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Abstract. The past decade has witnessed a rapid de-
velopment in the field of formal methods for the spec-
ification, analysis and verification of real time systems.
Particularly striking is the progress in continuous time
modelling, which, despite its unquestioned expressive-
ness, turned out to be surprisingly tractable: practically
relevant classes of continuous time systems can fully au-
tomatically be analysed and verified. This has led to the
development of a number of corresponding analysis and
verification tools of different application profiles. In this
paper we concentrate on the two key concepts underlying
these tools, known as Timed Automata and Hybrid Sys-
tems. Their role can best be appreciated in the context
of formal methods in general, and specifically of specifi-
cation of real time systems in terms of tailored process
calculi and real time logics. All these concepts will be
presented in an intuitive fashion, while avoiding as much
formalism as possible.

1 Motivation

What this article is about:

Continuous Time Modelling

Formal Methods: a key towards Automation
The Essence of Discrete Time Modelling
Timed Automata-based Modelling

The Power of Drifting Clocks

The Nature of Hybrid Systems

The Tools KroNOS, UrPPAAL, HYTECH

Real time and hybrid systems cross your way several
times a day: the automatic teller machine, your car’s
anti skid system, your video-recorder and washing ma-
chine are examples thereof. All these systems share one
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Real Time System: those systems in which the correctness
of the system depends not only on the logical result of the
computation but also on the time at which the results are

produced.

Fig. 1. ‘Folk Definition’ of Real Time Systems

characteristic: their more or less complicated machinery
is controlled by one or more hidden devices. These de-
vices form what computer scientists and electrical engi-
neers call an embedded system: it runs as a controlling
system within a (complex, typically heterogeneous and
reactive) environment (the machinery, the sensors, and
the actuators) without being accessible from the outside.

Usually, embedded systems contain at least a highly
specialized micro-controller, and often one or even sev-
eral microprocessors, which are all digital by nature. In
turn, the activities in the environment which must be
controlled by the processor can be digital or analogue:
entering your PIN code into the teller machine is a digi-
tal process, while dispensing the money is clearly of ana-
logue nature.

The overall systems thus often form so-called hybrid
systems, which are characterized by the interplay be-
tween discrete and analogue behaviours. Real time sys-
tems, which can be characterized as stated in Fig. 1 (cf.
e.g. [22, 68, 71]), are typical examples of hybrid systems.
As timeliness is a central issue in real time systems, it
is essential that the timing constraints of the system are
guaranteed to be met.

Due to the steadily increasing industrial pressure a
lot of research and development effort has been invested
on real time and hybrid systems over the past decade. In
particular the requirements for safety-critical real time
systems led to a rapid development of adequate formal
methods for their specification, analysis and verification.

Particularly striking has been the progress in con-
tinuous time modelling. Having served as a successful



easy match with practical application scenarios

— foundational link to natural and engineering sciences
— invariance against changes of time scale

flexible discretization on-demand in tool environments
uniform framework for real time and hybrid systems

Fig. 2. Benefits of continuous time modelling

paradigm in physics and engineering sciences for more
than 300 years, starting with the discovery of the dif-
ferential calculus by Leibniz and Newton at the end of
the seventeenth century[16], the continuous interpreta-
tion of time was overwhelmed by the ‘digital revolution’
in telecommunication and least hardware design: con-
tinuous effects were discretized through sampling tech-
niques for tractability reasons.

However, it turns out that continuous modelling, de-
spite its unquestioned expressiveness, is in fact surpris-
ingly tractable: a growing number of practical relevant
continuous time systems — including system emerging
from the area of control theory — can now be analysed
and verified fully automatically using classical computer
science techngiues.

Key to the continuous time analysis and verification
tools are the region and the polyhedra technique, which
essentially realize a discretization on-demand of the un-
derlying continuous models. Besides enabling the adap-
tation and transfer of a wealth of discrete analysis and
verification methods to the continuous world, this flexi-
ble discretization has a strong impact on the tools’ per-
formance: in contrast to the typical situation in discrete
time modelling, different components of the system as
well as different execution stages can be treated each on
its appropriate level of time granularity.

Discretization on-demand also gracefully supports the
two central design methods used in system development:
composition — putting systems together by combining
simpler ones — and refinement — starting with a rather
rough specification and adding details along the develop-
ment process. In both cases a need to change the (concep-
tual) time scale may arise. Whereas in the discrete case
with its explicit modelling of the time scale this typically
requires a complete re-modelling of the system’s compo-
nents, the on-demand discretization for continuous mod-
els automatically takes care of the new situation.

Thus there are very strong reasons for continuous
time modelling even of digital systems (Fig. 2).

This paper gives an intuition-guided introduction into
the theory underlying KrRONOS, UPPAAL, and HYTECH,
three outstanding tools for the analysis and verification
of continuous time systems, which are also presented in
the further articles of this special section. These three
tools were designed with different profiles in mind: Up-
PAAL’s design was mainly efficiency guided, whereas KrO-

borderline of automatic continuous time analysis. In fact,
the designers of HYTECH even decided to sacrifice the
guaranteed termination of their analysis and verification
procedures in order to extend the application scenario:
HYTECH is the only system explicitly aiming at the anal-
ysis and verification of hybrid systems.

Technically we concentrate on the two key concepts
underlying these tools, known as Timed Automate and
Hybrid Systems. The role of these concepts can be best
appreciated in the context of formal methods in general
and specifically of specification of real time systems in
terms of tailored process calculi and real time logics.

All the required concepts will be presented in an intu-
itive fashion, while avoiding as much formalism as pos-
sible. In particular, we will prefer definitions by exam-
ples to formal definitions, and refer to the literature for
formal details. Thus rather than assuming any specific
knowledge about real time systems or computer science,
we will try to build upon everyone’s intuition about the
nature of real time systems.

Despite this focus, we will also try to provide a more
general, but by far not complete view of continuous time
modelling. For a comprehensive survey on the theory of
real time systems the reader is referred to [11] in the
same issue.

We proceed as follows: first we will address the status
of formal methods in the context of real time system re-
search in Sect. 2, and subsequently give an introduction
into finite state machines and how they can be extended
to include discrete time in Sect. 3. Thereafter we dis-
cuss continuous approaches to the modelling of real time
systems in Sect. 4 and timed automata, which use ex-
act clocks to measure delays between events, in Sect. 5.
Section 6 will then present timed automata with drifting
clocks; here clocks can have a slight tolerance or uncer-
tainty in their measurement of time, modeling the situa-
tion with different clocks in a distributed environment
more accurately. Subsequently, Sect. 7 will show how
timed automata can be extended to hybrid systems, a
very general model which allows the description of arbi-
trary physical behaviour as a function over time. The suc-
cessive Sect. 8 then gives a short overview over the tools
KronoOs, UppAAL and HYTECH which are all presented
in detail in articles on their own. Section 10 finally dis-
cusses the state-of-the-art of continuous time modelling
and future perspectives.

2 Formal Modelling of Real Time Systems

For a long time no methodological progress in the devel-
opment of real time systems was registered: most de-
signs were ad hoc, spanning from simple products of
trial and error on the bad end to well-thought but non-
generalizable designs on the good end. The problems of



— Specification and Verification

— Scheduling

— Operating Systems

— Programming Languages and Methodologies
— Distributed Data Bases

— Fault Tolerance

— System Architecture

— Communication

Fig. 3. The Real Time Arena

real time system design seemed to be either scientifically
uninteresting, or already solved, or not even suited for
scientific methods at all.

John Stankovi¢ thought-provoking articles of 1988
about the scientific status of real time systems (71, 72])
reflect the awareness which had grown in a lot of people
at that time. Since then, the situation of real time sys-
tem design research has changed drastically: many con-
ferences and several journals devote attention to or even
focus on this area.

An important step was Stankovi¢’s classification of
research subjects in real time system design (Fig. 3). The
contributions of this complete special section fall into the
category specification and wverification, which is part of
the area known as formal methods(FM)!.

The basic motivation behind formal methods is that
any rigorous reasoning about systems must be based
upon an unambiguous description. This is particularly
true if one wants to (partly) automate such a reasoning.
Therefore a lot of research has been invested in the de-
velopment of adequate formal specification formats and
languages. Most prominent examples are high-level pro-
gramming languages, whose development often originally
merely aimed at specification purposes, but which where
later on supported by compilers.?

The key point of formal description techniques is their
mathematical exactness: it is unambiguously clear how
the specified system is going to ‘behave’. Exactness should,
however, not be confused with precision: “the system
must respond within at least 1 and up to 20 seconds”
is exact, although one might argue that it is not precise.
In an exact specification the amount of imprecision must
be explicitly addressed.

Just having a formalism is not very useful in itself. It
should come with a methodological support for the better
understanding of systems. Wolper [78] distinguishes weak
and strong formal methods. Whereas the latter are char-
acterized by providing tool support of analysis and ver-
ifications problems, the former simply provide a math-
ematical framework for formal reasoning. Thus before

1 The article on Aldébaran([20]) in this issue provides an alter-
native introduction into formal methods.

2 Standard ML [1] is a typical language with such a history.

quaiifyiﬁg questions:
— What is the formalism?

— What are the methods?
— How far can the methods be automated?

In the remainder we will consider these questions for
strong formal methods which have been developed for
continuous real time systems. The other articles of this
special section will then explain how these methods can
be automated and how they are realized in KRONOS,
UppAAL, and HYTECH.

3 The discrete approach

Formal Methods

Finite State Machines

Reactive Systems

Temporal Logics

Model Checking

Qualitative and Quantitative Time

In order to understand the complex timed formalisms,
it is best to start with the discrete or “untimed” ones.
Many formalisms — in fact all those we will look at in de-
tail — can be translated into finite state machines (short:
FSMs), a fundamental concept of computer science and
electrical engineering. An FSM has a finite set of states
— hence the name — and a description how the machine
changes from one state into another. Switching state is
called a transition. An imported feature of FSMs is that
they can easily be visualized: draw the states as nodes
of a graph (i.e. circles) and the transitions as directed
edges between them (i.e. arrows), and label them appro-
priately. A flowchart is a well-known representation of
the control part of a program as an FSM.

In Fig. 4 we give a specification of a classical book
example from the formal methods world: the coffee-or-
tea machine (see e.g. [54]). Our version will output a tea
or a coffee, depending on the user’s choice, after pressing
the appropriate button.

The behaviour of this machine is as follows: in the idle
state, the machine waits for the user to push either the
coffee or the tea button. After the user has made his/her
choice, the machine will first deliver a cup. Then the
machine will fill the cup with coffee or tea — depending
on the user’s previous choice — and return to its start
state.

The overall behaviour of this machine can be de-
scribed by its legal traces: traces are just the inscriptions
of all maximal paths beginning with the start state of the
machine. So a legal trace of the machine will either start
with an inscription

push coffee button.deliver cup.deliver coffee

or



push coffee button

coffee_ordered

deliver cup

coffee_prepared

deliver coffee

Fig. 4. The inevitable coffee machine

push tea button.deliver cup.deliver tea

In fact, any legal trace will be an infinite sequence?

of an arbitrary mixture of these two inscriptions.

For FSMs, there is a large and established theory
for specification, analysis and verification, which dates
back to the fifties. Prominent examples are the theory of
finite automata and formal languages, which is extremely
successful e.g. in compiler construction.

The “untimed” theory has been applied in practice,
e.g. for hardware design as well as in the design of com-
munication protocols and digital controllers, and it is be-
coming more and more widely spread. A very important
concept in this theory is the idea of reactive systems (see
[51] for a good tutorial). A reactive system is character-
ized by its communication with some environment. The
system reacts to input from the environment by supply-
ing corresponding output.

The coffee machine is a reactive system which re-
sponds to inputs “push coffee/tea button” and has out-
puts “deliver cup” and “deliver coffee/tea”. These inputs
and outputs are often called actions.

A standard way to speak formally about systems like
the coffee machine is to describe its behaviour by the set
of all legal traces. In the following we will subscribe to
this trace point of view, which in fact reflects the user’s
viewpoint most directly. Alternative approaches, like the
ones based on bisimulations [52], failures [44] or testing
[55] are used to describe important properties of con-
current systems, e.g. deadlock potential, which are not
expressible using traces.

A key question in formal methods (and in practice
as well) is: does the implementation meet its specifica-
tion, i.e. is it a proper implementation? In our setting
this question can be dealt with in the following way:

3 assuming the machine will exist forever

( idle

push tea button

tea_ordered

deliver cup

tea_prepared

deliver tea

first model both the behaviour of specification and im-
plementation as FSMs, and then check if every trace of
the implementation is also a trace of the specification, i.e.
test whether the traces of the implementation are allowed
by the specification. Mathematically, this means that the
set, of traces of the implementation must be included in
the set of traces of the specification. Verification then
becomes checking trace set inclusion.

Trace set inclusion can be checked automatically for
FSMs. However, the approach suffers from its high worst-
case complezity, the time spent on verifying trace inclu-
sion automatically may grow exponentially in the num-
ber of states of the systems. In fact there are systems of
comparatively small size, which cannot be automatically
checked for trace inclusion. However, luckily, most of the
practical systems escape the exponential worst-case com-
plexity, making automatic trace inclusion checking a tool
of practical relevance.

FSMs provide a formal yet intuitive way for describing
(reactive) systems. In particular, they provide a formal
basis for the analysis of reactive system, which is con-
cerned with answering vital questions about the systems’
behaviour like “will T get coffee, after pushing the coffee
button?” Answering such a question means to test if the
system has a certain property. In a formal method, logics
are usually used to describe such properties in terms of
formulae.

If a system has a certain property, it is then said
that the system satisfies the corresponding formula. Lo-
gicians also say that the system is a model for the for-
mula. Therefore the task of testing if a system is a model
for a formula is called model checking. Model checking is
one of the most successful methods for formal system
analysis.

In the untimed case, there is a large family of log-
ics suitable for the analysis of reactive systems which



in these logics as questions about correct sequencing in
traces (e.g. will T always get a coffee after I inserted
enough coins?). Many of these logics can be analysed
(semi-)automatically, and there exist a lot of powerful
tools for this purpose.

In the case of real time systems, we are not only in-
terested in the correct (temporal) order of events, but
additionally in the (explicit) amount of time passage. So
for real time systems, we have to talk about time quanti-
tatively instead of just qualitatively. For digital systems,
where events are driven by some pulse, it is very easy to
model the passage of time: just add a special new action
“tick” to the language, which models the ticking of the
system’s clock. Figure 5 shows how to model the coffee
machine in this way. Assuming that a tick lasts 5 seconds,
it takes 25 seconds to prepare the coffee and 10 seconds
to fill the cup, while it takes 30 seconds to prepare the
tea and 15 seconds to pour the tea into the cup.

RTL by Jahanian and Mok (see [53, 45]), TTM/RTTL
by Ostroff (see [62, 63]) or the Timed Systems of Hen-
nessy and Regan (see [35]) are prominent examples for
the numerous successful discrete time approaches to the
modelling and verification of real time systems.

The good point about the discrete approaches is that,
in principle, there is nothing new: the models are es-
sentially still FSMs, with just a specially treated action
“tick”. Therefore, the known analysis techniques can be
applied, and existing tools for reactive systems can be
used.

However, as already emphasized in the introduction,
there are a lot of good reasons to prefer continuous over
discrete modelling. One apparent reason is that it is
much more general than the discrete approach. In the
following sections, we will give an introduction into con-
tinuous approaches.

4 Early continuous approaches

Process calculi CCS and CSP

Timed CSP, Timed CCS and ATP
Instantaneous Actions and Two-Phase Systems
Real Time Logics

The first approaches that marry discrete and continuous
behaviour can be found in the world of process calculi.
These process calculi are a way to describe distributed
reactive systems algebraically. Therefore they are often
referred to as process algebras. They have been very suc-
cessful in the formal methods world because they allow
an easy and concise mathematical treatment while being
very intuitive at the same time. Milner’s CCS (Calcu-
lus of Communicating Systems, [52]) and Hoare’s CSP
(Communicating Sequential Processes, [44]) are among
the foremost examples of process calculi. Dialects of these

are tools supporting specification and analysis in CCS or
CSP like the Concurrency Workbench?*[26] and FDR?[67],
respectively.

In process calculi, equivalences between processes and
preorders on the processes play an important role. Equiv-
alences allow one to compare two different processes to
find out if they behave in the same way, while preorders
allow for determining if one process is an implementa-
tion of the other due to the fact that it satisfies all the
requirements posed by the specifying process.

A very early example is Timed CSP — a timed ver-
sion of CSP — by Reed and Roscoe (see [66]). Later came
Wang Yi’s Timed CCS, a real time extension of CCS with
a continuous time domain [79, 81, 80]. Another promi-
nent example of a real time calculus is ATP (Algebra of
Timed Processes, [59]), which has a discrete and a con-
tinuous interpretation.

All these approaches have something in common: the
“normal” actions are treated as being instantaneous (i.e.
taking “no time”), while the new ingredient is an opera-
tor to express delays of some duration. Although such an
approach might not match the intuition of most people
at first sight (everything seems to take some time), it
turned out that this idea is a good theoretical concept,
as Nicollin and Sifakis convincingly argue in [58].

One reason to use an approach like this is its gen-
erality: activities which take some time to happen can
be modelled by a distinct start and stop action (which
are both instantaneous) and the appropriate delay in be-
tween. Moreover, the abstraction leading to a modelling
with instantaneous actions and delays in between has
already successfully been used in other disciplines. In
electrical engineering, for example, up- and down-going
edges of pulse diagrams, which describe the behaviour of
wires in a digital system, are often assumed to be instan-
taneous, although raising or lowering the voltage clearly
takes some time.

The distinction between instantaneous actions and
delays, which model the passage of time, leads to a two
phase behaviour: phases during which a single or more
actions occur together with state changes while no time
passes are interleaved with phases where time passes
while nothing else happens, as illustrated in Fig. 6.

Process calculi equipped with some time domain al-
low to specify real time systems, and one can even reason
about the systems using the methods which were already
known within these calculi. Independently, at about the
same time, several real time logics (see [3, 33, 8, 9] and
[10] for a survey) were developed which followed similar
ideas. These logics are tailored for the formulation of vi-
tal properties of real time systems, but they may also be
used to specify the overall behaviour of such systems.

4 http://www.dcs.ed.ac.uk/home/cwb/
5 http://www.formal.demon.co.uk/FDR2.html
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Fig. 6. Two Phase System

The practical relevance of these real time calculi and
logics depends strongly on how far reasoning in them
could be automated. This raises the question of decidabil-
ity of the equivalences, preorders and logics, the neces-
sary condition for the existence of adequate correspond-
ing tools.

The next section will introduce the notion of timed
automata and explain the principles behind the region

technique which provides the formal foundation for an-
swering these questions.



Timed Automata

Region Technique

Reachability Algorithm

Capabilities and Limits of Timed Automata

This section introduces timed automata. The main idea
behind this formalism is the introduction of a finite set
of clocks for measuring delays and controlling the execu-
tion of actions which have guards that depend on timing
information. In this section, all clocks are meant to mea-
sure time ezactly, i.e. they all run at the same speed as
some fictitious global clock measuring the “real time”.

5.1 The Basics

The theory of timed automata was introduced in the the-
sis of Rajeev Alur ([2]) and related publications ([3, 4]).
They provide a useful FSM model for the specification
of real time systems.

Figure 7 displays the timed automaton for a continu-
ous time version of our coffee machine, whose associated
set of clock consists just of one clock X. The transitions
of this automaton are labelled with three distinct items:
a guard, an action and a reset assignment. As an exam-
ple, the “deliver cup” action now consists of the guard
X=30, the action deliver cup itself, and the reset assign-
ment X:=0.

The start state of the machine is called idle. In this
state the machine is waiting for an arbitrary time for
the user to push a button, so the guard of the “push
tea/coffee button” actions is just true. After the cof-
fee button is pushed, the machine enters the state cof-
fee_ordered and the clock X is set to zero. The machine
needs 25 seconds to boil the water in this state. When
the water is boiling, the machine will deliver the cup.
So the guard for the “deliver cup” action is X=25. After
the 25 seconds are expired, the machine will go from cof-
fee_ordered to coffee_prepared: the coffee is now ready to
be delivered. It takes 10 seconds to fill the cup with cof-
fee. Thus the guard of the “deliver coffee/tea” action is
X=10. After delivering the coffee the machine goes back
to its start state idle. Now the user can push e.g. the
tea button, and tea will be delivered analogously, except
that the guards are slightly different.

Formally, a timed automaton is an FSM with an as-
sociated finite set of clocks and specially labelled tran-
sitions. A transition label consists of an action, a guard
and a reset assignment. The reset assignment is just an
assignment, of zero to a subset of the clocks. We often
call this subset of the clocks the reset set. The guard is a
comparison of a clock against an upper or a lower bound;
such comparisons can be combined by conjunction. The
bounds can be strict or non-strict, and they should be
rational numbers. See Fig. 8 for an overview.

111ned Auiolatoll —
Finite State Machine + Finite Set of Clocks

Nodes are called Locations

Transitions are labelled with

— action (what is done?)
— guard (when is it done?)
— reset-set (which clocks are reset?)

Fig. 8. What defines a Timed Automaton?

Timed automata can be executed as follows: in the
beginning all clocks are set to zero, and from then on
they all increase uniformly as time progresses. A tran-
sition can only be taken if its guard is fulfilled. When
taking a transition, all clocks in the reset set are set to
zero, while the rest retain their values. This intuition be-
hind the execution of a timed automata can be made
precise by giving the automaton a semantics in terms of
a labelled transition system. The particular version used
here is called a valuation graph. States (nodes) of a valu-
ation graph consist of a location of the timed automaton,
and a valuation of the clocks, i.e. an assignment of real
values to clocks. The transitions of the valuation graph
are labelled in the “ordinary” way either by an action or
by a delay (which is a positive real number). Figure 9
gives a path in the valuation graph of the timed automa-
ton from Fig. 7. Note that we write clock valuations as
formulae X = a. Thus a state of the valuation graph has
the form node, X = a.

While, in principle, we allow arbitrary rational values
in the bounds in the timed automaton, we will assume
that all bounds are natural numbers for the rest of the
paper in order to simplify the representation. This does
not pose any restriction, as timed automata are finite,
and therefore only possess a finite number of bounds.
For a finite set of rational numbers, however, it is always
possible to find a factor transforming all these numbers
to integers by multiplication. This multiplication only
changes the time scale, without affecting the behavioural
properties of the automaton.

There are two main results given in Alur’s thesis ([2]):
first, trace inclusion as a relation between specification
and implementation is discussed for timed automata, and
it is shown that trace inclusion is undecidable for timed
automata, contrary to the untimed case. Second, it is
shown that model checking for the real time logic TCTL
is still decidable. So while on the one hand — maybe un-
surprisingly so — trace inclusion checking, a standard ver-
ification technique (cf. Sect. 3), cannot be automated for
timed automata, on the other hand, model checking can
be fully automated. This decidability result opened the
door for the computer assisted analysis of continuously
modelled systems. The corresponding model checking al-
gorithm is based on the region technique described in the
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next subsection, which can be regarded as the key to the
success of timed automata.

5.2 The Region Technique

The problem with timed automata is that any reason-
able analysis is in principle based on the corresponding
valuation graph, which is in general infinite (if you are
familiar with graph theory: it is even infinitely branch-
ing). Luckily, instead of using the valuation graph, it is
sufficient to use the region graph of the timed automaton.
The main idea of the region technique is that it is pos-
sible to find a finite representation of the valuation graph
which represents all the necessary reachability informa-
tion symbolically. This finite representation is called the
region graph and can be computed effectively. In the rest
of this subsection, we will explain the region technique
in more detail. As things become rather technical, one
may consider to skip this subsection on first reading.
We start the explanation of the region technique with
a simple example. The timed automaton given in Fig. 10
has one clock X, which controls the time at which an ac-
tion a can happen. The action is allowed to occur within

idle, X=0

an interval of one (inclusively) to two (exclusively) time
units after the process started, as required by the guard
1 < X < 2. After a is taken, the clock will be reset to
zero again, and no other action is possible then.

O 1<=X<2,a, X:=0 O
p q

Fig. 10. Sample Timed Automaton

Figure 11 gives the initial part of the region graph
of the process concentrating on the potential of state p.
The idea here is the following: if we restrict ourselves
to natural numbers in the guards, then for the clock X
it is only important to know if X has a certain natural
value, or if X is somewhere between a natural value n
and its successor n + 1. So instead of looking at all possi-
ble values for X, we only need to distinguish the intervals
[0,0],(0,1),[1,1],(1,2), and so on. Alternatively these in-
tervals can be described as logical formulae of the same
kind as the guards: X = 0,0 < X <1, X =1,0< X <2



are in fact the regions we are interested in.

The nodes of the region graph are pairs of a location
and a region. Figure 11 shows the region graph for the
automaton from Fig. 10. The node (p,0 < X < 1) is an
example of a pair of a location p and a region 0 < X < 1.
Due to the two-phase nature of the valuation graph, there
are two ways to go from one node to the other: either by
letting time pass (e.g. (p,0 < X < 1) =25 (p, X = 1))
or by some action (e.g. (p,1 < X < 2)) % (¢, X = 0)).

The idea of using intervals of the form X = n and
n < X <n+1 (where n is some natural number) would
still lead to infinite graphs. Additionally, we take into ac-
count that the timed automaton itself is finite, therefore
there must be a maximal number £ to which clocks are
compared. If the clock exceeds this value k, then we are
not interested in the exact value anymore, as any guard
will either be fulfilled for all or for none of the values
X > k. Thus it is sufficient to use intervals X = n and
n <X <n+1for n <k and additionally the intervals
X =k and X > k.

In the case of our simple example, the value for &
is 2. So the set of all regions is {X =0,0< X < 1,X =
1,1 < X <2,X =2,X > 2}, which is clearly a finite
set.

In the case of more than one clock, things are not
that easy. However David Dill noted that it is sufficient
to keep track of the values of all clocks and of the differ-
ences of all pairs of clocks. In [31] he introduced difference
bound matrices (short: dbm) which can be used to store
this information for a region.

Instead of using dbm’s, one can also represent re-
gions by formulae of a very specialized kind. Let again
be k the maximal constant appearing in the formulae of
a given timed automaton. A formula for a region consists
of conjunctions of comparisons. All admissible compar-
isons can be found in Fig. 12. There is a component of
the formula for each clock C' and for each pair of clocks
C,C" (where C' # C"). A single clock is either above k, or
it is equal to a natural number below k, or it is within an
open interval of two natural neighbours n and n+ 1 both
less than k. The same is true for the clock differences,
but additionally we allow differences to be negative (i.e.
C—C" < 0). Clock differences are only needed when both
clocks are below k. Figure 13 lists all regions if the clock
set is {X,Y} and k = 1.

There is a subtle problem with the representation of
regions as dbm’s or as specialized formulae: if we want to
do computations on regions, then the “canonical form”
as given above might be destroyed. A major result of
Dill in [31] was how to (re-)compute the canonical form5.
The canonical form is very important in order to compare
regions, as in principle, the same region can have different
representations.

6 Although later is was noted that Dill’s method had already
been proposed in [17] in a different context.

— C=n,or
-n<C<n+1,or
- C>k

for each pair of clocks C,C’ a term of the form

- C—-C'<0,o0r

- C—-C'=n,or
-n<C-0C'<n+1,or
-C-C >k

Fig. 12. canonical form for regions

X=0ANY=0ANX-Y=0
0<X<IANOKY <<IAX-Y =0
X=1ANY=1ANX-Y =0
X>1AY >1

X=0AN0<Y <KIAODKY -XK1
0<X<KIANOKY KIAOKY -X K1
I<X<KIANY =1AN0<Y -XK1
X=1AY>1

X=0ANY=1ANY-X=1
0<X<1IAY >1

X=0AY >1
(and symmetrically with X and Y exchanged)

Fig. 13. All regions for {X,Y} and k=1

Many algorithmic problems for timed automata can
be solved using the representation of the valuation graph
by a region graph. The region technigue is one of the
key ingredients for many analysis algorithms for timed
automata.

5.8 Euxtensions of Timed Automata

Several extensions of timed automata have been pro-
posed. We mention two important ones.

Xavier Nicollin showed in his thesis ([56]) that in the
guards comparisons of clock differences against rational
numbers can be permitted without a big change in the
region technique. It is worth noting that he also showed
how to translate the timed process calculus ATP into
timed automata (see [60]).

Figure 14 gives a simple example of a timed automata
containing a guard with a clock difference. Note that the
b action can only be taken if the a transition was taken
at least once after more than two time units after process
start. If the a action has not been taken at all, then X
and Y are always the same, so the guard X — Y > 2
cannot be true. If the a action is taken at some time ¢,
then afterwards X — Y = t, so t must exceed 2 to fulfil
the guard.
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Fig. 11. Region Graph of Sample Timed Automaton

true
Y:=0
b, X-Y>2

-0

Fig. 14. Example of a timed automaton with clock differences

Henzinger et al. introduced the idea of invariants into
timed automata (in [41]) and called this variant safety
timed automaton. An invariant is a formula of the same
type as the guards. While the guard is associated with a
transition and controls when the transition can be taken,
an invariant belongs to a location and controls how long
the system is allowed to stay within the location. Fig-
ure 15 shows an example of a safety timed graph. The
automaton can only stay within the left location as long
as clock X is less than or equal to 4. So the b action,
which can in principle be taken all the time, must be
taken when X reaches 4, while the a action, which can
also be taken all the time, need not be taken at all. We
shall see later that invariants also occur in the general-
ization of timed automata.

Fig. 15. Example of a safety timed automaton

5.4 Main Results

The main result of Dill, Alur et al. was that automatic
analysis of real time systems was still possible even when
time was modelled continuously ([2, 3, 4, 7]). The nec-
essary ingredient to reach this means is the observation
that the notion of region induces a finite partitioning of
the state space, thus leading to a finite, abstract model
which is still fine-grained enough to maintain all the
reachability information.

So how is this finite model used in the algorithms? In
principle, all algorithms are based on a reachability anal-
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ysis of the valuation graph. Model checking e.g. can be
done in terms of reachability by asking “will the system
ever reach a state where the formula is violated?” So in
general, all that needs to be done by the tools is an enu-
meration of all reachable states. Note that in the case of
timed automata, this cannot be done directly from the
timed automaton itself. Using the valuation graph on the
other hand, reachability questions become trivial: a state
is reachable, if there is path from the start state to the
state itself within the valuation graph. But as the valu-
ation graph is infinite (in fact, very infinite), we cannot
construct it directly with a computer.

The next paragraphs get a little technical again, as we
will explain a general algorithm to find all the reachable
states of a timed automaton. This algorithm is basically
a graph exploration algorithm with some minor (but im-
portant) ingredients from the theory of timed automata.
The main idea is to go through the graph step by step:
so in the first place one is interested in what is reachable
from a given state within one step. A step in a timed
automaton can be either a time-step or an action a. This
distinction (which is just the two-phase character of val-
uation graphs) will be used in the algorithm.

Let us start from a fixed node of the region graph.
Let us say that this node is (p, ), where p is the current
location and <y is the current region. As v represents a
whole set of clock valuations, so (p,v) represents a whole
set, of states of the valuation graph. On regions, there is
some successor relation defined which describes the next
region which is reached by letting time progress. So by
time steps we will reach a node (p,v'), where ' is the
time successor of . Note that +' is a region as well.
We call (p,v') the time successor of (p,7) and will write
succy (p,v) for it”. Note that sometimes suce, (p,7) can
be empty.

In the example in Fig. 11, the successor of (p,0 <
X <1)is (p,X = 1), as X = 1 is the next region
reached by letting time pass, i.e. by increasing clock X.
The state (p,1 < X < 2) has no time successor, as the
process must leave p using the a transition. Thus time is
not allowed to progress further than until some point in
0 < X < 2, and therefore the time successor is empty.

Now for every transition e (for edge) leaving the lo-
cation p in the timed automaton, there is a node (p',~")

7 The idea of using x to indicate time is from [60] and stands
for Kronos, the Greek god of time.



transition e, and ' is computed from « by resetting the
appropriate clocks. Note that 7' is only non-empty if the
guard of e is enabled, and that +' is again a region. We
write succe (p,y) for the node reached from (p,7) using
the transition e.

In the example of Fig. 11, the a-succesor of (p, X = 1)
is (¢, X = 0) as the a action is allowed for X = 1 and X
is reset along this transition. The node (p,0 < X < 1)
has no a-successor as no a action is enabled when X < 1.

Using this notation, we can outline a reachability al-
gorithm for timed automaton as in Fig. 16. The algo-
rithm computes a set R of nodes (p,7), where p is a
location of the timed automaton and v is a region. A
state is reachable if it belongs to one of the nodes in R.
The idea is to start with the start node in R. Then step
by step the time successors and the transitions succes-
sors of the nodes already in R are computed, and added
to R if not already there. Nodes in R for which we have
already computed the successors are marked as visited.

initialize R with {(po,v0)}
mark all nodes as not visited
— for all (p,v) in R not already visited:
— mark (p,v) as visited
— add succy (p,y) to R
— for all transitions e leaving p
e add succe(p,vy) to R
— until all nodes in R are marked visited

Fig. 16. Reachability Analysis

The algorithm terminates as soon as they are no more
nodes in R which have to be examined, i.e. if all nodes
in R are marked visited. As there is only a finite number
of nodes in a region graph, the algorithm must terminate
after a finite number of steps.

So there are three important facts for this algorithm
to work properly: First, the result of succ, and succ,,
when applied to a region, must again be a region. Sec-
ond, an efficient way of representing and manipulating is
needed (cf. [23]). Third, there may only be a finite num-
ber of regions to ensure termination of the algorithm

Thus the region techniques leaves us with a basis for
analysis algorithms for timed automata. Therefore con-
tinuous time models can be analysed in a way similar to
the discrete and untimed case.

However, there is a certain price to pay: while the
principal idea of using clocks to express time distance
between events is a very natural way of specification,
the usage of the clocks in the formalism is quite limited:
all clocks are assumed to be exact and the only oper-
ation on them is a reset. Further the allowed tests on
clocks are very restrictive: only a clock or a difference
between clocks can be compared against a natural num-

we shall see some of them in the coming sections) where
this is not sufficient to model a system. On the other
hand there is a large number of case studies which prove
that the model is already useful for real problems.

The central problem in applying the region technique
to real problems is the size of the region graph: the
number of regions grows exponentially in the number
of clocks and the size of the maximal constant used in
the automaton. Thus while the region technique solves
the problem of analysing timed automata theoretically,
it does not yield an efficient solution. Performance is of
major importance in tool design, and as we will see later,
all three real time tools of this issue of STTT cope with
this problem efficiently.

6 Realistic Clocks

e Realistic Distributed Clocks

e Drift and Synchronization

e Philipps Audio Control Protocol: an Industrial Ex-
ample

This section introduces timed automata where clocks are
more realistic than the exact clocks of the former section
as they are admitted to be inexact within a given toler-
ance, i.e. clocks have a slight drift.

6.1 Timed Automata with Drifting Clocks

Speaking of real problems, there is even a problem with
exact clocks: in reality, different clocks in a distributed
environment will not run at exactly the same speed, but
they will all drift slightly. The longer the system runs,
the bigger the absolute error becomes when clocks drift.
Thus it seems quite reasonable to take this drift into ac-
count when modelling the system. This leads to the idea
of drifting clock timed automata, which is quite simple:
with every clock we associate a drift, i.e. a closed inter-
val of the reals. At any time, the speed of the clock must
be within this interval. So now we are not speaking of
exact clocks any more, which all run at the same speed
of 1, but our clocks may vary in their speed within given
bounds. A realistic situation e.g. is a clock with a tol-
erance of 5%. This would be modelled by a clock with
a drift of [0.95,1.05]. So at any time the clock may run
with a speed of 1, but it may also be up to 5% slower
or faster. The model allows individual drifts for different
clocks, and the drift can even change for an individual
clock at different control locations.

This extended model is not only more realistic, but
luckily it is still possible to analyse the model automati-
cally. Sifakis et al. showed in their paper [61] that there
is a translation from a drifting clock timed automaton



the same reachability properties. Thus by combining the
translation with the region techniques presented in the
previous section, one obtains an algorithm for the anal-
ysis of drifting clock timed automata.

As the drift of a clock can be an arbitrary interval
with rational borders, this also allows the modelling of
clocks runnig at different speeds by choosing drifts like
[2,2] or [5,5].

In many discussions on modelling real time, not only
using exact clocks is attacked as being unrealistic, but
also using exact time points in guards like X = 4. Note
that this can be overcome by using guards of the form
4 —e < X <449, but that in many cases it is already
sufficient to model the uncertainty with a small drift of
the clock instead of changing the guard.

6.2 Drift and Synchronization

We further would like to point out that no real system
will be able to have drifting clocks which are never syn-
chronized. If synchronization would never happen, the
absolute error could grow above any measure, and this
would mean that the system would break at some time as
the measured time is too far away from the really elapsed
time. We all know that even our most exact clocks here
on earth must be synchronized from time to time. Now
synchronization means “to take away the drift”. If you
think of a system with exact, discrete clocks, you can
think of this system as being synchronized with every
clock tick. A drifting clock system is much more realis-
tic, by allowing the clocks to drift between synchroniza-
tion. Now and then, synchronization will happen when
exchanging messages between system components. As al-
ready said, a realistic system without this synchroniza-
tion will break eventually. In this light, the case of exact
clock timed automata can be seen as the most extreme
case of synchronization: in the case of discrete clocks,
there might be a small drift, which is however not ob-
servable as we look at the system only when the syn-
chronizing clock tick occurs, while in the case of exact
continuous clocks all components are in lockstep at all
times.

6.3 The Audio Control Protocol

The Audio Control Protocol is a well known case study
which shows the usefulness of drifting clock timed au-
tomata in practice. In 1994, Frits Vaandrager et al. proved
that for a communication protocol for Philips’ audio de-
vices, the protocol was reliable up to a clock tolerance
of 1/17 (see [21]). For Philips it was very important that
the protocol was reliable up to a tolerance of 5% (i.e.
1/20): In order to keep the price of their audio devices
low they had to rely on clocks in the devices which were
no more accurate than this. Vaandrager was not only able

1/20 tolerance but also demonstrated an exact bound on
the tolerance of 1/17. His original proof used a variant
of drifting clock timed automata and was done by hand.
In the presentation of his paper, Vaandrager said that
it would be quite challenging to see if it was possible to
find an automated proof.

To his own surprise, already in the next year UPPAAL
and HYTECH were able to give automated proofs (see
[46, 43]). While the original proof took several months,
the automated proofs needed just a few weeks to model
the audio control protocol in their input language (see
Fig. 17 for an example of the modelling for UppPAAL) and
only some hours to verify that the tolerance 1/20 was
sufficient. The first automatic proof took seven hours,
but UpPAAL and later also HYTECH managed to do the
same later on in eight seconds. HY'TECH was even able to
prove the upper bound of 1/17 by parametric reasoning
(see [43, 13]).

Vaandrager’s original proof however was based on
a simplification of the protocol as it assumed only one
sender and receiver so that no collision would occur on
the bus. David Griffioen, a student of Vaandrager, gave
a hand proof for the case of bus collision in his master’s
thesis([32]). The UPPAAL team together with Griffioen
were able to give an automated proof for this as well
(see [18]), with a total verification time of no more than
eleven minutes.

The audio control protocol marks the first example
of the usefulness of these approaches and the tools for
real life examples of real time problems.

7 More than Clocks

General Hybrid Systems
Continuous Variables
Boiling Water

Linear Hybrid Systems
Polyhedra Technique

Hybrid Systems ([49, 5]) are a formalism for modelling
mixtures of discrete and continuous behaviour. They are
a very broad generalization of timed automata, where
continuous variables are used for modelling arbitrary con-
tinuous behaviour instead of just representing clocks.
This section will explain the notion of hybrid systems.

7.1 General Hybrid Systems

As we already emphasized in the section on real time
systems, a real time system can typically be divided into
a controlling system (often called the system) and a con-
trolled system (the environment)[73]. The behaviour of
the controlled system is given a priori, although we are
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Fig. 17. The Audio Control Protocol in UPPAAL

edge of the environment. Such an approach is called an

able to influence it, while we are interested in finding
the correct behaviour of the controlling system so that
the whole system will function properly. In principle, the

open system approach. If such a controlling system is cor-
rect, it will work correctly in every possible environment.

However in most cases a rigorous analysis of this kind is

controlling system can be analysed without any knowl-



about the environment, and it will require the environe-
ment to behave this way, i.e. we put certain constraints
on the kind of environment in which we expect the sys-
tem to work. Now in order to do such a closed system
analysis, in addition to the controlling system we also
need to model the environment.

In general there are digital and analog processes in
the environment. Thus we need some way to model arbi-
trary analog behaviour. In [49], Maler, Manna and Pnueli
introduced the notion of a hybrid system: hybrid systems
are a formalism which allows the modelling of digital and
analog behaviour in a common framework. As usual in
computer science, the discrete part is modelled by an
FSM. For the continuous part, real valued variables are
used.

Figure 19 is once again the coffee machine, now mod-
elled as a hybrid systems. As we can now specify some
analog behaviour, we give a more detailed description
of what is going on in the machine. Namely, we will de-
scribe how the water is boiled and the coffee (resp. tea) is
poured into the cup. This is described by two continuous
variables T (for temperature) and H (for height).

A hybrid system is a two phase system like a timed
automaton (see Fig. 18). But while in a timed automa-
ton, in the continuous phase only the clocks would in-
crease with time, now our continuous variables can be-
have in any reasonable way as time passes. So in every
location we need to define how our continuous variables
will evolve. This is most easily done by using differential
equations as usual in physics. Thus every location in the
hybrid system has differential equations for each contin-
uous variable. The functions describing the behaviour of
the variables are called activities.

Further every location has an invariant — a formula
over the values of the variables — which gives the ad-
mitted values for the variables. A process may only stay
within a location as long as it does not violate the in-
variant,.

The activities and the invariant of the start loca-
tion are very simple: both variables will not change in
the start state (the water is not heated and no water is
poured into a cup), so their slope is zero (note that we
use T to indicate slopes in the figures, and T’ in the run-
ning text). Further we may stay in the start state for any
amount of time, so the invariant is just true.

As we will see further down, transitions may in fact
be labelled in a much more complicated way then before.
In the example however things have nearly not changed:
every transition is labelled with a guard, an action and
an assignment. The assignment however is not a mere
reset any more, but can assign arbitrary values to the
continuous variables.

Now the coffee machine behaves as follows: in the
start location, the water keeps its temperature and no
water is poured into the cup. We stay there until some-
one presses, say, the coffee button. Then we move to the

set to 20, as this is the initial temperature of the water.
As soon as we enter the location, the water is boiled ac-
cording to the law T’ = (120 — T")/20. We are allowed
to stay in this location until the water boils. For the
coffee, we assume that a “boiling temperature” of 90 de-
grees is sufficient (while the tea really needs 100 degrees).
Upon reaching the boiling temperature, the next transi-
tion, which delivers the cup, is taken. After the cup is
delivered, the water is poured into the cup. As the water
is not heated anymore, its activity® is now T’ = 0. The
height of the water inside the cup will however now rise
at two millimeters a second, so the activity of the height
is H' = 2. The cup is filled until the water height is two
centimeters, i.e. the cup is full (for the tea, we assume
that different cups with a height of three centimeters are
used). Then the system goes back to its start location
and waits again for someone to push a button (maybe
the tea button next time).

Let us go back from the example to the general definition
of hybrid systems. As we have seen, a hybrid system is an
FSM with a finite number of continuous variables. The
behaviour of these variables is described by real-valued
functions over time called activities. Time only passes
while the system resides within a location. The activities
of the variables may be different from location to loca-
tion. An invariant — i.e. an arbitrary formula over the
continuous variables — controls if the system is allowed
to stay within a location.

Transitions occur instantaneously: they take no time.
A transition has a pre- and a post-condition. The pre-
condition is a formula over the variables: it must be
fulfilled for the transition to be taken. After taking the
transition, the variables may be set to new values, which
are given by the post-condition. So the post-condition is
an assignment to the variables, which however may de-
pend on the previous values of the variables. Generally,
an observable action is associated with a transition. An
overview is given in Fig. 20.

Hybrid systems are a very natural way to model sys-
tems with mixed digital and analog components. They
combine the modelling of discrete systems from computer
science with classical continuous modelling from natural
sciences as applied in control theory.

The semantics of a hybrid system can again be given
by a valuation graph: here the valuations are the cur-
rent values of the continuous variables. While delays are
still labelled with the exact amount of time elapsed, the
variables will change according to their activities. This
is again the two phase characteristic of the tranisiton
system.

8 To keep things simple, we do not model the cooling down of
the water.
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Fig. 18. Two Phase System

true, push coffee button, T:=20

coffee_ordered

true, push tea button, T:=20

tea_ordered
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H = 20, deliver coffee

Fig. 19. A Hybrid Coffee Machine

The expressiveness of hybrid system is very rich: any
physically realizable system should be describable as a
hybrid system (and even some which are not realizable
at all, as we allow arbitrary functions). However as usual
there is a price for this expressiveness: the automatic
analysis of hybrid system is only possible for very re-

+_(120-7

H =30, deliver tea

stricted subclasses, and termination of the analysis algo-
rithms cannot be guaranteed anymore. The general case
is for sure quite intricated and it will probably take some
time before methodologies are available here. However we
have already seen two subclasses of hybrid systems which
are automatically analysable: Timed automata are the
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Locations are labelled with

activities for each variable,
— an invariant

Transitions are labelled with

a pre-condition (guard),
— an action,
a post-condition (assignment),

Fig. 20. What’s in a hybrid system?

special case of hybrid systems where all activities have
a slope of one, invariants and pre-conditions are com-
parisons of clocks (and clock differences) against natural
numbers, and post-conditions are either to keep the value
or to set it to zero. Drifting clock timed automata are a
similar subclass, where the slope of the activities may
vary within a given interval. However, there is a more
expressive subclass which we will discuss in detail in the
next subsection.

7.2 Linear Hybrid Systems

In 1993, Alur, Courcoubetis, Henzinger and Ho put for-
ward the notion of linear hybrid systems, a subclass of hy-
brid system which can be analysed (semi-)automatically
([6])- In a linear hybrid system, invariants, guards and
activities may only depend linearly on time or the values
of variables. While this seems to be a severe restriction
at first glance, case studies show that many interesting
problems can be modelled as a linear hybrid system. The
key idea to the analysis of linear hybrid system is what
we call the polyhedra technique. We will explain the de-
tails of this technique in a separate subsection.

In order to give an easy example of a linear hybrid
system, we simplify our specification of the coffee ma-
chine again. Instead of modelling the boiling of the wa-
ter realistically, we use a linear approximation: we as-
sume that the water’s temperature rises by 2.3 degree
every second. Thus we can model the machine as a lin-
ear hybrid system as done in Fig. 21. Note that only the
activity T' = (120—7")/20 had to be changed to T' = 2.3.

As with the region technique, the polyhedra tech-
nique allows a discrete representation of the infinite val-
uation graph of a linear hybrid system. However, in con-
trast to the case of timed automata, this representation
need not be finite: if it is finite, the algorithmic analysis
will terminate and yield a correct result, while it might
be the case that the algorithm never terminates. This
situation is called semi-decidability in computer science.

So the main result regarding linear hybrid systems is
the existence of analysis algorithms. Thus there is the

of these algorithms cannot be guaranteed in general, in
many practical cases a result will be produced. It is now
a folk argument that in practice there is no real dif-
ference between an algorithm which always terminates
or one which only sometimes terminates [77]. Note that
for complicated systems, the analysis might take several
days, and often it cannot be said a priori how long it will
take. For the user, there is no difference in stopping an
analysis after three days which might have terminated
within a week or which might have run forever.

7.8 The Polyhedra Technique

While the approach to the analysis of timed automaton
was based on regions, the analysis of linear hybrids sys-
tems is based on polyhedra. A polyhedron is a subset of
the Euclidean space R™, which can be described by lin-
ear inequalities. So each guard and invariant of a linear
hybrid systems describes a polyhedron.

If we choose linear hybrid systems as the subclass,
then a polyhedron is a set describable by a linear for-
mula. Assuming H and T are our continuous variables,
the formula 0 < T < 100A H = 2T e.g. describes the set
of all pairs (z,2z) where x € [0, 100].

Given a location p of a linear hybrid system and a
polyhedron z, we can compute all points reachable from
(p,2z) in the same way as we did with the region tech-
nique. By succy (p, z) we describe the set of points reach-
able by time passage, while succ.(p,z) are all points
reachable from (p, z) by taking the transition e. The re-
sult of these operations is a pair (p', z’) where p’ is some
location of the hybrid system and 2z’ is again a polyhe-
dron. Then reachability analysis can again be done by
computing sets reachable by one step iteratively. The al-
gorithm, which is analogous to the one based on regions,
is given in Fig. 22.

initialize R with {(po,20)}
— mark all nodes as not visited
— for all (p,z) in R not already visited:
— mark (p, z) as visited
— add succy(p,2) to R
— for all transitions e leaving p
e add succe(p, z) to R
— until all nodes in R are marked visited

Fig. 22. Reachability Analysis in Linear Hybrid Systems

The main reason why this algorithm is correct is that
when starting from some polyhedron, the successor states
can again be described using polyhedra. However, termi-
nation is not guaranteed anymore, as there are generally
infinitely many polyhedra.



true, push coffee button, T:=20

coffee_ordered

H = 20, deliver coffee

Fig. 21. Coffee machine as a linear hybrid system

7.4 Below and Above Linearity

As said before, timed automata are a proper subclass of
linear hybrid systems. In principle, timed automata can
be analysed using the polyhedron technique for linear
hybrid systems, and in fact one can gain from this in
speed. The good thing about timed automata is that the
analysis is guaranteed to terminate.

There is even a larger subclass of linear hybrid sys-
tem for which termination is guaranteed, which is the
class of linear hybrid systems with a finite bisimulation.
However, we cannot go into detail here but refer to [36].

However, if we go beyond timed automata into lin-
ear hybrid systems, then while there exist analysis pro-
cedures, their termination is not guaranteed anymore.
When we cross the border of linearity and enter the
field of non-linear systems, then in general we do not
have any analysis algorithm at all. However, even non-
linear systems can be analysed. Often, a linear approx-
imation of the system can be found ([40]). There exist
safe approximations, i.e. if the analysis proves the lin-
ear approximative to be well-behaved, then the original
system is as well. Note that this is another quality of
semi-decidability.

Approximations are also a good idea in the linear
case if the analysis does not terminate. Then it might
help to use over-approximations of polyhedra to force
the algorithm to terminate.

This indicates that there is a vast class of hybrid sys-
tems which can be described and analysed using the tech-

L]
T=0
L]

L __H=0
true

true, push tea button, T:=20

tea_ordered

H = 30, deliver tea

niques of linear hybrid systems. The application in [74]
clearly demonstrates the potential of applying HYTECH
to real hybrid systems using approximations.

8 The Tools

¢ KRONOS
e UPPAAL
e HYTECH

In this issue of STTT, three tools for real time and hybrid
systems are presented: KRONOS, UrPPAAL and HYTECH.
Each will be presented in an article of its own elsewhere
in this special issue. Here we just give a short introduc-
tion to all of them.

KRrRONOS|[28] is a model checker for timed automata. As
input it takes a timed automaton and a TCTL formula.
The output is a condition under which the automaton
satisfies the formula. In the best case, the condition is
just true, meaning the automaton will always satisfy
the formula. If the formula is not satisfied, an error trace
is generated.

KRrRONOS is mostly the work of Sergio Yovine, and
was implemented as part of his thesis [82] at VERIMAG
in Grenoble. It is now available in version 2.1a (Septem-
ber 1996). KrRONOS has been successfully applied in a
number of non-trivial case studies ([29, 30, 50]).



UpPPAAL is also a model checker for timed automata.
However the logic which is supported by UPPAAL is much

simpler than TCTL, permitting more efficient algorithms.

UPPAAL can deal with drifting clock timed automata and
also allows integer variables in the system description,
which is useful in many practical cases. UPPAAL has a
nice graphical interface and a simulator which can be
used to observe the system’s behaviour.

UPPAAL is joint work of the Universities of Uppsala
and Aalborg, initiated by Kim G. Larsen, Paul Petterson
and Wang Yi with Johan Bengtsson and Fredrik Lars-
son [19]. It was implemented in '94 and ’95, and is now
available in version 2.02. UPPAAL has proved useful even
in industrial case studies ([34, 47]).

HYTECH is a tool for linear hybrid systems. As input it
takes a description of a linear hybrid system and a set of
analysis commands. These commands allow to program
reachability analysis of linear hybrid system. HYTECH
can be used to analyse all kinds of linear hybrid sys-
tems, so it can especially do all the analysis of which
KronoOs and UPPAAL are capable, although sometimes
less efficiently due to the general approach. Especially
interesting is that with linear hybrid systems, it is easy
to specify parametrized systems, and HYTECH will be
able to synthesize parameter values, i.e. find the correct
values for the parameters so that the system will work.
Though sometimes one will run into the problem of non-
termination.

HYTECH has been designed and implemented by Tom
Henzinger, Pei-Hsin Ho and Howard Wong-Toi in 1995
at Cornell University[37, 12], but they have now moved
to Berkely. HYTECH has been tested on a number of
interesting case studies (see [38, 39, 42]).

All the forementioned tools are now established and
well known in the formal methods and real time commu-
nity.

9 Discussion

e history
e advantages of continuous modelling

We have given an introduction into the field of contin-
uous modelling of real time systems, presenting the no-
tions of timed automata, drifting clock timed automata,
linear hybrid systems and (general) hybrid systems. In
Fig. 23 we give an overview of the “history” of continuous
real time modelling as far as we have covered this field
in the paper. This overview is intended to show how the
theory of continuous real time modelling evolved over the
last decade. Note the upcoming of the three tools pre-
sented in this issue of STTT in 1993, '94 and ’95. Note
further how the tools tackled the audio control protocol

case studies around.

Our presentation focused on the portion of theory
of continuous model directly related to these tools. We
could not account for the many other approaches to con-
tinuous real time modelling as e.g. the duration calculus
[24, 25], ACP,[15, 14] or hybrid Petri Nets[27, 69].

We would like to end the presentation with a short
discussion of the usefulness and applicability of the mod-
els.

In Fig. 24 we give an overview of the various versions
of coffee machines modelled in the paper: the untimed
coffee machine, the timed automata coffee machine, the
linear hybrid system coffee machine and the hybrid sys-
tem coffee machine. As can be seen in this direct compar-
ison, the FSM modelling the control of the systems does
not change when adding time. Passing of time and con-
tinuous processes are modelled by augmenting the basic
system with more and more specific information, getting
a more and more realistic model of the coffe machine’s
behaviour. On the other side, the analysis of the system
becomes more and more complex.

An important question arising in the early stage of
the modelling process is the choice the right formalism.
If there is a need to model continuous behaviour, then
obviously the appropriate subclass of hybrid systems as
presented here will be a correct choice. But there are even
arguments for using the continuous approach in pure dig-
ital systems.

An important point is that sometimes in digital sys-
tems modelling one is forced to use a fixed global time
scale. A major advantage of the polyhedra technique is
that it will choose the appropriate time scale locally: if
the next event cannot occur with the next three seconds,
then three seconds is the “local” time scale, if events
happen every millsecond, then milliseconds are the the
“local” time scale.

Further compositional and refinement techniques work
better with continuous than with discrete time: when
combining two systems with a different time scale, both
systems have to be altered so that they have an identical
time scale before they can be combined in the discrete
case, while in the continuous case there is no need for
this?.

The development of the theory of timed automata
and hybrid systems has proved the following important
facts:

— continuous time models can be analysed automati-
cally or at least semi-automatically despite their in-
finite and uncountable character

— the algorithms are not only of theoretical interest,
but can be implemented in real tools

9 One could say that a continuously modelled system is already
at the most fine grained time scale.



— 1991 Theory of Timed Automata [7]
— 1992 Safety Timed Automata [41], Hybrid Systems [49]
— 1993 KRONOS [82]

— 1997 Industrial Case Studies [34, 47]

— 1988 Stankovic’s article on real time science [71, 72], Timed CSP [66]
— 1989 Difference Bound Matrices [31], Real Time Temporal Logic [8]
— 1990 Timed CCS [79], ATP [59], Model Checking for Timed Automata [3]

— 1994 HYTECH [37], Audio Control Protocol proved by hand [21]
— 1995 UpPAAL [19], HyTech and Uppaal solve Audio Control Protocol automatically [43, 46]
— 1996 Audio Control Protocol with Bus Collision solved automatically [18]

Fig. 23. The “History” of Continuous Models

— these tools can be made efficient enough to solve real
problems like the verification of Philips’ audio control
protocol

10 Conclusions

e Improve Theory
e Improve Tools
e Improve Methodologies

Most of the microprocessors which you come across in
your everyday life are not inside a computer: in fact they
sit inside a lot of machines of every day life from cars to
washing machine and video recorders. The development
of real time and embedded systems is a more and more
growing industry. While a malfunctioning video recorder
is just a nuisance for the user — but maybe still a catas-
trophe for the manufacturer — errors in the software con-
trolling your car’s anti skid system, an aeroplane or a
power plant can have disastrous effects.

By using a good design methodology, a lot of er-
rors can be detected and thus avoided during the de-
sign of software systems leading to better and less ex-
pensive software products. Thus good (and simple) de-
sign methodologies are obviously a desirable goal in the
field of real time systems, probably one of the main goals
in this field at the moment. Formal methods can be of
great help in developing good and sound design method-
ologies. Therefore investing into the development of for-
mal methods for real time systems is important for their
emergence.

It is beyond the scope of this article to comment on
all the relevant factors of designing these methodologies.
However we would like to comment on just a few points
which are closely related to the content of this paper.

The formalism of hybrid systems and timed automata
has proved useful for real time systems over the last
years, and hybrid methodologies are already used in in-
dustrial applications (see [76, 75, 74]). Despite this fact,
we will point out some directions of possible future re-

search aiming at improving hybrid methodologies and
their usability.

On the theoretical side, it would be interesting to
see how far the limits of analysability can be pushed.
Here a focus could be put on general algorithms to at-
tack non-linear hybrid systems. For linear hybrid systems
more space and time efficient methods are highly appre-
ciated. Further hybrid systems should be compared to
other continuous approaches (as e.g. discrete event sys-
tems[65, 64, 70]) in order to learn from and understand
the relation between the different approaches.

On the tool side, the tools can hopefully be made
even more efficient and user friendly. For efficiency, ap-
propriate data structures for hybrid systems are still an
issue. For user orientedness, it is important to find out
what potential users expect from a real time tool. Right
at the moment all tools concentrate mainly on the real
time aspects, while users probably want a lot of things
they know from “untimed tools”, like data types, control
structures, modules, hierarchy, composition, abstraction
and reusability.

On the practical side, there is a strong need to de-
velop good and simple design methodologies for real time
systems. These methodologies must address the following
questions

— how to use the theory,

— how to use the tools (efficiently),

— what are the relevant issues for the industrial design
process.

We have the strong hope that this issue of STTT will
make people aware of the usefulness of hybrid methods
for real time systems, and that this in turn will help in
the development of the hybrid methodologies.

Web Pages: For your convenience we list the URL’s in
the World Wide Web for the real time tools mentioned
in this article in Fig. 10.

Acknowledgements. The authors would like to thank Luca Aceto
for valuable comments during the making of this paper.
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Fig. 24. Overview of the coffee machines
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http://wwu-cad.eecs.berkeley.edu/ tah/HyTech

KRrRONOS:

http://www.imag.fr/VERIMAG/PEOPLE/Sergio.Yovine/ kronos/kronos.html

UPPAAL:

http://www.docs.uu.se/docs/rtmv/uppaal/ index.shtml

Fig. 25. URL’s for the Tools
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