As higher graded materials are used, tighter tolerances, and greater
levels of performance are specified, the design quality of a product increases, if the
product is manufactured according to specifications.

Quality of conformance is the degree to which the design specifications are fol-
lowed during manufacturing. Again, the greater the degree of conformance, the higher
the level of quality of conformance.

In software development, quality of design encompasses requirements, specifica-
tions, and the design of the system. Quality of conformance is an issue focused pri-
marily on implementation. If the implementation follows the design and the resulting
system meets its requirements and performance goals, conformance quality is high.

But are quality of design and quality of conformance the only issues that software
engineers must consider? Robert Glass [GLA98] argues that a more “intuitive” rela-
tionship is in order:

9 What is
® software
quality control?

WebRef|

A wide voriety of softwore
quality resources can be
found at
www.qualitytree.
com /links /links.him

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 195

user satisfaction = compliant product + good quality +
delivery within budget and schedule

At the bottom line, Glass contends that quality is important, but if the user isn't sat-
isfied, nothing else really matters. DeMarco [DEM99] reinforces this view when he
states: “A product’s quality is a function of how much it changes the world for the
better.” This view of quality contends that if a software product provides substantial
benefit to its end users, they may be willing to tolerate occasional reliability or per-
formance problems.

8.1.2 Quality Control

Variation control may be equated to quality control. But how do we achieve quality
control? Quality control is the series of inspections, reviews, and tests used through-
out the software process to ensure each work product meets the requirements placed
upon it. Quality control includes a feedback loop to the process that created the work
product. The combination of measurement and feedback allows us to tune the process
when the work products created fail to meet their specifications. This approach views
quality control as part of the manufacturing process.

Quality control activities may be fully automated, entirely manual, or a combina-
tion of automated tools and human interaction. A key concept of quality control is
that all work products have defined and measurable specifications to which we may
compare the outputs of each process. The feedback loop is essential to minimize the
defects produced.

8.1.3 Quality Assurance

Quality assurance consists of the auditing and reporting functions of management.
The goal of quality assurance is to provide management with the data necessary to
be informed about product quality, thereby gaining insight and confidence that prod-
uct quality is meeting its goals. Of course, if the data provided through quality assur-
ance identify problems, it is management’s responsibility to address the problems
and apply the necessary resources to resolve quality issues.

8.1.4 Cost of Quality
Cost of quality includes all costs incurred in the pursuit of quality or in performing
quality related activities. Cost of quality studies are conducted to provide a baseline
for the current cost of quality, identify opportunities for reducing the cost of quality
and to provide a normalized basis of comparison. The basis of normalization is almost
always dollars. Once we have normalized quality costs on a dollar basis, we have
the necessary data to evaluate where the opportunities lie to improve our processes.
Furthermore, we can evaluate the affect of changes in dollar-based terms.

Quality costs may be divided into costs associated with prevention, appraisal, and
failure. Prevention costs include:

L

omponents of the
cost of quality?

Cova$

Don't be afraid to incur
significant prevention
costs. Rest assured
that your investment
will provide an
excellent refum.

Covef

Testing is necessary,
but it's also o very
expensive way fo find
erors. Spend time
finding errors early in
the process and you
may be able fo
significantly reduce
testing and debugging
costs.

PART TWO MANAGING SOFTWARE PROJECTS

. quality planning

. formal technical reviews

. test equipment

. training

Appraisal costs include activities to gain insight into product condition the “first time
through” each process. Examples of appraisal costs include:

. in-process and inter-process inspection

. equipment calibration and maintenance

. testing

Failure costs are costs that would disappear if no defects appeared before shipping a
product to customers. Failure costs may be sub-divided into internal failure costs and
external failure costs. Internal failure costs are the costs incurred when we detect a
defect in our facility prior to shipment. Internal failure costs include:

. rework

. repair

. failure mode analysis

External failure costs are the costs associated with defects found after the product has
been shipped to the customer. Examples of external failure costs are:

. complaint resolution

. product return and replacement

. help line support

. warranty work

As expected, the relative costs to find and repair a defect increases dramatically as
we go from prevention to detection to internal failure to external failure costs. Fig-
ure 8.1, based on data collected by Boehm [BOE81] and others illustrates this phe-
nomenon.

Anecdotal data reported by Kaplan and his colleagues [KAP95] reinforces earlier
cost statistics and is based on work at IBM’s Rochester development facility:

A total of 7053 hours was spent inspecting 200,000 lines of code with the result that 3112
potential defects were prevented. Assuming a programmer cost of $40.00 per hour, the total
cost of preventing 3112 defects was $282,120, or roughly $91.00 per defect.

Compare these numbers to the cost of defect removal once the product has been
shipped to the customer. Suppose that there had been no inspections, but that program-
mers had been extra careful and only one defect per 1000 lines of code [significantly better
than industry average] escaped into the shipped product. That would mean that 200 defects
would still have to be fixed in the field. At an estimated cost of $25,000 per field fix, the cost

FIGURE 8.1
Relative cost of
correcting an
error

8.2

(/>
.

POINT

TQM con be applied to
computer softwore.
The TQM approach
stresses confinuous
Drocess improvement.

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 197

1000 — 401000
times
| =
(=]
5
= 39—70
§ 100 ig-dg SomEe
%" times
3 10
E times
&) 10~ 3-6
k= times
b
Oo 1
® 1 time
B T
K
Q
=

Reg. Design Code Dev. System Field
Test Test Operation

would be $5 million, or approximately 18 times more expensive than the total cost of the
defect prevention effort.

It is true that IBM produces software that is used by hundreds of thousands of cus-
tomers and that their costs for field fixes may be higher than those for software orga-
nization that build custom systems. This in no way negates the results noted above.
Even if the average software organization has field fix costs that are 25 percent of
IBM's (most have no idea what their costs are!), the cost savings associated with qual-
ity control and assurance activities are compelling.

THE QUALITY MOVEMENT

Today, senior managers at companies throughout the industrialized world recognize
that high product quality translates to cost savings and an improved bottom line.
However, this was not always the case. The quality movement began in the 1940s
with the seminal work of W. Edwards Deming [DEM86] and had its first true test in
Japan. Using Deming’s ideas as a cornerstone, the Japanese developed a systematic
approach to the elimination of the root causes of product defects. Throughout the
1970s and 1980s, their work migrated to the western world and was given names
such as “total quality management (TQM)."2 Although terminology differs across dif-
ferent companies and authors, a basic four step progression is normally encountered
and forms the foundation of any good TQM program.

2 gee [ART92] for a comprehensive discussion of TQM and its use in a software context and
|KAP95| for a discussion of the use of the Baldridee Award criteria in the software world

198

WebRef

A wide variety of
resources for confinuous
process improvement and
TQM con be found ot

deming.eng.clemson.
edu/

How do we

define

“software

quality”?

PART TWO MANAGING SOFTWARE PROJECTS

The first step is called kaizen and refers to a system of continuous process improve-
ment. The goal of kaizen is to develop a process (in this case, the software process)
that is visible, repeatable and measurable.

The second step, invoked only after kaizen has been achieved, is called atarimae
hinshitsu. This step examines intangibles that affect the process and works to opti-
mize their impact on the process. For example, the software process may be affected
by high staff turnover which itself is caused by constant reorganizations within a
company. It may be that a stable organizational structure could do much to improve
the quality of software. Atarimae hinshitsu would lead management to suggest changes
in the way reorganization occurs.

While the first two steps focus on the process, the next step, called kansei (trans-
lated as “the five senses”) concentrates on the user of the product (in this case, soft-
ware). In essence, by examining the way the user applies the product kansei leads to
improvement in the product itself, and potentially, to the process that created it.

Finally, a step called miryokuteki hinshitsu broadens management concern beyond
the immediate product. This is a business-oriented step that looks for opportunity in
related areas that can be identified by observing the use of the product in the mar-
ketplace. In the software world, miryokuteki hinshitsu might be viewed as an attempt
to uncover new and profitable products or applications that are an outgrowth from
an existing computer-based system.

For most companies kaizen should be of immediate concern. Until a mature soft-
ware process (Chapter 2) has been achieved, there is little point in moving to the next
steps.

Even the most jaded software developers will agree that high quality software is an
important goal. But how do we define quality? A wag once said, “Every program does
something right, it just may not be the thing that we want it to do.”

There have been many definitions of software quality proposed in the literature.
For our purposes, software quality is defined as:

Conformance to explicitly stated functional and performance requirements, explicitly doc-
umented development standards, and implicit characteristics that are expected of all pro-
fessionally developed software.

There is little question that the above definition could be modified or extended. If fact,
a definitive definition of software quality could be debated endlessly. For the purposes
of this book, the above definition serves to emphasize three important points:

1. Software requirements are the foundation from which quality is measured.
Lack of conformance to requirements is lack of quality.

WebRef

An indepth uforial and
wide-onging resources for
quality management can
be found of
www.management.
gov

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 198

2. Specified standards define a set of development criteria that guide the man-
ner in which software is engineered. If the criteria are not followed, lack of
quality will almost surely result.

3. There is a set of implicit requirements that often goes unmentioned (€.g., the
desire for ease of use and good maintainability). If software conforms to its
explicit requirements, but fails to meet implicit requirements, software qual-
ity is suspect.

8.3.1 Background Issues

The history of quality assurance in software development parallels the history of
quality in hardware manufacturing. During the early days of computing (1950s and
1960s), quality was the sole responsibility of the programmer. Standards for quality
assurance for software were introduced in military contract software development
during the 1970s and have spread rapidly into software development in the
commercial world [IEE94]. Extending the definition presented earlier, software
quality assurance is a “planned and systematic pattern of actions” [SCH97] that are
required to ensure quality in software. The scope of quality assurance responsibility
might best be characterized by paraphrasing a once-popular motorcar commercial:
“Quality is Job #1.” The implication for software is that many different constituencies
have software quality assurance responsibility—software engineers, project
managers, customers, salespeople, and the individuals who serve within an
SQA group.

The SQA group serves as the customer’s in-house representative. That is, the peo-
ple who perform SQA must look at the software from the customer’s point of view.
Does the software adequately meet the quality factors noted in Chapter 197 Has soft-
ware development been conducted according to pre-established standards? Have
technical disciplines properly performed their roles as part of the SQA activity? The
SQA group attempts to answer these and other questions to ensure that software
quality is maintained.

8.3.2 SQA Activities

Software quality assurance is comprised of a variety of tasks associated with two dif-
ferent constituencies—the software engineers who do technical work and a SQA
group that has responsibility for quality assurance planning, oversight, record keep-
ing, analysis, and reporting.

Software engineers address quality (and perform quality assurance and quality
control activities) by applying solid technical methods and measures, conducting for-
mal technical reviews, and performing well-planned software testing. Only reviews
are discussed in this chapter. Technology topics are discussed in Parts Three through
Five of this book.

200 PART TWO MANAGING SOFTWARE PROJECTS

The charter of the SQA group is to assist the software team in achieving a high
quality end product. The Software Engineering Institute [PAU93] recommends a set
of SQA activities that address quality assurance planning, oversight, record keeping,
analysis, and reporting. It is these activities that are performed (or facilitated) by an

independent SQA group:
What is the Prepares a SQA Plan for a project. The plan is developed during project planning
role of an and is reviewed by all interested parties. Quality assurance activities performed
SQA group? by the software engineering team and the SQA group are governed by the plan.

The plan identifies:

. evaluations to be performed

. audits and reviews to be performed

. standards that are applicable to the project

. procedures for error reporting and tracking

. documents to be produced by the SQA group

. amount of feedback provided to software project team

Participate in the development of the project’s software process description. The soft-
ware team selects a process for the work to be performed. The SQA group reviews
the process description for compliance with organizational policy, internal soft-
ware standards, externally imposed standards (e.g., 1ISO-9001), and other parts of
the software project plan.

Reviews software engineering activities to verify compliance with the defined software
process. The SQA group identifies, documents, and tracks deviations from the
process and verifies that corrections have been made.

Audits designated software work products to verify compliance with those defined as
part of the software process. The SQA group reviews selected work products; iden-
tifies, documents, and tracks deviations; verifies that corrections have been made,
and periodically reports the results of its work to the project manager.

Ensures that deviations in software work and work products are documented and han-
dled according to a documented procedure. Deviations may be encountered in the
project plan, process description, applicable standards, or technical work products.

Records any noncompliance and reports to senior management. Noncompliance items
are tracked until they are resolved.

In addition to these activities, the SQA group coordinates the control and manage-
ment of change (Chapter 9) and helps to collect and analyse software metrics.

Software reviews are a “filter” for the software engineering process. That is, reviews
are applied at various points during software development and serve to uncover errors

apwc!‘

Like water filters, FRs
tend fo reford the
“flow” of software
engineering activities.
Too few and the flow
is “dirty.” Too many
and the flow slows to
o frickle. Use metrics
to determine which
reviews work and
which may not be
effective. Toke the
ineffective ones out of
the flow.

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 201
and defects that can then be removed. Software reviews serve to “purify” the soft-
ware engineering activities that we have called analysis, design, and coding. Freed-

man and Weinberg [FRE90] discuss the need for reviews this way:

Technical work needs reviewing for the same reason that pencils need erasers: To €IT is
human. The second reason we need technical reviews is that although people are good at
catching some of their own errors, large classes of errors escape the originator more eas-
ily than they escape anyone else. The review process is, therefore, the answer to the prayer
of Robert Burns:

O wad some power the giftie give us
to see ourselves as other see us

A review—any review—is a way of using the diversity of a group of people to:

1. Point out needed improvements in the product of a single person or team;

2. Confirm those parts of a product in which improvement is either not desired
or not needed;

3. Achieve technical work of more uniform, or at least more predictable, qual-
ity than can be achieved without reviews, in order to make technical work more
manageable.

There are many different types of reviews that can be conducted as part of soft-
ware engineering. Each has its place. An informal meeting around the coffee machine
is a form of review, if technical problems are discussed. A formal presentation of soft-
ware design to an audience of customers, management and technical staff is also a
form of review. In this book, however, we focus on the formal technical review (FTR)—
sometimes called a walkthrough or an inspection. A formal technical review is the
most effective filter from a quality assurance standpoint. Conducted by software engi-
neers (and others) for software engineers, the FTR is an effective means for improv-
ing software quality.

8.4.1 Cost Impact of Software Defects

The IEEE Standard Dictionary of Electrical and Electronics Terms (IEEE Standard 100-
1992) defines a defect as “a product anomaly.” The definition for “fault” in the hard-
ware context can be found in IEEE Standard 610.12-1990:

(a) A defect in a hardware device or component; for example, a short circuit or broken wire.
(b) An incorrect step, process, or data definition in a computer program. Note: This defini-
tion is used primarily by the fault tolerance discipline. In common usage, the terms “error”
and “bug" are used to express this meaning. See also: data-sensitive fault; program-sensi-
tive fault; equivalent faults; fault masking; intermittent fault.

Within the context of the software process, the terms defect and fault are synony-
mous. Both imply a quality problem that is discovered after the software has been

Defect amplifi-
cation model

[/5]

o,
POINT
The primary objective
of on FTR is to find
errors before they ore
possed on fo onother
software engineering
activity or released fo
the customer,

PART TWO MANAGING SOFTWARE PROJECTS

Development step

Errors passed
to next step

released to end-users (or to another activity in the software process). In earlier chap-
ters, we used the term error to depict a quality problem that is discovered by software
engineers (or others) before the software is released to the end-user (or to another
activity in the software process).

The primary objective of formal technical reviews is to find errors during the process
so that they do not become defects after release of the software. The obvious bene-
fit of formal technical reviews is the early discovery of errors so that they do not prop-
agate to the next step in the software process.

A number of industry studies (TRW, Nippon Electric, Mitre Corp., among others)
indicate that design activities introduce between 50 and 65 percent of all errors (and
ultimately, all defects) during the software process. However, formal review tech-
niques have been shown to be up to 75 percent effective [JON86] in uncovering design
flaws. By detecting and removing a large percentage of these errors, the review process
substantially reduces the cost of subsequent steps in the development and support
phases.

To illustrate the cost impact of early error detection, we consider a series of rela-
tive costs that are based on actual cost data collected for large software projects
[1BM81].3 Assume that an error uncovered during design will cost 1.0 monetary unit
to correct. Relative to this cost, the same error uncovered just before testing com-
mences will cost 6.5 units; during testing 15 units; and after release, between 60 and
100 units.

8.4.2 Defect Amplification and Removal

A defect amplification model[IBM81] can be used to illustrate the generation and
detection of errors during preliminary design, detail design, and coding steps of the
software engineering process. The model is illustrated schematically in Figure 8.2. A
box represents a software development step. During the step, errors may be inad-
vertently generated. Review may fail to uncover newly generated errors and errors
from previous steps, resulting in some number of errors that are passed through. In

3 Although these data are more than 20 years old, they remain applicable in a modern context.

| Loein

@ofe:

“Some maladies, 0s
doctors say, of their
beginning are easy
to cure but difficult
o recognize ... but
in the course of fime
when they have not
of first been
recognized and
treoted, become
easy fo recognize
but difficult fo cure.”
Niccolo
Machiavelli

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 203
some cases, errors passed through from previous steps are amplified (amplification
factor, x) by current work. The box subdivisions represent each of these characteris-
tics and the percent efficiency for detecting errors, a function of the thoroughness of
review.

Figure 8.3 illustrates a hypothetical example of defect amplification for a software
development process in which no reviews are conducted. Referring to the figure, each
test step is assumed to uncover and correct 50 percent of all incoming errors with-
out introducing any new errors (an optimistic assumption). Ten preliminary design
defects are amplified to 94 errors before testing commences. Twelve latent errors are
released to the field. Figure 8.4 considers the same conditions except that design and
code reviews are conducted as part of each development step. In this case, ten ini-
tial preliminary design errors are amplified to 24 errors before testing commences.
Only three latent errors exist. Recalling the relative costs associated with the dis-
covery and correction of errors, overall cost (with and without review for our hypo-
thetical example) can be established. The number of errors uncovered during each
of the steps noted in Figures 8.3 and 8.4 is multiplied by the cost to remove an error
(1.5 cost units for design, 6.5 cost units before test, 15 cost units during test, and 67
cost units after release). Using these data, the total cost for development and main-
tenance when reviews are conducted is 783 cost units. When no reviews are con-
ducted, total cost is 2177 units—nearly three times more costly.

To conduct reviews, a software engineer must expend time and effort and the
development organization must spend money. However, the results of the preceding
example leave little doubt that we have encountered a “pay now or pay much more
later” syndrome. Formal technical reviews (for design and other technical activities)
provide a demonstrable cost benefit. They should be conducted.

FORMAL TECHNICAL REVIEWS

A formal technical review (ETR) is a software quality assurance activity that is per-
formed by software engineers (and others). The objectives of the FTR are: (1) to uncover
errors in function, logic or implementation for any representation of the software; (2)
to verify that the software under review meets its requirements; (3) to ensure that the
software has been represented according to pre-defined standards; (4) to achieve
software that is developed in a uniform manner, and (5) to make projects more man-
ageable. In addition, the FTR serves as a training ground, enabling junior engineers
to observe different approaches to software analysis, design, and implementation.
The FTR also serves to promote backup and continuity because a number of people
become familiar with parts of the software that they may not have otherwise seen.
The FTR is actually a class of reviews that include walkthroughs, inspections,
round-robin reviews and other small group technical assessments of software. Each
FTR is conducted as a meeting and will be successful only if it is properly planned,

Ty e T

204

FIGURE 8.3
Detect amplifi-
cation, no
reviews

FIGURE 8.4
Defect amplifi-
cation, reviews
conducted

When we

conduct
FTRs, what are
our objectives?

PART TWO MANAGING SOFTWARE PROJECTS

Preliminary design

£ Detail design
10 6 . A
0 0% L SHL - Code/unit test
10 40 4x15 | o 137 .
_x=15 0%
94 Integration test
: Validation test
l_. e 50% 4L ol
Latent errors
Preliminary design
0 : g
Detail design
3 2
9 % = 2 Code/unit test
10 L1 1015 50% 15._5- 5
25 19.. 103 60% 24
24 Integration test 25
Validation test —
12 To integration
- 0 =
Sete System test
0 - 0 50% |—
0 — 0 so% |2
0
Latent e;}{'):s

controlled and attended. In the sections that follow, guidelines similar to those for a
walkthrough [FRE90, GIL93] are presented as a representative formal technical review.

8.5.1 The Review Meeting

Regardless of the FTR format that is chosen, every review meeting should abide by
the following constraints:

. between three and five people (typically) should be involved in the review;

wae:

“A meefing is too
often on event
where minutes are
token ond hours ore
wasted.”

outhor unknown

[/5]

%o,
POINT
The FTR focuses on 0
relafively small portion

of o work product.

WebRef|

The NASA SATC Formol
Inspection Guidebook can
be downlooded from
satc.gsfenasa.gov/
fi/fipage.html

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 205

. advance preparation should occur but should require no more that two hours
of work for each person; and
. the duration of the review meeting should be less than two hours.

Given the above constraints, it should be obvious that an FTR focuses on a specific
(and small) part of the overall software. For example, rather than attempting to review
an entire design, walkthroughs are conducted for each component or small group of
components. By narrowing focus, the FTR has a higher likelihood of uncovering errors.

The focus of the FTR is on a work product (e.g, a portion of a requirements spec-
ification, a detailed component design, a source code listing for a component). The
individual who has developed the work product—the producer—informs the project
leader that the work product is complete and that a review is required. The project
leader contacts a review leader who evaluates the product for readiness, generates
copies of product materials and distributes them to two or three reviewers for advance
preparation. Each reviewer is expected to spend between one and two hours review-
ing the product, making notes and otherwise becoming familiar with the work. Con-
currently, the review leader also reviews the product and establishes an agenda for
the review meeting, which is typically scheduled for the next day.

The review meeting is attended by the review leader, all reviewers and the pro-
ducer. One of the reviewers takes on the role of the recorder, that is, the individual
who records (in writing) all important issues raised during the review. The FTR begins
with an introduction of the agenda and a brief introduction by the producer. The pro-
ducer then proceeds to “walk through” the work product, explaining the material,
while reviewers raise issues based on their advance preparation. When valid prob-
lems or errors are discovered, the recorder notes each.

At the end of the review, all attendees of the FTR must decide whether to (1) accept
the product without further modification, (2) reject the product due to severe errors
(once corrected, another review must be performed) or (3) accept the product provi-
sionally (minor errors have been encountered and must be corrected, but no addi-
tional review will be required). The decision made, all FTR attendees complete a
sign-off, indicating their participation in the review and their concurrence with the
review team'’s findings.

8.5.2 Review Reporting and Record Keeping

During the FTR, a reviewer (the recorder) actively records all issues that have been
raised. These are summarized at the end of the review meeting and a review issues
list is produced. In addition, a formal technical review summary report is completed.
A review summary report answers three questions:

1. What was reviewed?

2. Who reviewed it?

3. What were the findings and conclusions?

206

HAIL

:

Technical Review
Summary Report and
Issues List

CovaP

Don’t point out errors
harshly. One way to be
gentfe is to ask 0
question that enables
the producer fo
discover his own error.

PART TWO MANAGING SOFTWARE PROJECTS

The review summary report is a single page form (with possible attachments). It
becomes part of the project historical record and may be distributed to the project
leader and other interested parties.

The review issues list serves two purposes: (1) to identify problem areas within the
product and (2) to serve as an action item checklist that guides the producer as cor-
rections are made. An issues list is normally attached to the summary report.

It is important to establish a follow-up procedure to ensure that items on the issues
list have been properly corrected. Unless this is done, it is possible that issues raised
can “fall between the cracks.” One approach is to assign the responsibility for follow-
up to the review leader.

8.5.3 Review Guidelines

Guidelines for the conduct of formal technical reviews must be established in advance,
distributed to all reviewers, agreed upon, and then followed. A review that is uncon-
trolled can often be worse that no review at all. The following represents a minimum
set of guidelines for formal technical reviews:

1. Review the product, not the producer. An FTR involves people and egos. Con-
ducted properly, the FTR should leave all participants with a warm feeling of
accomplishment. Conducted improperly, the FTR can take on the aura of an
inquisition. Errors should be pointed out gently; the tone of the meeting
should be loose and constructive; the intent should not be to embarrass or
belittle. The review leader should conduct the review meeting to ensure that
the proper tone and attitude are maintained and should immediately halt a
review that has gotten out of control.

2. Setan agenda and maintain it. One of the key maladies of meetings of
all types is drift. An FTR must be kept on track and on schedule. The
review leader is chartered with the responsibility for maintaining the
meeting schedule and should not be afraid to nudge people when
drift sets in.

3. Limit debate and rebuttal. When an issue is raised by a reviewer, there may
not be universal agreement on its impact. Rather than spending time debat-
ing the question, the issue should be recorded for further discussion off-line.

4. Enunciate problem areas, but don’t attempt to solve every problem noted. A
review is not a problem solving session. The solution of a problem can often
be accomplished by the producer alone or with the help of only one other
individual. Problem solving should be postponed until after the review meet-
ing.

5. Take written noles. It is sometimes a good idea for the recorder to make notes
on a wall board, so that wording and prioritization can be assessed by other
reviewers as information is recorded.

FIR checklists

8.6

7 What steps

® are required
to perform
statistical SQA?

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 207

%

10.

Limit the number of participants and insist upon advance preparation. TWo
heads are better than one, but 14 are not necessarily better than four. Keep
the number of people involved to the necessary minimum. HOWever, all
review team members must prepare in advance. Written comments should
be solicited by the review leader (providing an indication that the reviewer
has reviewed the material).

Develop a checklist for each product that is likely to be reviewed. A checklist
helps the review leader to structure the FTR meeting and helps each reviewer
to focus on important issues. Checklists should be developed for analysis,
design, code and even test documents.

Allocate resources and time schedule for FTRs. For reviews to be effective, they
should be scheduled as a task during the software engineering process. In
addition, time should be scheduled for the inevitable modifications that will
occur as the result of an FTR.

Conduct meaningful training for all reviewers. To be effective all review partici-
pants should receive some formal training. The training should stress both
process related issues and the human psychological side of reviews. Freed-
man and Weinberg [FRE90] estimate a one month learning curve for every 20
people who are to participate effectively in reviews.

Review your early reviews. Debriefing can be beneficial in uncovering prob-
lems with the review process itself. The very first product to be reviewed
might be the review guidelines themselves.

Because there are many variables (e.g., number of participants, type of work prod-

ucts, timing and length, specific review approach) that have an impact on a successful
review, a software organization should experiment to determine what approach works
best in a local context. Porter [POR95] and his colleagues provide excellent guidance
for this type of experimentation.

_STATISTICAL QUALITY ASSURANCE

Statistical quality assurance reflects a growing trend throughout industry to become
more quantitative about quality. For software, statistical quality assurance implies
the following steps:

2,

Information about software defects is collected and categorized.

An attempt is made to trace each defect to its underlying cause (€.g., non-
conformance to specification, design error, violation of standards, poor com-
munication with customer).

Using the Pareto principle (80 percent of the defects can be traced to 20 per-
cent of all possible causes), isolate the 20 percent {the “vital few").

208

WebRef

The Chinese Association
for Softwore Quality
presents one of the most
comprehensive quality
web sites at
WWw.casq.org

PART TWO MANAGING SOFTWARE PROJECTS

4. Once the vital few causes have been identified, move to correct the problems
that have caused the defects.

This relatively simple concept represents an important step towards the creation of
an adaptive software engineering process in which changes are made to improve
those elements of the process that introduce error.

To illustrate the process, assume that a software engineering organization collects
information on defects for a period of one year. Some of the defects are uncovered
as software is being developed. Others are encountered after the software has been
released to its end users. Although hundreds of different errors are uncovered, all can
be tracked to one (or more) of the following causes:

. incomplete or erroneous specification (IES)

. misinterpretation of customer communication (MCC)

. intentional deviation from specification (IDS)

. violation of programming standards (VPS)

. error in data representation (EDR)

. inconsistent component interface (ICI)

. error in design logic (EDL)

. incomplete or erroneous testing (IET)

. inaccurate or incomplete documentation (IID)

. error in programming language translation of design (PLT)
. ambiguous or inconsistent human-computer interface (HCI)
s miscellaneous (MIS)

To apply statistical SQA, Table 8.1 is built. The table indicates that [ES, MCC, and EDR
are the vital few causes that account for 53 percent of all errors. It should be noted,
however, that [ES, EDR, PLT and EDL would be selected as the vital few causes if only
serious errors are considered. Once the vital few causes are determined, the software
engineering organization can begin corrective action. For example, to correct MCC,
the software developer might implement facilitated application specification tech-
niques (Chapter 11) to improve the quality of customer communication and specifi-
cation. To improve EDR, the developer might acquire CASE tools for data modelling
and perform more stringent data design reviews.

Itis important to note that corrective action focuses primarily on the vital few. As
the vital few causes are corrected, new candidates pop to the top of the stack.

Statistical quality assurance techniques for software have been shown to provide
substantial quality improvement [ART97]. In some cases, software organizations have
achieved a 50 percent reduction per year in defects after applying these techniques.

In conjunction with the collection of defect information, software developers can

- S———

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 209

calculate an error index (El) for each major step in the software process {IEE94]. After
analysis, design, coding, testing, and release, the following data are gathered:

E; = the total number of errors uncovered during the ith step in the software engi-
neering process

S; = the number of serious errors

M; = the number of moderate errors

T; = the number of minor errors

PS = size of the product (LOC, design statements, pages of documentation) at the
ith step

ws, W, Wy = weighting factors for serious, moderate and trivial errors, where rec-
ommended values are we = 10, Wy, = 3, W, = 1. The weighting factors for each phase
should become larger as development progresses. This rewards an organization that
finds errors early.

At each step in the software process, a phase index, Pl;, is computed:
Pl; = W (S/Ej) + W (M{/Ej) + W, (Ti/E})
The error index (El) is computed by calculating the cumulative effect or each PI;, weight-

ing errors encountered later in the software engineering process more heavily than
those encountered earlier.

El=3 (i X PI)/PS
= (Pl; + 2Pl, + 3Pl3 + ... iPL)/PS

TABLE 8.1 DATA COLLECTION FOR STATISTICAL SQA

Total Serious Moderate Minor
Error No. % No. % No. % No. %
IES 205 22% 34 27% 68 18% 103 24%
MCC 156 17% 12 9% 68 18% 76 17%
IDS 48 5% 1 1% 24 &% 23 5%
VPS 25 3% 0 0% 15 4% 10 2%
EDR 130 14% 26 20% 68 18% 36 8%
ICI 58 &% 9 T 18 5% 31 7%
EDL 45 5% 14 11% 12 3% 19 A%
IET @5 10% 12 % 35 9% 48 11%
ID 36 A% 2 2% 20 5% 14 3%
PLT 60 6% 15 12% 19 5% 26 6%
HCI 28 3% 3 2% 17 4% 8 2%
MIS 56 6% 0 0% 15 4% 41 9%

Totals 942 100% 128 100% 379 100% 435 100%

210

PART TWO MANAGING SOFTWARE PROJECTS

The error index can be used in conjunction with information collected in Table 8.1 to
develop an overall indication of improvement in software quality.

The application of the statistical SQA and the Pareto principle can be summarized
in a single sentence: Spend your time focusing on things that really matter, but first be
sure that you understand what really matters!

A comprehensive discussion of statistical SQA is beyond the scope of this book.
Interested readers should see [SCH98], [KAP95] or [KAN95].

WebRef

The Reliability Analysis
Center provides much
useful information on
teliobility, maintainability,
supportabilty ond quality
of

rac.itri.org

(/5]
[

POINT

Software reliability
problems can olmost
always be fraced to

errors in design or

implementation,

There is no doubt that the reliability of a computer program is an important element
of its overall quality. If a program repeatedly and frequently fails to perform, it mat-
ters little whether other software quality factors are acceptable.

Software reliability, unlike many other quality factors, can be measured directed
and estimated using historical and developmental data. Software reliability is defined
in statistical terms as “the probability of failure free operation of a computer program
in a specified environment for a specified time.” [MUS87] To illustrate, program X is
estimated to have a reliability of 0.96 over eight elapsed processing hours. In other
words, if program X were to be executed 100 times and require eight hours of elapsed
processing time (execution time), it is likely to operate correctly (without failure) 96
times out of 100.

Whenever software reliability is discussed, a pivotal question arises: What is meant
by the term failure? In the context of any discussion of software quality and reliabil-
ity, failure is nonconformance to software requirements. Yet, even within this
definition there are gradations. Failures can be only annoying or catastrophic. One
failure can be corrected within seconds while another requires weeks or even
months to correct. Complicating the issue even further, the correction of one failure
may in fact result in the introduction of other errors that ultimately result in other
failures.

8.7.1 Measures of Reliability and Availability

Early work in software reliability attempted to extrapolate the mathematics of hard-
ware reliability theory (e.g., [ALV64]) to the prediction of software reliability. Most
hardware related reliability models are predicated on failure due to wear rather than
failure due to design defects. In hardware, failures due to physical wear (e.g., the
affects of temperature, corrosion, shock) are more likely than a design related fail-
ure. Unfortunately, the opposite is true for software. In fact, all software failures can
be traced to design or implementation problems; wear (see Chapter 1) does not enter
into the picture.

There is still debate over the relationship between key concepts in hardware reli-
ability and their applicability to software (e.g., [LIT89], [ROO90]). Although an

Why is
? MTBF a
more useful metric
than errors/LOC?

Q.mte:

*| cannot imagine
any condition which
would couse this
ship to founder.
Modern shipbuilding
hos gone beyond
thot.”

E. I. Smith,
Captain of the
Titanic

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 211

irrefutable link has yet to be established, it is worthwhile to consider a few simple
concepts that apply to both system elements.

If we consider a computer-based system, a simple measure of reliability is mean
time between failure (MTBF), where

MTBF = MTTF + MTTR

The acronyms MTTF and MTTR are mean time to failure and mean time to repair,
respectively.

Many researchers argue that MTBF is a far more useful measure than defects/KLOC
or defects/FP. Stated simply, an end-user is concerned with failures, not with the total
error count. Because each error contained within a program does not have the same
failure rate, the total error count provides little indication of the reliability of a sys-
tem. For example, consider a program that has been in operation for 14 months. Many
errors in this program may remain undetected for decades before they are discov-
ered. The MTBF of such obscure errors might be 50 or even 100 years. Other errors,
as yet undiscovered, might have a failure rate of 18 or 24 months. Even if every one
of the first category of errors (those with long MTBF) are removed, the impact on soft-
ware reliability is negligible.

In addition to a reliability measure, we must develop a measure of availability.
Software availability is the probability that a program is operating according to require-
ments at a given point in time and is defined as:

Availability = [MTTE/(MTTE + MTTR)] x 100%

The MTBE reliability measure is equally sensitive to MTTF and MTTR. The availabil-
ity measure is somewhat more sensitive to MTTR, an indirect measure of the main-
tainability of software.

8.7.2 Software Safety

Leveson [LEV86] discusses the impact of software in safety critical systems when she
writes:

Before software was used in safety critical systems, they were often controlled by conven-
tional (nonprogrammable) mechanical and electronic devices. System safety techniques
are designed to cope with random failures in these [nonprogrammable] systems. Human
design errors are not considered since it is assumed that all faults caused by human errors
can be avoided completely or removed prior to delivery and operation.

When software is used as part of the control system, complexity can increase by an
order of magnitude or more. Subtle design faults induced by human error—some-
thing that can be uncovered and eliminated in hardware-based conventional con-
trol—become much more difficult to uncover when software is used.

Software safety is a software quality assurance activity that focuses on the identi-
fication and assessment of potential hazards that may impact software negatively

WebRef|

Worthwhile papers on
software sofety (ond o
defailed glossary) can be
found ot
www.rstcorp.com/

hotlist /topics-
safety.html

What is the

difference
between software
reliability and
software sofety?

PART TWO MANAGING SOFTWARE PROJECTS

and cause an entire system to fail. If hazards can be identified early in the software
engineering process, software design features can be specified that will either elim-
inate or control potential hazards.

A modelling and analysis process is conducted as part of software safety. Initially,
hazards are identified and categorized by criticality and risk. For example, some of
the hazards associated with a computer-based cruise control for a motorcar might
be:

. causes uncontrolled acceleration that cannot be stopped;
. does not respond to depression of brake pedal (by turning off);
. does not engage when switch is activated;

. slowly loses or gains speed.

Once these system level hazards are identified, analysis techniques are used to assign
severity and probability of occurrence.4 To be effective, software must be analysed
in the context of the entire system. For example, a subtle user input error (people are
system components) may be magnified by a software fault to produce control data
that improperly positions a mechanical device. If a set of external environmental con-
ditions are met (and only if they are met), the improper position of the mechanical
device will cause a disastrous failure. Analysis techniques such as fault tree analysis
[VES81], real-time logic [JAN86] or petri net models [LEV87] can be used to predict the
chain of events that can cause hazards and the probability that each of the events
will occur to create the chain.

Once hazards are identified and analysed, safety-related requirements can be spec-
ified for the software. That is, the specification can contain a list of undesirable events
and the desired system responses to these events. The role of software in managing
undesirable events is then indicated.

Although software reliability and software safety are closely related to one another,
it is important to understand the subtle difference between them. Software reliabil-
ity uses statistical analysis to determine the likelihood that a software failure will
occur. However, the occurrence of a failure does not necessarily result in a hazard
or mishap. Software safety examines the ways in which failures result in conditions
that can lead to a mishap. That is, failures are not considered in a vacuum, but are
evaluated in the context of an entire computer-based system.

A comprehensive discussion of software safety is beyond the scope of this book.
Those readers with further interest should refer to Leveson's [LEV95] book on the
subject.

4 This approach is analogous to the risk analysis approach described for software project manage-
ment in Chapter 6. The primary difference is the emphasis on technology issues as opposed to pro-
ject-related topics.

WebRef|

A comprehensive collection
of poka+yoke resources con
be obfained at:
www.compbell.berry.
edu/faculty /jgrout/
pokayoke.shtml

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 213

88 MISTAKE-PROOFING FOR SOFTWARE

If william Shakespeare had commented on the modern software engineer’s condi-
tion, he might have written: “To err is human, to find the error quickly and correct it
is divine.” In the 1960s, a Japanese industrial engineer, Shigeo Shingo [SHI86], work-
ing at Toyota, developed a quality assurance technique that led to the prevention
and/or early correction of errors in the manufacturing process. Called poka-yoke (mis-
take-proofing), Shingo's concept makes use of poka-yoke devices— mechanisms that
lead to (1) the prevention of a potential quality problem before it occurs, or (2) the
rapid detection of quality problems if they are introduced. We encounter poka-yoke
devices in our everyday lives (even if we are unaware of the concept). For example,
the ignition switch for a motorcar will not work if an automatic transmission is in
gear (a prevention device); a car's warning beep will sound if the seat belts are not
buckled (a detection device).
An effective poka-yoke device exhibits a set of common characteristics:

. it is simple and cheap—if a device is too complicated or expensive, it will not
be cost-effective;

. it is part of the process—that is, the poka-yoke device is integrated into an
engineering activity;

. it is located near the process task where the mistakes occur—thereby provid-
ing rapid feedback and error correction.

Although poka-yoke was originally developed for use in “zero quality control”
[SHI86] for manufactured hardware, it can be adapted for use in software engineer-
ing. To illustrate, we consider the following problem [ROB97]:

A software products company sells application software to an international market. The
pull-down menus and associated nmemonics provided with each application must reflect
the local language. For example, the English language menu item for “Close” has the
mnemonic “C” associated with it. When the application is sold in a French-speaking coun-
try, the same menu item is “Fermer” with the nmemonic “F". To implement the appropriate
menu entry for each locale, a “localizer” (a person conversant in the local language and
terminology) translates the menus accordingly. The problem is to ensure that (1) each menu
entry (there can be hundreds) conforms to appropriate standards and that there are no con-
flicts, regardless of the language that is used.

The use of poka-yoke for testing various application menus implemented in differ-
ent languages as described above is discussed in a paper by Harry Robinson [ROB97]:

We first decided to break the menu testing problem down into parts that we could solve.
Our first advance on the problem was to understand that there were two separate aspects
to the message catalogues. There was the content aspect: the simple text translations, such
as changing “Close” to “Fermer”. Since the test team was not fluent in the 11 target lan-

214

PART TWO MANAGING SOFTWARE PROJECTS

guages, we had to leave this aspect to the language experts.

The second aspect of the message catalogues was the structure, the syntax rules that
a properly constructed target catalogue must obey. Unlike content, it would be possible for
the test team to verify the structural aspects of the catalogues.

As an example of what is meant by structure, consider the labels and mnemonics of an
application menu. A menu is made up of labels and associated mnemonics. Each menu,
regardless of its contents or its locale, must obey the following rules listed in the Motif Style
Guide:

* Each mnemonic must be contained in its associated label
* Each mnemonic must be unique within the menu

* Each mnemonic must be a single character

* Each mnemonic must be in ASCII

These rules are invariant across locales, and can be used to verify that a menu is constructed
correctly in the target locale.
There were several possibilities for how to mistake-proof the menu mnemonics:

Prevention device. We could write a program to generate mnemonics automatically, given
a list of the labels in each menu. This approach would prevent mistakes, but the problem
of choosing a good mnemonic is difficult and the effort required to write the program would
not be justified by the benefit gained.

Prevention device. We could write a program that would prevent the localizer from choos-
ing mnemonics that did not meet the criteria. This approach would also prevent mistakes,
but the benefit gained would be minimal; incorrect mnemonics are easy enough to detect
and correct after they occur.

Detection device. We could provide a program to verify that the chosen menu labels and
mnemonics meet the criteria above. Our localizers could run the programs on their trans-
lated message catalogues before sending the catalogues to us. This approach would pro-
vide very quick feedback on mistakes, and it is likely as a future step.

Detection device. We could write a program to verify the menu labels and mnemonics, and
run the program on message catalogues after they are returned to us by the localizers. This
approach is the path we are currently taking. It is not as efficient as some of the above meth-
ods, and it can require communication back and forth with the localizers, but the detected
errors are still easy to correct at this point.

Several small poka-yoke scripts were used as poka-yoke devices to validate the structural
aspects of the menus. A small poka-yoke script would read the table, retrieve the mnemon-
ics and labels from the message catalogue, and compare the retrieved strings against the
established criteria noted above.

The poka-yoke scripts were small (roughly 100 lines), easy to write (some were written
in under an hour) and easy to run. We ran our poka-yoke scripts against 16 applications in
the default English locale plus 11 foreign locales. Each locale contained 100 menus, for a
total of 1200 menus. The poka-yoke devices found 311 mistakes in menus and mnemon-
ics. Few of the problems we uncovered were earth-shattering, but in total they would have
amounted to a large annoyance in testing and running our localized applications.

8.9

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 215

The example described above depicts a poka-yoke device that has been
integrated into software engineering testing activity. The poka-yoke technique can
be applied at the design, code and testing levels and provides an effective quality
assurance filter.

THE 1SO 9001 QUALITY STANDARD

This section has a number of aims, the main one being to describe the increasingly
important international standard ISO 9001. The standard, which has been adopted
for use by more than 130 countries, is becoming increasingly important as the main
means whereby customers can judge the competence of a software developer. One
of the problems with the ISO 9001 series standard is that it is not industry-specific: it
is expressed in general terms, and can be interpreted by the developers of diverse
products such as ball-bearings, hair dryers, automobiles, sports equipment, and tele-
visions, as well as software. A number of documents have been produced which
relate the standard to the software industry, but do not go into a huge amount of
detail. It is the aim of this section to describe what ISO 9001 means in terms of qual-
ity elements and development techniques.
For the software industry the relevant standards are:

. ISO 9001 Quality Systems—Model for Quality Assurance in Design, Develop-
ment, Production, Installation and Servicing. This is a standard which describes
the quality system used to support the development of a product which
involves design.

. SO 9000-3. Guidelines for the Application of ISO 9001 to the Development, Sup-
ply and Maintainance of Software. This is a specific document which interprets
1SO 9001 for the software developer.

. ISO 9004-2. Quality Management and Quality System Elements—Part 2. This
document provides guidelines for the servicing of software facilities such as
user support.

The requirements are grouped under 20 headings:

Management responsibility Inspection, measuring and test

Quality system equipment

Contract review Inspection and test status

Design control Corrective action

Document control Control on non-conforming product
Purchasing Handling, storage, packaging and delivery
Purchaser supplied product Quality records

Production identification and internal quality audits

raceal Training

The SOA Plon

PART TWO MANAGING SOFTWARE PROJECTS

Process control Servicing
Inspection and testing Statistical techniques

It is worth looking at a small excerpt from ISO 9001. This gives the reader an idea of
the level at which ISO 9001 addresses the QA and development process. The extract
chosen comes from section 4.11:

4.11 Inspection, measuring and test equipment

The supplier shall control, calibrate and maintain inspection, measuring and test equip-
ment, whether owned by the supplier, on loan, or provided by the purchaser, to demon-
strate the conformance of product to the specified requirements. Equipment shall be used
in a manner which ensures that measurement uncertainty is known and is consistent with
the required measurement capability.

The first thing to notice is its generality; it could apply to the developer of any
product. The second thing to notice is the difficulty in interpreting the paragraph—
it is obviously aimed at standard engineering processes where equipment such
as thermocouples, calibration gauges and potentiometers are the norm. An
interpretation of the paragraph is that the supplier shall ensure that any software
tools used for testing are of at least the same quality as the software that is
to be developed, and that any test equipment which produces measurement
values, for example, performance monitors, has an accuracy which is acceptable
when compared with the accuracy specified for performance in the requirements
specification.

The SQA Plan provides a road map for instituting software quality assurance. Devel-
oped by the SQA group, the plan serves as a template for SQA activities that are insti-
tuted for each software project.

A standard for SQA plans has been recommended by the IEEE [IEE94]. Initial sec-
tions describe the purpose and scope of the document and indicate those software
process activities that are covered by quality assurance. All documents noted in the
SQA Plan are listed and all applicable standards are noted. The Management section
of the plan describes SQA's place in the organizational structure; SQA tasks and activ-
ities and their placement throughout the software process; and the organizational
roles and responsibilities relative to product quality.

The Documentation section describes (by reference) each of the work products pro-
duced as part of the software process. These include:

. project documents (e.g., project plan)
. models (e.g., ERDs, class hierarchies)

8.11

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 217

. technical documents (e.g., specifications, test plans)

. user documents (e.g., help files)

In addition, this section defines the minimum set of work products that are accept-
able to achieve high quality.

Standards, Practices, and Conventions lists all applicable standards/practices that
are applied during the software process (€.g., document standards, coding standards,
and review guidelines. In addition, all project, process, and (in some instances) prod-
uct metrics that are to be collected as part of software engineering work are listed.

The Reviews and Audits section of the plan identifies the reviews and audits to be
conducted by the software engineering team, the SQA group, and the customer. It
provides overview of the approach for each review and audit.

The Test section references the Software Test Plan and Procedure (Chapter 18). It
also defines test record keeping requirements. Problem Reporting and Corrective Action
defines procedures for reporting, tracking, and resolving errors and defects and iden-
tifies the organizational responsibilities for the these activities.

The remainder of the SQA Plan identifies the tools and methods that support SQA
activities and tasks: references software configuration management procedures for
controlling change; defines a contract management approach; establishes methods
for assembling, safeguarding, and maintaining all records; identifies training required
to meet the needs of the plan, and defines methods for identifying, assessing, moni-
toring, and controlling risks.

SUMMBRY e Sl ot et

Software quality assurance is an “umbrella activity” that is applied at each step in the
software process. SQA encompasses procedures for the effective application of meth-
ods and tools; formal technical reviews; testing strategies and techniques; poka-yoke
devices; procedures for change control; procedures for assuring compliance to stan-
dards, and measurement and reporting mechanisms.

SQA is complicated by the complex nature of software quality—an attribute of
computer programs that is defined as “conformance to explicitly and implicitly defined
requirements.” But when considered more generally, software quality encompasses
many different product and process factors and related metrics.

Software reviews are one of the most important SQA activities. Reviews serve as
filters throughout all software engineering activities, removing errors while they are
relatively inexpensive to find and correct. The formal technical review is a stylized
meeting that has been shown to be extremely effective in uncovering errors.

To properly conduct software quality assurance, data about the software engi-
neering process should be collected, evaluated and disseminated. Statistical SQA
helps to improve the quality of the product and the software process itself. Software

218

PART TWO MANAGING SOFTWARE PROJECTS

reliability models extend measurements, enabling collected defect data to be extrap-
olated into projected failure rates and reliability predictions.

In summary, we recall the words of Dunn and Ullman [DUN82]: “Software quality
assurance is the mapping of the managerial precepts and design disciplines of qual-
ity assurance onto the applicable managerial and technological space of software
engineering.” The ability to ensure quality is the measure of a mature engineering
discipline. When the mapping alluded to above is successfully accomplished, mature
software engineering is the result.

[ALV64] von Alvin, W.H. (ed.), Reliability Engineering, Prentice-Hall, 1964.

[ANS87] ANSI/ASQC A3-1987, Quality Systems Terminology, 1987.

[ART92] Arthur, LJ., Improving Software Quality: An Insider’s Guide to TOM, Wiley,
1992,

[ART97] Arthur, LJ., “Quantum Improvements in Software System Quality”, CACM,
vol. 40, no. 6, June 1997, pp. 47-52.

[BOE81] Boehm, B., Software Engineering Economics, Prentice-Hall, 1981.

[CRO75] Crosby, P, Quality is Free, McGraw-Hill, 1975.

[CRO79] Crosby, P., Quality is Free, McGraw-Hill, 1979.

[DEM86] Deming, W.W., Out of the Crisis, MIT Press, 1986.

[DEM99] DeMarco, T., “Management Can Make Quality (Im)possible”, presentation
at Cutter Summit ‘99, Boston, MA, April 26, 1999.

[DI76] Dijkstra, E., A Discipline of Programming, Prentice-Hall, 1976.

[DUN82] Dunn, R. and R. Ullman, Quality Assurance for Computer Software, McGraw-
Hill, 1982.

[FRE90] Freedman, D.P. and G.M. Weinberg, Handbook of Walkthroughs, Inspections
and Technical Reviews, 3rd edn, Dorset House, 1990.

[GIL93] Gilb, T. and D. Graham, Software Inspections, Addison-Wesley, 1993.
[GLA98] Glass, R., “Defining Quality Intuitively,” IEEE Software, May 1998, pp. 103-
104, 107.

[HOY98] Hoyle, D., Iso 9000 Quality Systems Development Handbook: A Systems Engi-
neering Approach, Butterworth-Heinemann, 1998.

(IBM81] “Implementing Software Inspections,” course notes, IBM Systems Sciences
Institute, IBM Corporation, 1981.

[IEE90] Software Quality Assurance: Model Procedures, Institution of Electrical Engi-
neers, 1990.

[IEE94] Software Engineering Standards, 1994 edn, IEEE Computer Society, 1994.
[JAN86] Jahanian, F. and A.K. Mok, “Safety Analysis of Timing Properties of Real-
Time Systems", IEEE Trans. Software Engineering, vol. SE-12, no. 9, September 1986,
pp. 890-904.

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 218

[JON86] Jones, T.C., Programming Productivity, McGraw-Hill, 1986.

[KAN95] Kan, S. H., Metrics and Modéels in Software Quality Engineering, Addison-
Wesley, 1995.

[KAP95] Kaplan, C., R. Clark, and V. Tang, Secrets of Software Quality: 40 Innovations
from IBM, McGraw-Hill, 1995.

[LEV86] Leveson, N.G., “Software Safety: Why, What, and How,” ACM Compuling Sur-
veys, vol. 18, no. 2, June 1986, pp. 125-163.

[LEV87] Leveson, N.G.and].L. Stolzy, »Safety Analysis using Petri Nets,” IEEE Trans.
Software Engineering, vol. SE-13, no. 3, March 1987, pp. 386-397.

[LEV95] Leveson, N.G., Safeware: System Safety And Computers, Addison-Wesley,
1995.

[LIN79] Linger, R., H. Mills, and B. Witt, Structured Programming, Addison-Wesley,
1979.

[LIT89] Littlewood, B., “Forecasting Software Reliability,” in Software Reliability: Mod-
eling and Identification (S. Bittanti, ed.), Springer-Verlag, 1989, pp. 141-209.
[MAN96] Manns, T. and M. Coleman, Software Quality Assurance, MacMillan Press,
1996.

[MUS87] Musa, J.D., A. lannino, and K. Okumoto, Engineering and Managing Software
with Reliability Measures, McGraw-Hill, 1987.

[PAU93] Paulk, M. et al, Capability Maturity Model for Software, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, PA, 1993.

[POR95] Porter, A., H. Sy, C.A. Toman, and L.G. Votta, “An Experiment to

Assess the Cost-Benefits of Code Inspections in Large Scale Software
Development,” Proc. Third ACM SIGSOFT Symposium on the

Foundations of Software Engineering, Washington, D.C., October 1996, ACM Press, pp.
92-103.

[ROB97] Robinson, H., “Using Poka-Yoke Techniques for Early Error Detection,” Proc.
Sixth International Conference on Software Testing Analysis and Review (STAR'97), 1997,
pp. 119-142.

[ROO90] Rook, J., Software Reliability Handbook, Elsevier, 1990.

[SCH98] Schulmeyer, G.C. and J.I. McManus (eds.), Handbook of Software Quality
Assurance, Prentice-Hall, 3rd edn, 1998.

[SCH94] Schmauch, C.H., ISO 9000 for Software Developers, ASQC Quality Press, Mil-
waukee, WI, 1994.

[SCH97] Schoonmaker, S.J., ISO 9001 for Engineers and Designers, McGraw Hill, 1997.
[SHI86] Shigeo Shingo, Zero Quality Control: Source Inspection and the Poka-yoke
System, Productivity Press, 1986.

[SOM96] Somerville, 1., Software Engineering, 5th edn, Addison-Wesley, 1996.
[TIN96] Tingey, M., Comparing 1SO 9000, Malcolm Baldridge and the SEI CMM for
Software, Prentice-Hall, 1996.

[TR197] Tricker, R., ISO 9000 for Small Businesses, Butterworth-Heinemann, 1997.

220

PART TWO MANAGING SOFTWARE PROJECTS

[VES81] Veseley, WE., et al, Fault Tree Handbook, U.S. Nuclear Regulatory Commis-
sion, NUREG-0492, January 1981.

[W1496] Wilson, L.A., 8 stp to Successful ISO 9000, Cambridge Interactive Publica-
tions, 1996.

PROBLEMS AND POINTS TO PONDER

8.1. Early in this chapter we noted that “variation control is the heart of quality
control.” Since every program that is created is different from every other program,
what are the variations that we look for and how do we control them?

8.2. Isitpossible to assess the quality of software if the customer keeps chang-
ing his mind about what it is supposed to do?

8.3. Quality and reliability are related concepts, but are fundamentally different
in a number of ways. Discuss them.

8.4. Cana program be correct and still not be reliable? Explain.

8.5. Cana program be correct and still not exhibit good quality? Explain.

8.6. Why is there often tension between a software engineering group and an
independent software quality assurance group? Is this healthy?

8.7. Youhave been given the responsibility for improving the quality of software
across your organization. What is the first thing that you should do? What's next?
8.8. Besides counting errors, are there other countable characteristics of soft-
ware that imply quality? What are they and can they be measured directly?

8.9. A formal technical review is effective only if everyone has prepared in
advance. How do you recognize a review participant who has not prepared? What
do you do, if you're the review leader?

8.10. Some people argue that an FTR should assess programming style as well as
correctness. Is this a good idea? Why?

8.11. Review Table 8.1 and select four vital few causes of serious and moderate
errors. Suggest corrective actions using information presented in other chapters.
8.12. A organization uses five step software engineering process in which errors
are found according to the following percentage distribution:

Step Percentage of error found

1 20%
2 15%
3 15%
4 40%
5 10%

Using Table 8.1 information and the percentage distribution above, compute the over-
all defect index for organization. Assume PS = 100,000.

CHAPTER 8 SOFTWARE QUALITY ASSURANCE 221

8.13. Research the literature on software reliability and write a paper that describes
one software reliability model. Be sure to provide an example.

8.14. The MTBE concept for software is open to criticism. Can you think of a few
reasons why?

8.15. Consider two safety critical systems that are controlled by computer. List at
Jeast three hazards for each that can be directly linked to software failures.

8.16. Using web and print resources, develop a 20 minute tutorial on poka-yoke
and present it to your class.

8.17. Suggest a few poka-yoke devices that might be used to detect and/or pre-
vent errors that are commonly encountered prior to “sending” an e-mail message.
8.18. Acquire a copy of ISO 9001 and ISO 9000-3. Prepare a presentation that dis-
cusses three 1SO 9001 requirements and how they apply in a software context.

FURTHER READINGS AND INFORMATION SOURCES .

Books by Moriguchi (Software Excellence: A Total Quality Management Guide, Produc-
tivity Press, 1997), Horch (Practical Guide to Software Quality Management, Artech Pub-
lishing, 1996) are excellent management level presentations on the benefits of formal
quality assurance programs for computer software. Books by Deming [DEM86] and
Crosby [CRO79] do not focus on software, but both books are must reading for senior
managers with software development responsibility. Gluckman and Roome (Every-
day Heroes of the Quality Movement, Dorset House, 1993) humanizes quality issues by
telling the story of the players in the quality process. Kan (Metrics and Models in Soft-
ware Quality Engineering, Addison-Wesley, 1995) presents a quantitative view of soft-
ware quality. Manns (Software Qualily Assurance, Macmillan, 1996) is an excellent
student introduction to software quality assurance.

Tingley (Comparing ISO 9000, Malcolm Baldridge, and the SEI CMM for Software,
Prentice-Hall, 1996) provide useful guidance for organizations that are striving to
improve their quality management processes. Oskarsson (An ISO 9000 Approach to
Building Quality Software, Prentice-Hall, 1995) discusses the ISO standard as it applies
to software.

There have been dozens of books written about software quality issues in recent
years. The following is a small sampling of useful sources:

Clapp, J.A. et al, Software Quality Control, Error Analysis and Testing, Noyes Data Corp., Park
Ridge, NJ, 1995.

punn, R.H. and R.S. Ullman, TQM for Compuler Software, McGraw-Hill, 1994.

Fenton, N., R. Whitty, and Y. lizuka, Software Qualily Assurance and Measurement: World-
wide Industrial Applications, Chapman & Hall, 1994.

Ferdinand, A.E., Systems, Software, and Quality Engineering, Van Nostrand-Reinhold, 1993.

Ginac, E.P., Customer Oriented Software Quality Assurance, Prentice-Hall, 1998.

Ince, D.. ISO 9001 and Softvare Quality Assurance. McGraw-Hill, 1994.

222

PART TWO MANAGING SOFTWARE PROJECTS

Ince, D., An Introduction to Software Qualily Assurance and its Implementation, McGraw-Hill,
1994.

Jarvis, A. and V. Crandall, Inroads to Software Quality: “How To” Guide and Toolkit, Prentice-
Hall, 1997,

Sanders,)., Software Quality: A Framework for Success in Software Development, Addison-
Wesley, 1994.

Sumner, FH., Software Quality Assurance, MacMillan, 1993.

Wallmuller, E., Software Quality Assurance: A Practical Approach, Prentice Hall, 1995.

Weinberg, G.M., Quality Software Management, four volumes, Dorset House, 1992, 1993,
1994, 1996.

Wilson, R.C., Software Rx : Secrets of Engineering Quality Software, Prentice-Hall, 1997.

An anthology edited by Wheeler, Brykczynski, and Meeson (Software Inspection:
Induslry Best Practice, IEEE Computer Society Press, 1996) presents useful informa-
tion on this important SQA activity. Friedman and Voas (Software Assessment, Wiley,
1995) discuss both theoretical underpinnings and practical methods for ensuring the
reliability and safety of computer programs.

Musa (Software Reliability Engineering: More Reliable Software, Faster Development
and Testing, McGraw-Hill, 1998) has written a practical guide to applied software reli-
ability techniques. Anthologies of important papers on software reliability have been
edited by Kapur et al (Contributions to Hardware and Software Reliability Modelling,
World Scientific Publishing Co., 1999), Gritzalis (Reliability, Quality and Safety of Soft-
ware-Inlensive Systems, Kluwer Academic Publishing, 1997), and Lyu (Handbook of
Software Reliability Engineering, McGraw-Hill, 1996). Storey (Safety-Critical Computer
Systems, Addison-Wesley, 1996) and Leveson [LEV95] continue to be the most com-
prehensive discussions of software safety published to date.

In addition to [SHI86], the poka-yoke technique for mistake proofing software is
discussed by Shingo (The Shingo Production Management System: Improving Process
Functions, Productivity Press, 1992) and Shimbun (Poka-Yoke: Improving Product Qual-
ity by Preventing Defects, Productivity Press, 1989).

A wide variety of information sources on software quality assurance, software
reliability and related subjects are available on the internet. An up-to-date list of
world wide web references that are relevant to software quality can be found at
http://www.pressman5.com

