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Abstract� The past decade has witnessed a rapid de�
velopment in the �eld of formal methods for the spec�
i�cation� analysis and veri�cation of real time systems�
Particularly striking is the progress in continuous time
modelling� which� despite its unquestioned expressive�
ness� turned out to be surprisingly tractable� practically
relevant classes of continuous time systems can fully au�
tomatically be analysed and veri�ed� This has led to the
development of a number of corresponding analysis and
veri�cation tools of di�erent application pro�les� In this
paper we concentrate on the two key concepts underlying
these tools� known as Timed Automata and Hybrid Sys�

tems � Their role can best be appreciated in the context
of formal methods in general� and speci�cally of speci��
cation of real time systems in terms of tailored process
calculi and real time logics� All these concepts will be
presented in an intuitive fashion� while avoiding as much
formalism as possible�

� Motivation

What this article is about�

� Continuous Time Modelling
� Formal Methods� a key towards Automation
� The Essence of Discrete Time Modelling
� Timed Automata�based Modelling
� The Power of Drifting Clocks
� The Nature of Hybrid Systems
� The Tools Kronos� Uppaal� HyTech

Real time and hybrid systems cross your way several
times a day� the automatic teller machine� your car	s
anti skid system� your video�recorder and washing ma�
chine are examples thereof� All these systems share one
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Real Time System� those systems in which the correctness
of the system depends not only on the logical result of the
computation but also on the time at which the results are
produced�

Fig� �� �Folk De�nition� of Real Time Systems

characteristic� their more or less complicated machinery
is controlled by one or more hidden devices� These de�
vices form what computer scientists and electrical engi�
neers call an embedded system� it runs as a controlling
system within a �complex� typically heterogeneous and
reactive� environment �the machinery� the sensors� and
the actuators� without being accessible from the outside�

Usually� embedded systems contain at least a highly
specialized micro�controller� and often one or even sev�
eral microprocessors� which are all digital by nature� In
turn� the activities in the environment which must be
controlled by the processor can be digital or analogue�
entering your PIN code into the teller machine is a digi�
tal process� while dispensing the money is clearly of ana�
logue nature�

The overall systems thus often form so�called hybrid

systems � which are characterized by the interplay be�
tween discrete and analogue behaviours� Real time sys�

tems � which can be characterized as stated in Fig� 
 �cf�
e�g� ���� 
�� �
��� are typical examples of hybrid systems�
As timeliness is a central issue in real time systems� it
is essential that the timing constraints of the system are
guaranteed to be met�

Due to the steadily increasing industrial pressure a
lot of research and development e�ort has been invested
on real time and hybrid systems over the past decade� In
particular the requirements for safety�critical real time
systems led to a rapid development of adequate formal
methods for their speci�cation� analysis and veri�cation�

Particularly striking has been the progress in con�
tinuous time modelling� Having served as a successful



� easy match with practical application scenarios
� foundational link to natural and engineering sciences
� invariance against changes of time scale
� �exible discretization on�demand in tool environments
� uniform framework for real time and hybrid systems

Fig� �� Bene�ts of continuous time modelling

paradigm in physics and engineering sciences for more
than ��� years� starting with the discovery of the dif�
ferential calculus by Leibniz and Newton at the end of
the seventeenth century�

�� the continuous interpreta�
tion of time was overwhelmed by the �digital revolution	
in telecommunication and least hardware design� con�
tinuous e�ects were discretized through sampling tech�
niques for tractability reasons�
However� it turns out that continuous modelling� de�

spite its unquestioned expressiveness� is in fact surpris�
ingly tractable� a growing number of practical relevant
continuous time systems � including system emerging
from the area of control theory � can now be analysed
and veri�ed fully automatically using classical computer
science technqiues�
Key to the continuous time analysis and veri�cation

tools are the region and the polyhedra technique� which
essentially realize a discretization on�demand of the un�
derlying continuous models� Besides enabling the adap�
tation and transfer of a wealth of discrete analysis and
veri�cation methods to the continuous world� this �exi�
ble discretization has a strong impact on the tools	 per�
formance� in contrast to the typical situation in discrete
time modelling� di�erent components of the system as
well as di�erent execution stages can be treated each on
its appropriate level of time granularity�
Discretization on�demand also gracefully supports the

two central design methods used in system development�
composition � putting systems together by combining
simpler ones � and re�nement � starting with a rather
rough speci�cation and adding details along the develop�
ment process� In both cases a need to change the �concep�
tual� time scale may arise� Whereas in the discrete case
with its explicit modelling of the time scale this typically
requires a complete re�modelling of the system	s compo�
nents� the on�demand discretization for continuous mod�
els automatically takes care of the new situation�
Thus there are very strong reasons for continuous

time modelling even of digital systems �Fig� ���

This paper gives an intuition�guided introduction into
the theory underlying Kronos� Uppaal� and HyTech�
three outstanding tools for the analysis and veri�cation
of continuous time systems� which are also presented in
the further articles of this special section� These three
tools were designed with di�erent pro�les in mind� Up�
paal	s design was mainly e�ciency guided� whereasKro�

g
borderline of automatic continuous time analysis� In fact�
the designers of HyTech even decided to sacri�ce the
guaranteed termination of their analysis and veri�cation
procedures in order to extend the application scenario�
HyTech is the only system explicitly aiming at the anal�
ysis and veri�cation of hybrid systems�
Technically we concentrate on the two key concepts

underlying these tools� known as Timed Automata and
Hybrid Systems � The role of these concepts can be best
appreciated in the context of formal methods in general
and speci�cally of speci�cation of real time systems in
terms of tailored process calculi and real time logics�
All the required concepts will be presented in an intu�

itive fashion� while avoiding as much formalism as pos�
sible� In particular� we will prefer de�nitions by exam�
ples to formal de�nitions� and refer to the literature for
formal details� Thus rather than assuming any speci�c
knowledge about real time systems or computer science�
we will try to build upon everyone	s intuition about the
nature of real time systems�
Despite this focus� we will also try to provide a more

general� but by far not complete view of continuous time
modelling� For a comprehensive survey on the theory of
real time systems the reader is referred to �

� in the
same issue�

We proceed as follows� �rst we will address the status
of formal methods in the context of real time system re�
search in Sect� �� and subsequently give an introduction
into �nite state machines and how they can be extended
to include discrete time in Sect� �� Thereafter we dis�
cuss continuous approaches to the modelling of real time
systems in Sect� � and timed automata� which use ex�

act clocks to measure delays between events� in Sect� ��
Section 
 will then present timed automata with drifting
clocks � here clocks can have a slight tolerance or uncer�
tainty in their measurement of time� modeling the situa�
tion with di�erent clocks in a distributed environment
more accurately� Subsequently� Sect� � will show how
timed automata can be extended to hybrid systems � a
very general model which allows the description of arbi�
trary physical behaviour as a function over time� The suc�
cessive Sect� � then gives a short overview over the tools
Kronos� Uppaal and HyTech which are all presented
in detail in articles on their own� Section 
� �nally dis�
cusses the state�of�the�art of continuous time modelling
and future perspectives�

� Formal Modelling of Real Time Systems

For a long time no methodological progress in the devel�
opment of real time systems was registered� most de�
signs were ad hoc� spanning from simple products of
trial and error on the bad end to well�thought but non�
generalizable designs on the good end� The problems of



� Speci
cation and Veri
cation
� Scheduling
� Operating Systems
� Programming Languages and Methodologies
� Distributed Data Bases
� Fault Tolerance
� System Architecture
� Communication

Fig� �� The Real Time Arena

real time system design seemed to be either scienti�cally
uninteresting� or already solved� or not even suited for
scienti�c methods at all�

John Stankovi�c thought�provoking articles of 
���
about the scienti�c status of real time systems ���
� ����
re�ect the awareness which had grown in a lot of people
at that time� Since then� the situation of real time sys�
tem design research has changed drastically� many con�
ferences and several journals devote attention to or even
focus on this area�

An important step was Stankovi�c	s classi�cation of
research subjects in real time system design �Fig� ��� The
contributions of this complete special section fall into the
category speci�cation and veri�cation� which is part of
the area known as formal methods�FM���

The basic motivation behind formal methods is that
any rigorous reasoning about systems must be based
upon an unambiguous description� This is particularly
true if one wants to �partly� automate such a reasoning�
Therefore a lot of research has been invested in the de�
velopment of adequate formal speci�cation formats and
languages� Most prominent examples are high�level pro�
gramming languages� whose development often originally
merely aimed at speci�cation purposes� but which where
later on supported by compilers��

The key point of formal description techniques is their
mathematical exactness� it is unambiguously clear how
the speci�ed system is going to �behave	� Exactness should�
however� not be confused with precision� �the system
must respond within at least 
 and up to �� seconds�
is exact� although one might argue that it is not precise�
In an exact speci�cation the amount of imprecision must
be explicitly addressed�

Just having a formalism is not very useful in itself� It
should come with a methodological support for the better
understanding of systems� Wolper ���� distinguishes weak
and strong formal methods� Whereas the latter are char�
acterized by providing tool support of analysis and ver�
i�cations problems� the former simply provide a math�
ematical framework for formal reasoning� Thus before

� The article on Ald�ebaran�	
��
 in this issue provides an alter�
native introduction into formal methods�
� Standard ML 	�� is a typical language with such a history�
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qualifying questions�

	 What is the formalism�
	 What are the methods�
	 How far can the methods be automated�

In the remainder we will consider these questions for
strong formal methods which have been developed for
continuous real time systems� The other articles of this
special section will then explain how these methods can
be automated and how they are realized in Kronos�
Uppaal� and HyTech�


 The discrete approach

� Formal Methods
� Finite State Machines
� Reactive Systems
� Temporal Logics
� Model Checking
� Qualitative and Quantitative Time

In order to understand the complex timed formalisms�
it is best to start with the discrete or �untimed� ones�
Many formalisms � in fact all those we will look at in de�
tail � can be translated into �nite state machines �short�
FSMs�� a fundamental concept of computer science and
electrical engineering� An FSM has a �nite set of states

� hence the name � and a description how the machine
changes from one state into another� Switching state is
called a transition� An imported feature of FSMs is that
they can easily be visualized� draw the states as nodes
of a graph �i�e� circles� and the transitions as directed
edges between them �i�e� arrows�� and label them appro�
priately� A �owchart is a well�known representation of
the control part of a program as an FSM�
In Fig� � we give a speci�cation of a classical book

example from the formal methods world� the co�ee�or�
tea machine �see e�g� ������ Our version will output a tea
or a co�ee� depending on the user	s choice� after pressing
the appropriate button�
The behaviour of this machine is as follows� in the idle

state� the machine waits for the user to push either the
co�ee or the tea button� After the user has made his�her
choice� the machine will �rst deliver a cup� Then the
machine will �ll the cup with co�ee or tea � depending
on the user	s previous choice � and return to its start
state�
The overall behaviour of this machine can be de�

scribed by its legal traces � traces are just the inscriptions
of all maximal paths beginning with the start state of the
machine� So a legal trace of the machine will either start
with an inscription

push co�ee button�deliver cup�deliver co�ee

or
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coffee_prepared

coffee_ordered tea_ordered

tea_prepared

deliver tea

push tea button

deliver cup

push coffee button

deliver cup

deliver coffee

Fig� �� The inevitable co�ee machine

push tea button�deliver cup�deliver tea

In fact� any legal trace will be an in�nite sequence�

of an arbitrary mixture of these two inscriptions�

For FSMs� there is a large and established theory
for speci�cation� analysis and veri�cation� which dates
back to the �fties� Prominent examples are the theory of
�nite automata and formal languages� which is extremely
successful e�g� in compiler construction�

The �untimed� theory has been applied in practice�
e�g� for hardware design as well as in the design of com�
munication protocols and digital controllers� and it is be�
coming more and more widely spread� A very important
concept in this theory is the idea of reactive systems �see
��
� for a good tutorial�� A reactive system is character�
ized by its communication with some environment� The
system reacts to input from the environment by supply�
ing corresponding output�

The co�ee machine is a reactive system which re�
sponds to inputs �push co�ee�tea button� and has out�
puts �deliver cup� and �deliver co�ee�tea�� These inputs
and outputs are often called actions�

A standard way to speak formally about systems like
the co�ee machine is to describe its behaviour by the set
of all legal traces� In the following we will subscribe to
this trace point of view� which in fact re�ects the user	s
viewpoint most directly� Alternative approaches� like the
ones based on bisimulations ����� failures ���� or testing
���� are used to describe important properties of con�
current systems� e�g� deadlock potential� which are not
expressible using traces�

A key question in formal methods �and in practice
as well� is� does the implementation meet its speci�ca�
tion� i�e� is it a proper implementation� In our setting
this question can be dealt with in the following way�

� assuming the machine will exist forever

�rst model both the behaviour of speci�cation and im�
plementation as FSMs� and then check if every trace of
the implementation is also a trace of the speci�cation� i�e�
test whether the traces of the implementation are allowed
by the speci�cation� Mathematically� this means that the
set of traces of the implementation must be included in
the set of traces of the speci�cation� Veri�cation then
becomes checking trace set inclusion�

Trace set inclusion can be checked automatically for
FSMs� However� the approach su�ers from its high worst�
case complexity� the time spent on verifying trace inclu�
sion automatically may grow exponentially in the num�
ber of states of the systems� In fact there are systems of
comparatively small size� which cannot be automatically
checked for trace inclusion� However� luckily� most of the
practical systems escape the exponential worst�case com�
plexity� making automatic trace inclusion checking a tool
of practical relevance�

FSMs provide a formal yet intuitive way for describing
�reactive� systems� In particular� they provide a formal
basis for the analysis of reactive system� which is con�
cerned with answering vital questions about the systems	
behaviour like �will I get co�ee� after pushing the co�ee
button�� Answering such a question means to test if the
system has a certain property� In a formal method� logics
are usually used to describe such properties in terms of
formulae�

If a system has a certain property� it is then said
that the system satis�es the corresponding formula� Lo�
gicians also say that the system is a model for the for�
mula� Therefore the task of testing if a system is a model
for a formula is called model checking� Model checking is
one of the most successful methods for formal system
analysis�

In the untimed case� there is a large family of log�
ics suitable for the analysis of reactive systems which
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in these logics as questions about correct sequencing in
traces �e�g� will I always get a co�ee after I inserted
enough coins��� Many of these logics can be analysed
�semi��automatically� and there exist a lot of powerful
tools for this purpose�
In the case of real time systems� we are not only in�

terested in the correct �temporal� order of events� but
additionally in the �explicit� amount of time passage� So
for real time systems� we have to talk about time quanti�
tatively instead of just qualitatively� For digital systems�
where events are driven by some pulse� it is very easy to
model the passage of time� just add a special new action
�tick� to the language� which models the ticking of the
system	s clock� Figure � shows how to model the co�ee
machine in this way� Assuming that a tick lasts � seconds�
it takes �� seconds to prepare the co�ee and 
� seconds
to �ll the cup� while it takes �� seconds to prepare the
tea and 
� seconds to pour the tea into the cup�
RTL by Jahanian andMok �see ���� ����� TTM�RTTL

by Ostro� �see �
�� 
��� or the Timed Systems of Hen�
nessy and Regan �see ����� are prominent examples for
the numerous successful discrete time approaches to the
modelling and veri�cation of real time systems�
The good point about the discrete approaches is that�

in principle� there is nothing new� the models are es�
sentially still FSMs� with just a specially treated action
�tick�� Therefore� the known analysis techniques can be
applied� and existing tools for reactive systems can be
used�
However� as already emphasized in the introduction�

there are a lot of good reasons to prefer continuous over
discrete modelling� One apparent reason is that it is
much more general than the discrete approach� In the
following sections� we will give an introduction into con�
tinuous approaches�

� Early continuous approaches

� Process calculi CCS and CSP
� Timed CSP� Timed CCS and ATP
� Instantaneous Actions and Two�Phase Systems
� Real Time Logics

The �rst approaches that marry discrete and continuous
behaviour can be found in the world of process calculi�
These process calculi are a way to describe distributed
reactive systems algebraically� Therefore they are often
referred to as process algebras� They have been very suc�
cessful in the formal methods world because they allow
an easy and concise mathematical treatment while being
very intuitive at the same time� Milner	s CCS �Calcu�
lus of Communicating Systems� ����� and Hoare	s CSP
�Communicating Sequential Processes� ����� are among
the foremost examples of process calculi� Dialects of these

p �
are tools supporting speci�cation and analysis in CCS or
CSP like the ConcurrencyWorkbench���
� and FDR��
���
respectively�

In process calculi� equivalences between processes and
preorders on the processes play an important role� Equiv�
alences allow one to compare two di�erent processes to
�nd out if they behave in the same way� while preorders
allow for determining if one process is an implementa�
tion of the other due to the fact that it satis�es all the
requirements posed by the specifying process�

A very early example is Timed CSP � a timed ver�
sion of CSP � by Reed and Roscoe �see �

��� Later came
Wang Yi	s Timed CCS� a real time extension of CCS with
a continuous time domain ���� �
� ���� Another promi�
nent example of a real time calculus is ATP �Algebra of
Timed Processes� ������ which has a discrete and a con�
tinuous interpretation�

All these approaches have something in common� the
�normal� actions are treated as being instantaneous �i�e�
taking �no time��� while the new ingredient is an opera�
tor to express delays of some duration� Although such an
approach might not match the intuition of most people
at �rst sight �everything seems to take some time�� it
turned out that this idea is a good theoretical concept�
as Nicollin and Sifakis convincingly argue in �����

One reason to use an approach like this is its gen�
erality� activities which take some time to happen can
be modelled by a distinct start and stop action �which
are both instantaneous� and the appropriate delay in be�
tween� Moreover� the abstraction leading to a modelling
with instantaneous actions and delays in between has
already successfully been used in other disciplines� In
electrical engineering� for example� up� and down�going
edges of pulse diagrams� which describe the behaviour of
wires in a digital system� are often assumed to be instan�
taneous� although raising or lowering the voltage clearly
takes some time�

The distinction between instantaneous actions and
delays� which model the passage of time� leads to a two
phase behaviour� phases during which a single or more
actions occur together with state changes while no time
passes are interleaved with phases where time passes
while nothing else happens� as illustrated in Fig� 
�

Process calculi equipped with some time domain al�
low to specify real time systems� and one can even reason
about the systems using the methods which were already
known within these calculi� Independently� at about the
same time� several real time logics �see ��� ��� �� �� and
�
�� for a survey� were developed which followed similar
ideas� These logics are tailored for the formulation of vi�
tal properties of real time systems� but they may also be
used to specify the overall behaviour of such systems�

� http���www�dcs�ed�ac�uk�home�cwb�
� http���www�formal�demon�co�uk�FDR��html
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Fig� �� A discrete time co�ee machine
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Fig� �� Two Phase System

The practical relevance of these real time calculi and
logics depends strongly on how far reasoning in them
could be automated� This raises the question of decidabil�
ity of the equivalences� preorders and logics� the neces�
sary condition for the existence of adequate correspond�
ing tools�

The next section will introduce the notion of timed
automata and explain the principles behind the region

technique which provides the formal foundation for an�
swering these questions�



� Timed Automata
� Region Technique
� Reachability Algorithm
� Capabilities and Limits of Timed Automata

This section introduces timed automata� The main idea
behind this formalism is the introduction of a �nite set
of clocks for measuring delays and controlling the execu�
tion of actions which have guards that depend on timing
information� In this section� all clocks are meant to mea�
sure time exactly� i�e� they all run at the same speed as
some �ctitious global clock measuring the �real time��

��� The Basics

The theory of timed automata was introduced in the the�
sis of Rajeev Alur ����� and related publications ���� ����
They provide a useful FSM model for the speci�cation
of real time systems�
Figure � displays the timed automaton for a continu�

ous time version of our co�ee machine� whose associated
set of clock consists just of one clock X� The transitions
of this automaton are labelled with three distinct items�
a guard � an action and a reset assignment � As an exam�
ple� the �deliver cup� action now consists of the guard
X���� the action deliver cup itself� and the reset assign�
ment X����
The start state of the machine is called idle� In this

state the machine is waiting for an arbitrary time for
the user to push a button� so the guard of the �push
tea�co�ee button� actions is just true� After the cof�
fee button is pushed� the machine enters the state cof�

fee ordered and the clock X is set to zero� The machine
needs �� seconds to boil the water in this state� When
the water is boiling� the machine will deliver the cup�
So the guard for the �deliver cup� action is X���� After
the �� seconds are expired� the machine will go from cof�

fee ordered to co	ee prepared� the co�ee is now ready to
be delivered� It takes 
� seconds to �ll the cup with cof�
fee� Thus the guard of the �deliver co�ee�tea� action is
X�
�� After delivering the co�ee the machine goes back
to its start state idle� Now the user can push e�g� the
tea button� and tea will be delivered analogously� except
that the guards are slightly di�erent�
Formally� a timed automaton is an FSM with an as�

sociated �nite set of clocks and specially labelled tran�
sitions� A transition label consists of an action� a guard
and a reset assignment� The reset assignment is just an
assignment of zero to a subset of the clocks� We often
call this subset of the clocks the reset set� The guard is a
comparison of a clock against an upper or a lower bound�
such comparisons can be combined by conjunction� The
bounds can be strict or non�strict� and they should be
rational numbers� See Fig� � for an overview�

Timed Automaton �
Finite State Machine � Finite Set of Clocks

Nodes are called Locations

Transitions are labelled with

� action �what is done��
� guard �when is it done��
� reset�set �which clocks are reset��

Fig� 	� What de�nes a Timed Automaton�

Timed automata can be executed as follows� in the
beginning all clocks are set to zero� and from then on
they all increase uniformly as time progresses� A tran�
sition can only be taken if its guard is ful�lled� When
taking a transition� all clocks in the reset set are set to
zero� while the rest retain their values� This intuition be�
hind the execution of a timed automata can be made
precise by giving the automaton a semantics in terms of
a labelled transition system� The particular version used
here is called a valuation graph� States �nodes� of a valu�
ation graph consist of a location of the timed automaton�
and a valuation of the clocks� i�e� an assignment of real
values to clocks� The transitions of the valuation graph
are labelled in the �ordinary� way either by an action or
by a delay �which is a positive real number�� Figure �
gives a path in the valuation graph of the timed automa�
ton from Fig� �� Note that we write clock valuations as
formulae X  a� Thus a state of the valuation graph has
the form node�X  a�

While� in principle� we allow arbitrary rational values
in the bounds in the timed automaton� we will assume
that all bounds are natural numbers for the rest of the
paper in order to simplify the representation� This does
not pose any restriction� as timed automata are �nite�
and therefore only possess a �nite number of bounds�
For a �nite set of rational numbers� however� it is always
possible to �nd a factor transforming all these numbers
to integers by multiplication� This multiplication only
changes the time scale� without a�ecting the behavioural
properties of the automaton�

There are two main results given in Alur	s thesis ������
�rst� trace inclusion as a relation between speci�cation
and implementation is discussed for timed automata� and
it is shown that trace inclusion is undecidable for timed
automata� contrary to the untimed case� Second� it is
shown that model checking for the real time logic TCTL
is still decidable� So while on the one hand � maybe un�
surprisingly so � trace inclusion checking� a standard ver�
i�cation technique �cf� Sect� ��� cannot be automated for
timed automata� on the other hand� model checking can
be fully automated� This decidability result opened the
door for the computer assisted analysis of continuously
modelled systems� The corresponding model checking al�
gorithm is based on the region technique described in the
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next subsection� which can be regarded as the key to the
success of timed automata�

��	 The Region Technique

The problem with timed automata is that any reason�
able analysis is in principle based on the corresponding
valuation graph� which is in general in�nite �if you are
familiar with graph theory� it is even in�nitely branch�
ing�� Luckily� instead of using the valuation graph� it is
su�cient to use the region graph of the timed automaton�
The main idea of the region technique is that it is pos�

sible to �nd a �nite representation of the valuation graph
which represents all the necessary reachability informa�
tion symbolically� This �nite representation is called the
region graph and can be computed e�ectively� In the rest
of this subsection� we will explain the region technique
in more detail� As things become rather technical� one
may consider to skip this subsection on �rst reading�
We start the explanation of the region technique with

a simple example� The timed automaton given in Fig� 
�
has one clock X � which controls the time at which an ac�
tion a can happen� The action is allowed to occur within

an interval of one �inclusively� to two �exclusively� time
units after the process started� as required by the guard

 � X � �� After a is taken� the clock will be reset to
zero again� and no other action is possible then�

p q

1 <= X < 2, a, X:=0

Fig� ��� Sample Timed Automaton

Figure 

 gives the initial part of the region graph
of the process concentrating on the potential of state p�
The idea here is the following� if we restrict ourselves
to natural numbers in the guards� then for the clock X
it is only important to know if X has a certain natural
value� or if X is somewhere between a natural value n
and its successor n!
� So instead of looking at all possi�
ble values forX � we only need to distinguish the intervals
��� ��� ��� 
�� �
� 
�� �
� ��� and so on� Alternatively these in�
tervals can be described as logical formulae of the same
kind as the guards� X  �� � � X � 
� X  
� � � X � �



g �
are in fact the regions we are interested in�

The nodes of the region graph are pairs of a location
and a region� Figure 

 shows the region graph for the
automaton from Fig� 
�� The node �p� � � X � 
� is an
example of a pair of a location p and a region � � X � 
�
Due to the two�phase nature of the valuation graph� there
are two ways to go from one node to the other� either by

letting time pass �e�g� �p� � � X � 
�
time
���� �p�X  
��

or by some action �e�g� �p� 
 � X � ���
a
�� �q�X  ����

The idea of using intervals of the form X  n and
n � X � n!
 �where n is some natural number� would
still lead to in�nite graphs� Additionally� we take into ac�
count that the timed automaton itself is �nite� therefore
there must be a maximal number k to which clocks are
compared� If the clock exceeds this value k� then we are
not interested in the exact value anymore� as any guard
will either be ful�lled for all or for none of the values
X � k� Thus it is su�cient to use intervals X  n and
n � X � n ! 
 for n � k and additionally the intervals
X  k and X � k�

In the case of our simple example� the value for k
is �� So the set of all regions is fX  �� � � X � 
� X  

� 
 � X � �� X  �� X � �g� which is clearly a �nite
set�

In the case of more than one clock� things are not
that easy� However David Dill noted that it is su�cient
to keep track of the values of all clocks and of the di�er�
ences of all pairs of clocks� In ��
� he introduced di�erence
bound matrices �short� dbm� which can be used to store
this information for a region�

Instead of using dbm	s� one can also represent re�
gions by formulae of a very specialized kind� Let again
be k the maximal constant appearing in the formulae of
a given timed automaton� A formula for a region consists
of conjunctions of comparisons� All admissible compar�
isons can be found in Fig� 
�� There is a component of
the formula for each clock C and for each pair of clocks
C�C � �where C � C ��� A single clock is either above k� or
it is equal to a natural number below k� or it is within an
open interval of two natural neighbours n and n!
 both
less than k� The same is true for the clock di�erences�
but additionally we allow di�erences to be negative �i�e�
C�C � � ��� Clock di�erences are only needed when both
clocks are below k� Figure 
� lists all regions if the clock
set is fX�Y g and k  
�

There is a subtle problem with the representation of
regions as dbm	s or as specialized formulae� if we want to
do computations on regions� then the �canonical form�
as given above might be destroyed� A major result of
Dill in ��
� was how to �re��compute the canonical form��
The canonical form is very important in order to compare
regions� as in principle� the same region can have di�erent
representations�

� Although later is was noted that Dill�s method had already
been proposed in 	��� in a di�erent context�

� C � n� or
� n � C � n� �� or
� C � k

for each pair of clocks C�C� a term of the form

� C � C� � �� or
� C � C� � n� or
� n � C � C� � n � �� or
� C � C� � k

Fig� ��� canonical form for regions

X � � � Y � � �X � Y � �
� � X � � � � � Y � � �X � Y � �
X � � � Y � � �X � Y � �
X � � � Y � �

X � � � � � Y � � � � � Y �X � �
� � X � � � � � Y � � � � � Y �X � �
� � X � � � Y � � � � � Y �X � �
X � � � Y � �

X � � � Y � � � Y �X � �
� � X � � � Y � �

X � � � Y � �
�and symmetrically with X and Y exchanged�

Fig� ��� All regions for fX�Y g and k � �

Many algorithmic problems for timed automata can
be solved using the representation of the valuation graph
by a region graph� The region technique is one of the
key ingredients for many analysis algorithms for timed
automata�

��
 Extensions of Timed Automata

Several extensions of timed automata have been pro�
posed� We mention two important ones�

Xavier Nicollin showed in his thesis ���
�� that in the
guards comparisons of clock di�erences against rational
numbers can be permitted without a big change in the
region technique� It is worth noting that he also showed
how to translate the timed process calculus ATP into
timed automata �see �
����

Figure 
� gives a simple example of a timed automata
containing a guard with a clock di�erence� Note that the
b action can only be taken if the a transition was taken
at least once after more than two time units after process
start� If the a action has not been taken at all� then X
and Y are always the same� so the guard X � Y � �
cannot be true� If the a action is taken at some time t�
then afterwards X � Y  t� so t must exceed � to ful�l
the guard�



(p, X=0)

a

(p, 0<X<1) (p, X=1) (p, 1<X<2)
a

......
time

(q, X=0)

Fig� ��� Region Graph of Sample Timed Automaton

b, X-Y>2

a
true
Y := 0

Fig� ��� Example of a timed automaton with clock di�erences

Henzinger et al� introduced the idea of invariants into
timed automata �in ��
�� and called this variant safety
timed automaton� An invariant is a formula of the same
type as the guards� While the guard is associated with a
transition and controls when the transition can be taken�
an invariant belongs to a location and controls how long
the system is allowed to stay within the location� Fig�
ure 
� shows an example of a safety timed graph� The
automaton can only stay within the left location as long
as clock X is less than or equal to �� So the b action�
which can in principle be taken all the time� must be
taken when X reaches �� while the a action� which can
also be taken all the time� need not be taken at all� We
shall see later that invariants also occur in the general�
ization of timed automata�

a
Y < 3
Y := 0

X<=4 true
b, X >= 0

Fig� ��� Example of a safety timed automaton

��� Main Results

The main result of Dill� Alur et al� was that automatic
analysis of real time systems was still possible even when
time was modelled continuously ���� �� �� ���� The nec�
essary ingredient to reach this means is the observation
that the notion of region induces a �nite partitioning of
the state space� thus leading to a �nite� abstract model
which is still �ne�grained enough to maintain all the
reachability information�
So how is this �nite model used in the algorithms� In

principle� all algorithms are based on a reachability anal�

ysis of the valuation graph� Model checking e�g� can be
done in terms of reachability by asking �will the system
ever reach a state where the formula is violated�� So in
general� all that needs to be done by the tools is an enu�
meration of all reachable states� Note that in the case of
timed automata� this cannot be done directly from the
timed automaton itself� Using the valuation graph on the
other hand� reachability questions become trivial� a state
is reachable� if there is path from the start state to the
state itself within the valuation graph� But as the valu�
ation graph is in�nite �in fact� very in�nite�� we cannot
construct it directly with a computer�

The next paragraphs get a little technical again� as we
will explain a general algorithm to �nd all the reachable
states of a timed automaton� This algorithm is basically
a graph exploration algorithm with some minor �but im�
portant� ingredients from the theory of timed automata�
The main idea is to go through the graph step by step�
so in the �rst place one is interested in what is reachable
from a given state within one step� A step in a timed
automaton can be either a time�step or an action a� This
distinction �which is just the two�phase character of val�
uation graphs� will be used in the algorithm�

Let us start from a �xed node of the region graph�
Let us say that this node is �p� ��� where p is the current
location and � is the current region� As � represents a
whole set of clock valuations� so �p� �� represents a whole
set of states of the valuation graph� On regions� there is
some successor relation de�ned which describes the next
region which is reached by letting time progress� So by
time steps we will reach a node �p� ���� where �� is the
time successor of �� Note that �� is a region as well�
We call �p� ��� the time successor of �p� �� and will write
succ��p� �� for it

�� Note that sometimes succ��p� �� can
be empty�

In the example in Fig� 

� the successor of �p� � �
X � 
� is �p�X  
�� as X  
 is the next region
reached by letting time pass� i�e� by increasing clock X �
The state �p� 
 � X � �� has no time successor� as the
process must leave p using the a transition� Thus time is
not allowed to progress further than until some point in
� � X � �� and therefore the time successor is empty�

Now for every transition e �for edge� leaving the lo�
cation p in the timed automaton� there is a node �p�� ���

� The idea of using � to indicate time is from 	��� and stands
for Kronos� the Greek god of time�



�p� �� p j p
transition e� and �� is computed from � by resetting the
appropriate clocks� Note that �� is only non�empty if the
guard of e is enabled� and that �� is again a region� We
write succe�p� �� for the node reached from �p� �� using
the transition e�

In the example of Fig� 

� the a�succesor of �p�X  
�
is �q�X  �� as the a action is allowed for X  
 and X
is reset along this transition� The node �p� � � X � 
�
has no a�successor as no a action is enabled when X � 
�

Using this notation� we can outline a reachability al�
gorithm for timed automaton as in Fig� 

� The algo�
rithm computes a set R of nodes �p� ��� where p is a
location of the timed automaton and � is a region� A
state is reachable if it belongs to one of the nodes in R�
The idea is to start with the start node in R� Then step
by step the time successors and the transitions succes�
sors of the nodes already in R are computed� and added
to R if not already there� Nodes in R for which we have
already computed the successors are marked as visited�

� initialize R with f�p�� ���g
� mark all nodes as not visited
� for all �p� �� in R not already visited�

� mark �p� �� as visited
� add succ��p� �� to R
� for all transitions e leaving p

� add succe�p� �� to R
� until all nodes in R are marked visited

Fig� ��� Reachability Analysis

The algorithm terminates as soon as they are no more
nodes in R which have to be examined� i�e� if all nodes
in R are marked visited� As there is only a �nite number
of nodes in a region graph� the algorithm must terminate
after a �nite number of steps�

So there are three important facts for this algorithm
to work properly� First� the result of succ� and succe�
when applied to a region� must again be a region� Sec�
ond� an e�cient way of representing and manipulating is
needed �cf� ������ Third� there may only be a �nite num�
ber of regions to ensure termination of the algorithm

Thus the region techniques leaves us with a basis for
analysis algorithms for timed automata� Therefore con�
tinuous time models can be analysed in a way similar to
the discrete and untimed case�

However� there is a certain price to pay� while the
principal idea of using clocks to express time distance
between events is a very natural way of speci�cation�
the usage of the clocks in the formalism is quite limited�
all clocks are assumed to be exact and the only oper�
ation on them is a reset� Further the allowed tests on
clocks are very restrictive� only a clock or a di�erence
between clocks can be compared against a natural num�

y p �
we shall see some of them in the coming sections� where
this is not su�cient to model a system� On the other
hand there is a large number of case studies which prove
that the model is already useful for real problems�
The central problem in applying the region technique

to real problems is the size of the region graph� the
number of regions grows exponentially in the number
of clocks and the size of the maximal constant used in
the automaton� Thus while the region technique solves
the problem of analysing timed automata theoretically�
it does not yield an e�cient solution� Performance is of
major importance in tool design� and as we will see later�
all three real time tools of this issue of STTT cope with
this problem e�ciently�


 Realistic Clocks

� Realistic Distributed Clocks
� Drift and Synchronization
� Philipps Audio Control Protocol� an Industrial Ex�
ample

This section introduces timed automata where clocks are
more realistic than the exact clocks of the former section
as they are admitted to be inexact within a given toler�
ance� i�e� clocks have a slight drift�

��� Timed Automata with Drifting Clocks

Speaking of real problems� there is even a problem with
exact clocks� in reality� di�erent clocks in a distributed
environment will not run at exactly the same speed� but
they will all drift slightly� The longer the system runs�
the bigger the absolute error becomes when clocks drift�
Thus it seems quite reasonable to take this drift into ac�
count when modelling the system� This leads to the idea
of drifting clock timed automata� which is quite simple�
with every clock we associate a drift� i�e� a closed inter�
val of the reals� At any time� the speed of the clock must
be within this interval� So now we are not speaking of
exact clocks any more� which all run at the same speed
of 
� but our clocks may vary in their speed within given
bounds� A realistic situation e�g� is a clock with a tol�
erance of �"� This would be modelled by a clock with
a drift of ������ 
����� So at any time the clock may run
with a speed of 
� but it may also be up to �" slower
or faster� The model allows individual drifts for di�erent
clocks� and the drift can even change for an individual
clock at di�erent control locations�
This extended model is not only more realistic� but

luckily it is still possible to analyse the model automati�
cally� Sifakis et al� showed in their paper �

� that there
is a translation from a drifting clock timed automaton



y
the same reachability properties� Thus by combining the
translation with the region techniques presented in the
previous section� one obtains an algorithm for the anal�
ysis of drifting clock timed automata�
As the drift of a clock can be an arbitrary interval

with rational borders� this also allows the modelling of
clocks runnig at di�erent speeds by choosing drifts like
��� �� or ��� ���
In many discussions on modelling real time� not only

using exact clocks is attacked as being unrealistic� but
also using exact time points in guards like X  �� Note
that this can be overcome by using guards of the form
�� � � X � � ! �� but that in many cases it is already
su�cient to model the uncertainty with a small drift of
the clock instead of changing the guard�

��	 Drift and Synchronization

We further would like to point out that no real system
will be able to have drifting clocks which are never syn�
chronized� If synchronization would never happen� the
absolute error could grow above any measure� and this
would mean that the system would break at some time as
the measured time is too far away from the really elapsed
time� We all know that even our most exact clocks here
on earth must be synchronized from time to time� Now
synchronization means �to take away the drift�� If you
think of a system with exact� discrete clocks� you can
think of this system as being synchronized with every
clock tick� A drifting clock system is much more realis�
tic� by allowing the clocks to drift between synchroniza�
tion� Now and then� synchronization will happen when
exchanging messages between system components� As al�
ready said� a realistic system without this synchroniza�
tion will break eventually� In this light� the case of exact
clock timed automata can be seen as the most extreme
case of synchronization� in the case of discrete clocks�
there might be a small drift� which is however not ob�
servable as we look at the system only when the syn�
chronizing clock tick occurs� while in the case of exact
continuous clocks all components are in lockstep at all
times�

��
 The Audio Control Protocol

The Audio Control Protocol is a well known case study
which shows the usefulness of drifting clock timed au�
tomata in practice� In 
���� Frits Vaandrager et al� proved
that for a communication protocol for Philips	 audio de�
vices� the protocol was reliable up to a clock tolerance
of 
	
� �see ��
��� For Philips it was very important that
the protocol was reliable up to a tolerance of �" �i�e�

	���� In order to keep the price of their audio devices
low they had to rely on clocks in the devices which were
no more accurate than this� Vaandrager was not only able

p y p p p

	�� tolerance but also demonstrated an exact bound on
the tolerance of 
	
�� His original proof used a variant
of drifting clock timed automata and was done by hand�
In the presentation of his paper� Vaandrager said that
it would be quite challenging to see if it was possible to
�nd an automated proof�
To his own surprise� already in the next year Uppaal

and HyTech were able to give automated proofs �see
��
� ����� While the original proof took several months�
the automated proofs needed just a few weeks to model
the audio control protocol in their input language �see
Fig� 
� for an example of the modelling for Uppaal� and
only some hours to verify that the tolerance 
	�� was
su�cient� The �rst automatic proof took seven hours�
but Uppaal and later also HyTech managed to do the
same later on in eight seconds�HyTech was even able to
prove the upper bound of 
	
� by parametric reasoning
�see ���� 
����
Vaandrager	s original proof however was based on

a simpli�cation of the protocol as it assumed only one
sender and receiver so that no collision would occur on
the bus� David Gri�oen� a student of Vaandrager� gave
a hand proof for the case of bus collision in his master	s
thesis������� The Uppaal team together with Gri�oen
were able to give an automated proof for this as well
�see �
���� with a total veri�cation time of no more than
eleven minutes�
The audio control protocol marks the �rst example

of the usefulness of these approaches and the tools for
real life examples of real time problems�

� More than Clocks

� General Hybrid Systems
� Continuous Variables
� Boiling Water
� Linear Hybrid Systems
� Polyhedra Technique

Hybrid Systems ����� ��� are a formalism for modelling
mixtures of discrete and continuous behaviour� They are
a very broad generalization of timed automata� where
continuous variables are used for modelling arbitrary con�
tinuous behaviour instead of just representing clocks�
This section will explain the notion of hybrid systems�


�� General Hybrid Systems

As we already emphasized in the section on real time
systems� a real time system can typically be divided into
a controlling system �often called the system� and a con�
trolled system �the environment������ The behaviour of
the controlled system is given a priori� although we are
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Fig� �
� The Audio Control Protocol in Uppaal

able to in�uence it� while we are interested in �nding
the correct behaviour of the controlling system so that
the whole system will function properly� In principle� the
controlling system can be analysed without any knowl�

edge of the environment� Such an approach is called an
open system approach� If such a controlling system is cor�
rect� it will work correctly in every possible environment�
However in most cases a rigorous analysis of this kind is
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about the environment� and it will require the environe�
ment to behave this way� i�e� we put certain constraints
on the kind of environment in which we expect the sys�
tem to work� Now in order to do such a closed system

analysis� in addition to the controlling system we also
need to model the environment�
In general there are digital and analog processes in

the environment� Thus we need some way to model arbi�
trary analog behaviour� In ����� Maler� Manna and Pnueli
introduced the notion of a hybrid system� hybrid systems
are a formalism which allows the modelling of digital and
analog behaviour in a common framework� As usual in
computer science� the discrete part is modelled by an
FSM� For the continuous part� real valued variables are
used�
Figure 
� is once again the co�ee machine� now mod�

elled as a hybrid systems� As we can now specify some
analog behaviour� we give a more detailed description
of what is going on in the machine� Namely� we will de�
scribe how the water is boiled and the co�ee �resp� tea� is
poured into the cup� This is described by two continuous
variables T �for temperature� and H �for height��
A hybrid system is a two phase system like a timed

automaton �see Fig� 
��� But while in a timed automa�
ton� in the continuous phase only the clocks would in�
crease with time� now our continuous variables can be�
have in any reasonable way as time passes� So in every
location we need to de�ne how our continuous variables
will evolve� This is most easily done by using di�erential
equations as usual in physics� Thus every location in the
hybrid system has di�erential equations for each contin�
uous variable� The functions describing the behaviour of
the variables are called activities�
Further every location has an invariant � a formula

over the values of the variables � which gives the ad�
mitted values for the variables� A process may only stay
within a location as long as it does not violate the in�
variant�
The activities and the invariant of the start loca�

tion are very simple� both variables will not change in
the start state �the water is not heated and no water is
poured into a cup�� so their slope is zero �note that we
use #T to indicate slopes in the �gures� and T� in the run�
ning text�� Further we may stay in the start state for any
amount of time� so the invariant is just true�
As we will see further down� transitions may in fact

be labelled in a much more complicated way then before�
In the example however things have nearly not changed�
every transition is labelled with a guard� an action and
an assignment� The assignment however is not a mere
reset any more� but can assign arbitrary values to the
continuous variables�
Now the co�ee machine behaves as follows� in the

start location� the water keeps its temperature and no
water is poured into the cup� We stay there until some�
one presses� say� the co�ee button� Then we move to the

g � p
set to ��� as this is the initial temperature of the water�
As soon as we enter the location� the water is boiled ac�
cording to the law T�  �
�� � T �	��� We are allowed
to stay in this location until the water boils� For the
co�ee� we assume that a �boiling temperature� of �� de�
grees is su�cient �while the tea really needs 
�� degrees��
Upon reaching the boiling temperature� the next transi�
tion� which delivers the cup� is taken� After the cup is
delivered� the water is poured into the cup� As the water
is not heated anymore� its activity� is now T�  �� The
height of the water inside the cup will however now rise
at two millimeters a second� so the activity of the height
is H�  �� The cup is �lled until the water height is two
centimeters� i�e� the cup is full �for the tea� we assume
that di�erent cups with a height of three centimeters are
used�� Then the system goes back to its start location
and waits again for someone to push a button �maybe
the tea button next time��

Let us go back from the example to the general de�nition
of hybrid systems� As we have seen� a hybrid system is an
FSM with a �nite number of continuous variables� The
behaviour of these variables is described by real�valued
functions over time called activities� Time only passes
while the system resides within a location� The activities
of the variables may be di�erent from location to loca�
tion� An invariant � i�e� an arbitrary formula over the
continuous variables � controls if the system is allowed
to stay within a location�

Transitions occur instantaneously� they take no time�
A transition has a pre� and a post�condition� The pre�
condition is a formula over the variables� it must be
ful�lled for the transition to be taken� After taking the
transition� the variables may be set to new values� which
are given by the post�condition� So the post�condition is
an assignment to the variables� which however may de�
pend on the previous values of the variables� Generally�
an observable action is associated with a transition� An
overview is given in Fig� ���

Hybrid systems are a very natural way to model sys�
tems with mixed digital and analog components� They
combine the modelling of discrete systems from computer
science with classical continuous modelling from natural
sciences as applied in control theory�

The semantics of a hybrid system can again be given
by a valuation graph� here the valuations are the cur�
rent values of the continuous variables� While delays are
still labelled with the exact amount of time elapsed� the
variables will change according to their activities� This
is again the two phase characteristic of the tranisiton
system�

	 To keep things simple� we do not model the cooling down of
the water�
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Fig� ��� A Hybrid Co�ee Machine

The expressiveness of hybrid system is very rich� any
physically realizable system should be describable as a
hybrid system �and even some which are not realizable
at all� as we allow arbitrary functions�� However as usual
there is a price for this expressiveness� the automatic
analysis of hybrid system is only possible for very re�

stricted subclasses� and termination of the analysis algo�
rithms cannot be guaranteed anymore� The general case
is for sure quite intricated and it will probably take some
time before methodologies are available here� However we
have already seen two subclasses of hybrid systems which
are automatically analysable� Timed automata are the
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Fig� ��� What�s in a hybrid system�

special case of hybrid systems where all activities have
a slope of one� invariants and pre�conditions are com�
parisons of clocks �and clock di�erences� against natural
numbers� and post�conditions are either to keep the value
or to set it to zero� Drifting clock timed automata are a
similar subclass� where the slope of the activities may
vary within a given interval� However� there is a more
expressive subclass which we will discuss in detail in the
next subsection�


�	 Linear Hybrid Systems

In 
���� Alur� Courcoubetis� Henzinger and Ho put for�
ward the notion of linear hybrid systems� a subclass of hy�
brid system which can be analysed �semi��automatically
��
��� In a linear hybrid system� invariants� guards and
activities may only depend linearly on time or the values
of variables� While this seems to be a severe restriction
at �rst glance� case studies show that many interesting
problems can be modelled as a linear hybrid system� The
key idea to the analysis of linear hybrid system is what
we call the polyhedra technique� We will explain the de�
tails of this technique in a separate subsection�
In order to give an easy example of a linear hybrid

system� we simplify our speci�cation of the co�ee ma�
chine again� Instead of modelling the boiling of the wa�
ter realistically� we use a linear approximation� we as�
sume that the water	s temperature rises by ��� degree
every second� Thus we can model the machine as a lin�
ear hybrid system as done in Fig� �
� Note that only the
activity T�  �
���T �	�� had to be changed to T�  ����
As with the region technique� the polyhedra tech�

nique allows a discrete representation of the in�nite val�
uation graph of a linear hybrid system� However� in con�
trast to the case of timed automata� this representation
need not be �nite� if it is �nite� the algorithmic analysis
will terminate and yield a correct result� while it might
be the case that the algorithm never terminates� This
situation is called semi�decidability in computer science�
So the main result regarding linear hybrid systems is

the existence of analysis algorithms� Thus there is the

p y g
of these algorithms cannot be guaranteed in general� in
many practical cases a result will be produced� It is now
a folk argument that in practice there is no real dif�
ference between an algorithm which always terminates
or one which only sometimes terminates ����� Note that
for complicated systems� the analysis might take several
days� and often it cannot be said a priori how long it will
take� For the user� there is no di�erence in stopping an
analysis after three days which might have terminated
within a week or which might have run forever�


�
 The Polyhedra Technique

While the approach to the analysis of timed automaton
was based on regions� the analysis of linear hybrids sys�
tems is based on polyhedra� A polyhedron is a subset of
the Euclidean space Rn � which can be described by lin�
ear inequalities� So each guard and invariant of a linear
hybrid systems describes a polyhedron�
If we choose linear hybrid systems as the subclass�

then a polyhedron is a set describable by a linear for�
mula� Assuming H and T are our continuous variables�
the formula � � T � 
���H  �T e�g� describes the set
of all pairs �x� �x� where x � ��� 
����

Given a location p of a linear hybrid system and a
polyhedron z� we can compute all points reachable from
�p� z� in the same way as we did with the region tech�
nique� By succ��p� z� we describe the set of points reach�
able by time passage� while succe�p� z� are all points
reachable from �p� z� by taking the transition e� The re�
sult of these operations is a pair �p�� z�� where p� is some
location of the hybrid system and z� is again a polyhe�
dron� Then reachability analysis can again be done by
computing sets reachable by one step iteratively� The al�
gorithm� which is analogous to the one based on regions�
is given in Fig� ���

� initialize R with f�p�� z��g
� mark all nodes as not visited
� for all �p� z� in R not already visited�

� mark �p� z� as visited
� add succ��p� z� to R
� for all transitions e leaving p

� add succe�p� z� to R
� until all nodes in R are marked visited

Fig� ��� Reachability Analysis in Linear Hybrid Systems

The main reason why this algorithm is correct is that
when starting from some polyhedron� the successor states
can again be described using polyhedra� However� termi�
nation is not guaranteed anymore� as there are generally
in�nitely many polyhedra�
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Fig� ��� Co�ee machine as a linear hybrid system


�� Below and Above Linearity

As said before� timed automata are a proper subclass of
linear hybrid systems� In principle� timed automata can
be analysed using the polyhedron technique for linear
hybrid systems� and in fact one can gain from this in
speed� The good thing about timed automata is that the
analysis is guaranteed to terminate�
There is even a larger subclass of linear hybrid sys�

tem for which termination is guaranteed� which is the
class of linear hybrid systems with a �nite bisimulation�
However� we cannot go into detail here but refer to ��
��
However� if we go beyond timed automata into lin�

ear hybrid systems� then while there exist analysis pro�
cedures� their termination is not guaranteed anymore�
When we cross the border of linearity and enter the
�eld of non�linear systems� then in general we do not
have any analysis algorithm at all� However� even non�
linear systems can be analysed� Often� a linear approx�
imation of the system can be found ������� There exist
safe approximations� i�e� if the analysis proves the lin�
ear approximative to be well�behaved� then the original
system is as well� Note that this is another quality of
semi�decidability�
Approximations are also a good idea in the linear

case if the analysis does not terminate� Then it might
help to use over�approximations of polyhedra to force
the algorithm to terminate�
This indicates that there is a vast class of hybrid sys�

tems which can be described and analysed using the tech�

niques of linear hybrid systems� The application in ����
clearly demonstrates the potential of applying HyTech
to real hybrid systems using approximations�

� The Tools

� Kronos

� Uppaal

� HyTech

In this issue of STTT� three tools for real time and hybrid
systems are presented� Kronos� Uppaal and HyTech�
Each will be presented in an article of its own elsewhere
in this special issue� Here we just give a short introduc�
tion to all of them�

Kronos���� is a model checker for timed automata� As
input it takes a timed automaton and a TCTL formula�
The output is a condition under which the automaton
satis�es the formula� In the best case� the condition is
just true� meaning the automaton will always satisfy
the formula� If the formula is not satis�ed� an error trace
is generated�

Kronos is mostly the work of Sergio Yovine� and
was implemented as part of his thesis ���� at VERIMAG
in Grenoble� It is now available in version ��
a �Septem�
ber 
��
�� Kronos has been successfully applied in a
number of non�trivial case studies ����� ��� �����



Uppaal is also a model checker for timed automata�
However the logic which is supported byUppaal is much
simpler than TCTL� permitting more e�cient algorithms�
Uppaal can deal with drifting clock timed automata and
also allows integer variables in the system description�
which is useful in many practical cases� Uppaal has a
nice graphical interface and a simulator which can be
used to observe the system	s behaviour�

Uppaal is joint work of the Universities of Uppsala
and Aalborg� initiated by Kim G� Larsen� Paul Petterson
and Wang Yi with Johan Bengtsson and Fredrik Lars�
son �
��� It was implemented in 	�� and 	��� and is now
available in version ����� Uppaal has proved useful even
in industrial case studies ����� �����

HyTech is a tool for linear hybrid systems� As input it
takes a description of a linear hybrid system and a set of
analysis commands� These commands allow to program
reachability analysis of linear hybrid system� HyTech
can be used to analyse all kinds of linear hybrid sys�
tems� so it can especially do all the analysis of which
Kronos and Uppaal are capable� although sometimes
less e�ciently due to the general approach� Especially
interesting is that with linear hybrid systems� it is easy
to specify parametrized systems� and HyTech will be
able to synthesize parameter values� i�e� �nd the correct
values for the parameters so that the system will work�
Though sometimes one will run into the problem of non�
termination�

HyTech has been designed and implemented by Tom
Henzinger� Pei�Hsin Ho and Howard Wong�Toi in 
���
at Cornell University���� 
��� but they have now moved
to Berkely� HyTech has been tested on a number of
interesting case studies �see ���� ��� �����
All the forementioned tools are now established and

well known in the formal methods and real time commu�
nity�

� Discussion

� history
� advantages of continuous modelling

We have given an introduction into the �eld of contin�
uous modelling of real time systems� presenting the no�
tions of timed automata� drifting clock timed automata�
linear hybrid systems and �general� hybrid systems� In
Fig� �� we give an overview of the �history� of continuous
real time modelling as far as we have covered this �eld
in the paper� This overview is intended to show how the
theory of continuous real time modelling evolved over the
last decade� Note the upcoming of the three tools pre�
sented in this issue of STTT in 
���� 	�� and 	��� Note
further how the tools tackled the audio control protocol

case studies around�

Our presentation focused on the portion of theory
of continuous model directly related to these tools� We
could not account for the many other approaches to con�
tinuous real time modelling as e�g� the duration calculus

���� ���� ACP��
�� 
�� or hybrid Petri Nets ���� 
���

We would like to end the presentation with a short
discussion of the usefulness and applicability of the mod�
els�

In Fig� �� we give an overview of the various versions
of co�ee machines modelled in the paper� the untimed
co�ee machine� the timed automata co�ee machine� the
linear hybrid system co�ee machine and the hybrid sys�
tem co�ee machine� As can be seen in this direct compar�
ison� the FSM modelling the control of the systems does
not change when adding time� Passing of time and con�
tinuous processes are modelled by augmenting the basic
system with more and more speci�c information� getting
a more and more realistic model of the co�e machine	s
behaviour� On the other side� the analysis of the system
becomes more and more complex�

An important question arising in the early stage of
the modelling process is the choice the right formalism�
If there is a need to model continuous behaviour� then
obviously the appropriate subclass of hybrid systems as
presented here will be a correct choice� But there are even
arguments for using the continuous approach in pure dig�
ital systems�

An important point is that sometimes in digital sys�
tems modelling one is forced to use a �xed global time
scale� A major advantage of the polyhedra technique is
that it will choose the appropriate time scale locally� if
the next event cannot occur with the next three seconds�
then three seconds is the �local� time scale� if events
happen every millsecond� then milliseconds are the the
�local� time scale�

Further compositional and re�nement techniques work
better with continuous than with discrete time� when
combining two systems with a di�erent time scale� both
systems have to be altered so that they have an identical
time scale before they can be combined in the discrete
case� while in the continuous case there is no need for
this	�

The development of the theory of timed automata
and hybrid systems has proved the following important
facts�

	 continuous time models can be analysed automati�
cally or at least semi�automatically despite their in�
�nite and uncountable character

	 the algorithms are not only of theoretical interest�
but can be implemented in real tools


 One could say that a continuously modelled system is already
at the most �ne grained time scale�



� ���� Stankovi�c�s article on real time science ���� ���� Timed CSP �

�
� ���� Di�erence Bound Matrices �	��� Real Time Temporal Logic ���
� ���� Timed CCS ����� ATP ����� Model Checking for Timed Automata �	�
� ���� Theory of Timed Automata ���
� ���� Safety Timed Automata ����� Hybrid Systems ����
� ���	 Kronos ����
� ���� HyTech �	��� Audio Control Protocol proved by hand ����
� ���� Uppaal ����� HyTech and Uppaal solve Audio Control Protocol automatically ��	� �
�
� ���
 Audio Control Protocol with Bus Collision solved automatically ����
� ���� Industrial Case Studies �	�� ���

Fig� ��� The �History� of Continuous Models

	 these tools can be made e�cient enough to solve real
problems like the veri�cation of Philips	 audio control
protocol

�� Conclusions

� Improve Theory
� Improve Tools
� Improve Methodologies

Most of the microprocessors which you come across in
your everyday life are not inside a computer� in fact they
sit inside a lot of machines of every day life from cars to
washing machine and video recorders� The development
of real time and embedded systems is a more and more
growing industry� While a malfunctioning video recorder
is just a nuisance for the user � but maybe still a catas�
trophe for the manufacturer � errors in the software con�
trolling your car	s anti skid system� an aeroplane or a
power plant can have disastrous e�ects�

By using a good design methodology� a lot of er�
rors can be detected and thus avoided during the de�
sign of software systems leading to better and less ex�
pensive software products� Thus good �and simple� de�
sign methodologies are obviously a desirable goal in the
�eld of real time systems� probably one of the main goals
in this �eld at the moment� Formal methods can be of
great help in developing good and sound design method�
ologies� Therefore investing into the development of for�
mal methods for real time systems is important for their
emergence�

It is beyond the scope of this article to comment on
all the relevant factors of designing these methodologies�
However we would like to comment on just a few points
which are closely related to the content of this paper�

The formalism of hybrid systems and timed automata
has proved useful for real time systems over the last
years� and hybrid methodologies are already used in in�
dustrial applications �see ��
� ��� ����� Despite this fact�
we will point out some directions of possible future re�

search aiming at improving hybrid methodologies and
their usability�

On the theoretical side� it would be interesting to
see how far the limits of analysability can be pushed�
Here a focus could be put on general algorithms to at�
tack non�linear hybrid systems� For linear hybrid systems
more space and time e�cient methods are highly appre�
ciated� Further hybrid systems should be compared to
other continuous approaches �as e�g� discrete event sys�

tems �
�� 
�� ���� in order to learn from and understand
the relation between the di�erent approaches�

On the tool side� the tools can hopefully be made
even more e�cient and user friendly� For e�ciency� ap�
propriate data structures for hybrid systems are still an
issue� For user orientedness� it is important to �nd out
what potential users expect from a real time tool� Right
at the moment all tools concentrate mainly on the real
time aspects� while users probably want a lot of things
they know from �untimed tools�� like data types� control
structures� modules� hierarchy� composition� abstraction
and reusability�

On the practical side� there is a strong need to de�
velop good and simple design methodologies for real time
systems� These methodologies must address the following
questions

	 how to use the theory�
	 how to use the tools �e�ciently��
	 what are the relevant issues for the industrial design
process�

We have the strong hope that this issue of STTT will
make people aware of the usefulness of hybrid methods
for real time systems� and that this in turn will help in
the development of the hybrid methodologies�

Web Pages� For your convenience we list the URL	s in
the World Wide Web for the real time tools mentioned
in this article in Fig� 
��
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